Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Nutr ; 40(3): 1247-1259, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32863060

RESUMO

BACKGROUND AND OBJECTIVE: Metabolic disorders including diabetes are associated with immune cell dysfunction. However, the effect of normal glucose metabolism or impairment thereof on immune cell gene expression is not well known. Hence, in this cross-sectional pilot study, we sought to determine the differences in gene expression in the peripheral blood mono-nuclear cells (PBMCs) of normal glucose tolerant (NGT) and prediