Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(37): e202301100, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37051838

RESUMO

The mechano-responsiverelease of small molecules has received extensive attention in ultrasound (US)-controlled drug release in recent years because it can achieve non-invasive, spatiotemporally controlled precise drug release. However, the vast majority of small molecules mechano-release reported so far are based on polymer systems, which suffer from complex preparations and single mechano-response. Here, an isoguanosine (isoG) visualized mechano-responsive supramolecular self-assembly (isoG-VMRSS) system was successfully constructed by a one-pot reaction. It is completely composed of small molecules, which allows for multiple mechano-responsive releases of isoG (at least 9 times) and ultimately has potential for application in US drug release. A combined experimental-computational approach reveals the supramolecular network structure (formed by the joint action of related metal coordination bonds, boronate ester bonds and hydrogen bonds mediated by isoG) gradually formed inside the system is the underlying internal mechanism. Therefore, it provides a new and effective idea of small molecule release in the field of mechanochemistry.

2.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919771

RESUMO

Photoinduced structural changes in peptides can dynamically control the formation and dissociation of supramolecular peptide materials. However, the existence of photoresponsive viral capsids in nature remains unknown. In this study, we constructed an artificial viral capsid possessing a photochromic azobenzene moiety on the peptide backbone. An azobenzene-containing ß-annulus peptide derived from the tomato bushy stunt virus was prepared through solid-phase synthesis using Fmoc-3-[(3-aminomethyl)-phenylazo]phenylacetic acid. The azobenzene-containing ß-annulus (ß-Annulus-Azo) peptide showed a reversible trans/cis isomerization property. The ß-annulus-azo peptide self-assembled at 25 µM into capsids with the diameters of 30-50 nm before UV irradiation (trans-form rich), whereas micrometer-sized aggregates were formed after UV irradiation (cis-form rich). The artificial viral capsid possessing azobenzene facilitated the encapsulation of fluorescent-labeled dextrans and their photoinduced release from the capsid.


Assuntos
Compostos Azo/química , Capsídeo/química , Luz , Peptídeos/química , Sequência de Aminoácidos , Difusão Dinâmica da Luz , Isomerismo , Técnicas de Síntese em Fase Sólida , Espectrofotometria Ultravioleta , Fatores de Tempo
3.
ACS Appl Bio Mater ; 7(1): 362-368, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150719

RESUMO

Conditionally activated molecule release in live cells would provide spatiotemporal control for the study and intervention of biological processes, e.g., bioactive molecule monitoring and controlled drug release. Mitochondria are the main sites of reactive oxygen species (ROS) production in cells. Here, we report an ROS-triggered molecule release strategy in mitochondria. A molecule IRTO with dual targeting groups was designed by covalently linking IR-780 (a mitochondrial targeted heptamethine cyanine) and 4-aminobutyl-thiazole orange (NH2-TO, a nuclear dye). IRTO diffused into live cells and first accumulated in mitochondria. As the cyanine moiety reacted with mitochondrial ROS directly or with the help of mitochondrial cytochromes, NH2-TO was released, escaped from mitochondria, and finally located in the nucleus. This process could be visualized by fluorescent imaging, i.e., red fluorescence (from the cyanine moiety of IRTO) first located in mitochondria, and green fluorescence (from NH2-TO) appeared and gradually enhanced in the nucleus with the increase of incubation time. The addition of H2O2 or lipopolysaccharide (LPS, an ROS accelerator) could accelerate the release of NH2-TO, whereas N-acetyl-l-cysteine (NAC, an ROS inhibitor) and mitoquinone mesylate (MitoQ, a mitochondrial ROS scavenger) could obviously decrease the release of NH2-TO. These results suggest that IRTO could serve as a fluorescent probe for monitoring ROS in mitochondria and that IR-780 might be a promising endogenous ROS-triggered molecule release platform.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Espécies Reativas de Oxigênio , Corantes Fluorescentes , Acetilcisteína/farmacologia
4.
Biosens Bioelectron ; 198: 113817, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34840015

RESUMO

Simultaneous multiple-target detection is essential for the prevention, identification, and treatment of numerous diseases. In this study, a novel strategy based on target-modulated competitive binding and exonuclease I (Exo I)-powered signal molecule release was established with the advantages of rapid response and high selectivity and sensitivity. The strategy holds substantial potential for the development of versatile platforms for the simultaneous detection of biological targets. To mitigate the low load capacity and time-consuming responsive process of the Zr-MOF system, UiO-67 was chosen to replace UiO-66 (a typical Zr-MOF) as the nanocarrier for encapsulating more signal molecules, whereby the assembled double-stranded DNA (dsDNA) structures of UiO-67 acted as gatekeepers to form dsDNA-functionalized MOFs. Additionally, Exo I was introduced into the system to accelerate the release of the signal molecules. In the presence of biological targets, the competitive binding between the targets and aptamers caused the hydrolysis of the free DNA sequence by Exo I, promoting the release of signal molecules and leading to a rapid and significant increase in the fluorescence intensity. For adenosine triphosphate (ATP) and cytochrome c (cyt c), which were chosen as model biological targets, this sensor displayed detection limits as low as 5.03 and 6.11 fM, respectively. Moreover, the developed biosensor was successfully applied to the simultaneous detection of ATP and cyt c in spiked serum samples. Therefore, this strategy provides guidance for further research of biosensors for simultaneous multiple-target detection and propels the application of MOF carriers in biomedicine.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ligação Competitiva , Exodesoxirribonucleases/metabolismo , Limite de Detecção , Estruturas Metalorgânicas , Ácidos Ftálicos
5.
Polymers (Basel) ; 13(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918789

RESUMO

Blended hydrogels play an important role in enhancing the properties (e.g., mechanical properties and conductivity) of hydrogels. In this study, we generated a conductive blended hydrogel, which was achieved by mixing gelatin methacrylate (GelMA) with collagen, and silver nanowire (AgNW). The ratio of GelMA, collagen and AgNW was optimized and was subsequently gelated by ultraviolet light (UV) and heat. The scanning electron microscope (SEM) image of the conductive blended hydrogels showed that collagen and AgNW were present in the GelMA hydrogel. Additionally, rheological analysis indicated that the mechanical properties of the conductive GelMA-collagen-AgNW blended hydrogels improved. Biocompatibility analysis confirmed that the human umbilical vein endothelial cells (HUVECs) encapsulated within the three-dimensional (3D), conductive blended hydrogels were highly viable. Furthermore, we confirmed that the molecule in the conductive blended hydrogel was released by electrical stimuli-mediated structural deformation. Therefore, this conductive GelMA-collagen-AgNW blended hydrogel could be potentially used as a smart actuator for drug delivery applications.

6.
Bioelectrochemistry ; 138: 107735, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33482577

RESUMO

The Implication (IMPLY) and Inhibition (INHIB) Boolean logic gates were realized using switchable chimeric pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH-Clamp) containing a fused affinity clamp unit recognizing a signal-peptide. The second component of the logic gate was the wild-type PQQ-glucose dehydrogenase working cooperatively with the PQQ-GDH-Clamp enzyme. The IMPLY and INHIB gates were realized using the same enzyme composition activated with differently defined input signals, thus representing reconfigurable logic systems. The logic gates were first tested while operating in a solution with optical analysis of the output signals. Then, the enzymes were immobilized on a buckypaper electrode for electrochemical transduction of the output signals. The switchable modified electrodes mimicking the IMPLY or INHIB logic gates were integrated with an oxygen-reducing electrode modified with bilirubin oxidase to operate as a biofuel cell activated/inhibited by various input signal combinations processed either by IMPLY or INHIB logic gates. The switchable biofuel cell was used as a self-powered device triggering molecule release function controlled by the logically processed molecule signals.


Assuntos
Eletroquímica/métodos , Lógica , Fontes de Energia Bioelétrica , Eletrodos , Glucose Desidrogenase/metabolismo
7.
ACS Nano ; 14(10): 14047-14056, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32970408

RESUMO

Recently, smart liquid permeation has aroused much attention. However, existing strategies to achieve such a goal are often based on reversibly controlling hydrophobicity/hydrophilicity on static porous structures, which are unsuitable for oils with low surface tension, and meanwhile they cannot realize tunable permeation flux since the pore sizes are constant. Herein, we report a superlyophilic shape memory porous sponge (SSMS) that can demonstrate tunable pore size from about 28 nm to 900 µm as the material's shape is changed. Based on the controllability in pore size, not only ON/OFF penetration but also precisely tunable permeation flux can be obtained for both water and oil. Furthermore, by using the SSMS, an application in accurate release of small-molecule rhodamine B was also demonstrated. This work reports a material with tunable pore size for controllable liquid permeation, which provides some ideas for designing smart superwetting permeation materials.

8.
ACS Appl Mater Interfaces ; 11(50): 47446-47455, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31804062

RESUMO

Poly(N-isopropylacrylamide)-co-acrylic acid microgel-based reservoir devices were constructed by "sandwiching" a single layer of microgels between two thin Au layers (all on a glass support). The microgels were loaded with the model drug crystal violet (CV) utilizing the electrostatic interactions between deprotonated acrylic acid (AAc) and the positively charged CV; release can be triggered from the microgels by neutralizing the deprotonated AAc groups at acidic conditions. Alkanethiols of different alkyl chain lengths and polarities were immobilized on the upper Au layer of the device, and the release rate of the model drug CV from the microgel layer, after acid neutralization, was assessed. We found that the CV release rate was the highest when the alkyl chain length was short and contained a hydrophilic moiety. Conversely, the release rate was hindered by the presence of thiols with long alkyl chain lengths and with no hydrophilic moiety. We explain this phenomenon by quantifying the thiol's ability to hinder acid penetration into the microgel layer, and the ability of free CV to pass through the upper Au layer and into the solution. Utilizing various thiols and mixed thiol layers, we are able to tune release profiles from these reservoir devices to potentially achieve array devices with precisely tuned small molecule release profiles.

9.
ACS Appl Mater Interfaces ; 10(13): 10761-10770, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29569895

RESUMO

Ionic chitosan gels fabricated using multivalent anions, tripolyphosphate (TPP) or pyrophosphate (PPi), respectively, have been investigated as potential biomaterials to be used in tissue engineering. Starting from the hypothesis that the polymer mesh texture at the microscale affects the final performance of the resulting materials, an innovative image analysis approach is presented in the first part of the article, which is aimed at deriving quantitative information from transmission electron microscopy images. The image analysis of the (more extended) central area of the gel networks revealed differences between both the cross-linking densities and pore size distributions of the two systems, the TPP gels showing a higher connectivity. Chitosan-TPP gels showed a limited degradation in simulated physiological media up to 6 weeks, reasonably ascribed to the texture of the (more extended) central area of the gels, whereas PPi counterparts degraded almost immediately. The release profiles and the calculation of diffusion coefficients for bovine serum albumin and cytochrome c, herein used as model payloads, indicated a different release behavior depending on the polymer network homogeneity/inhomogeneity and molecular weight of loaded molecules. This finding was ascribed to the marked inhomogeneity of the PPi gels (at variance with the TPP ones), which had been demonstrated in our previous work. Finally, thorough in vitro studies demonstrated good biocompatibility of both chitosan gels, and because of this feature, they can be used as suitable scaffolds for cellular colonization and metabolic activity.


Assuntos
Quitosana/química , Materiais Biocompatíveis , Géis , Polifosfatos , Soroalbumina Bovina , Engenharia Tecidual
10.
ACS Appl Mater Interfaces ; 10(46): 39512-39523, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30359523

RESUMO

Implantable devices need specific tailored surface morphologies and chemistries to interact with the living systems or to actively induce a biological response also by the release of drugs or proteins. These customized requirements foster technologies that can be implemented in additive manufacturing systems. Here, we present a novel approach based on spraying processes that allow to control separately topographic features in the submicron range (∼60 nm to 2 µm), ammine or carboxylic chemistry, and fluorophore release even on temperature-sensitive biodegradable polymers such as polycaprolactone (PCL). We developed a two-steps process with a first deposition of 220 nm silica and poly(lactic- co-glycolide) (PLGA) fluorescent nanoparticles by aerosol followed by the deposition of a fixing layer by an atmospheric pressure plasma jet (APPJ). The nanoparticles can be used to create the nanoroughness and to include active molecule release, while the capping layer ensures stability and the chemical functionalities. The process is enabled by a novel APPJ which allows deposition rates of 10-20 nm·s-1 at temperatures lower than 50 °C using argon as the process gas. This approach was assessed on titanium alloys for dental implants and on PCL films. The surfaces were characterized by Fourier transform infrared, atomic force microscopy, and scanning electron microscopy (SEM). Titanium alloys were tested with the preosteoblast murine cells line, while the PCL film was tested with fibroblasts. Cell behavior was evaluated by viability and adhesion assays, protein adsorption, cell proliferation, focal adhesion formation, and SEM. The release of a fluorophore molecule was assessed in the cell growing media, simulating a drug release. Osteoblast adhesion on the plasma-treated materials increased by 20% with respect to commercial titanium alloy implants. Fibroblast adhesion increased by a 100% compared to smooth PCL substrates. The release of the fluorophore by the dissolution of the PLGA nanoparticles was verified, and the integrity of the encapsulated drug model was confirmed.


Assuntos
Liberação Controlada de Fármacos , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Próteses e Implantes , Dióxido de Silício/química , Células 3T3 , Aerossóis/química , Ligas/química , Animais , Argônio , Materiais Biocompatíveis/química , Adesão Celular , Linhagem Celular , Sistemas de Liberação de Medicamentos , Fibroblastos/citologia , Humanos , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanopartículas , Osteoblastos/citologia , Gases em Plasma , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Titânio/química
11.
ACS Appl Mater Interfaces ; 10(15): 13124-13129, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29620347

RESUMO

A monolithic layer of poly( N-isopropylacrylamide- co-acrylic acid) microgels was deposited on an Au electrode and used for electrically triggered release of the small molecule crystal violet (CV), which was used as a model drug. CV was loaded into the surface-bound microgels by exposing them to a CV solution at pH 6.5, where the microgels are negatively charged and the CV is positively charged. The electrostatic attraction holds the CV inside of the microgels, while a decrease of the solution pH can neutralize the microgels and allow for CV release. In this investigation, we show that when CV-loaded microgels are deposited on the anode in an electrochemical cell and an appropriate voltage applied, there is a decrease in the solution pH near the anode surface that allows for CV release. We also show that removing the applied potential allows the solution pH near the anode to return to pH 6.5, which halts the release. We show that the release rate from the microgel-modified anodes could be controlled by the magnitude of the applied voltage and by pulsing the applied voltage or applying a continuous voltage. Furthermore, we showed that the microgel-modified anodes can be reloaded with CV and used to release CV to a system many times. Such devices could be used as implantable drug delivery devices, as well as for industrial applications, where small molecules need to be released to systems in response to their chemical status.

12.
ACS Appl Mater Interfaces ; 9(5): 4440-4449, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28081368

RESUMO

Metal-organic frameworks (MOFs) have a large potential for delivery of active molecules. Here, a MOF coating is investigated as a smart host matrix for triggered release of antibiofilm compounds. In addition to a coating consisting of the regular Fe-terephthalate MIL-88B(Fe), a new hydrophobic MIL-88B(Fe) coating is synthesized in hydrothermal conditions using palmitic acid as a lattice terminating group. These porous materials are used as a host matrix for the antibiofilm compound 5-(4-chlorophenyl)-N-(2-isobutyl)-2-aminoimidazole, which has a specific biofilm-inhibiting effect at concentrations at which no activity against planktonic cells is detected. The stability of MIL-88B(Fe) in distilled water and tryptic soy broth medium is investigated, together with the ability of iron(III) chelators to serve as a trigger for controlled decomposition of MIL-88B(Fe) by metal complexation. Organic iron chelators are used to mimic the iron chelating function of siderophores, which are specific molecules excreted by biofilm-forming bacteria. Trisodium citrate is able to chelate metal ions from the junctions of the framework. By sequestration of these metal ions, the host matrix is partially degraded, resulting in an antibiofilm compound release. Finally, the antibiofilm properties against Salmonella Typhimurium are validated by monitoring biofilm growth on MOF layers either loaded or not with aminoimidazole. A strong proof-of-concept is shown for efficient inhibition of biofilm growth through triggered antibiofilm compound release.


Assuntos
Estruturas Metalorgânicas/química , Compostos Férricos , Ferro , Água
13.
J Colloid Interface Sci ; 447: 211-6, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25465199

RESUMO

Polymer nanocapsules assembled on cationic liposomes have been built through the layer-by-layer (LbL) technique. Chitosan and alginate, two biocompatible polyelectrolytes, were used to cover the template, where the Rhodamine B was previously loaded. The multishell formed with the alternate deposition of the polyelectrolytes, according to the principles of the LbL assembly, was supposed to change the permeability of the capsule wall. The thickness of the multishell was seen increasing with the number of layers deposited through the observations with the Transmission Electron Microscope. The permeability of the capsules was studied through Rhodamine B release assays. Nanocapsules with seven layers of polyelectrolytes released the dye slowly compared to the capsules with three or five layers. The Ritger-Peppas model was applied to investigate the release mechanisms and a non-Fickian transport behavior was detected regardless of the number of layers. Values of diffusion coefficients of Rhodamine B through the capsule wall were also calculated.


Assuntos
Alginatos/química , Quitosana/química , Nanocápsulas/química , Polímeros/química , Rodaminas/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Microscopia Eletrônica de Transmissão , Nanocápsulas/ultraestrutura
14.
Biomed Rep ; 1(5): 802-806, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24649032

RESUMO

Recent studies have demonstrated the differential expression of miR-141 and miR-375 in circulation of patients with advanced/metastatic prostate cancer (PCa). The aim of this study was to investigate the regulation of miR-141 and miR-375 by androgens and their release into the incubation medium in relation to prostate-specific antigen (PSA) mRNA and prostate cancer antigen 3 (PCA3). Plasma levels of these molecules were measured in a small cohort of patients with localized PCa. As an in vitro cell model we used androgen-sensitive LNCaP cells exposed to an androgen ablation of 48 h, and then treated with dihydrotestosterone (DHT) for 24 h. Expression of the four RNA molecules was measured by quantitative polymerase chain reaction (qPCR). miR-141 and miR-375 were induced in a dose-dependent manner where the median stimulation reached only 1.5-fold at maximum. The effect of DHT on PSA mRNA (up to 30-fold) and PCA3 (up to 195-fold) was much more evident. With regard to the release into the incubation medium, similar results were obtained with the exception of PCA3. At the highest DHT dose (100 nM), median miR-141 and miR-375 release was increased 1.7- and 1.4-fold (P=0.07), respectively. DHT treatment led to a significant release of PSA mRNA (up to 12-fold) into the medium while PCA3 could not be amplified from the incubation medium. In plasma only PCA3 differed significantly between localized PCa patients and healthy subjects. In conclusion, our study provides evidence that miR-141 and miR-375 are increasingly released into incubation medium from androgen-stimulated cells. However, the extent of their induction was weaker than PSA mRNA or PCA3, suggesting differential regulation by androgens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA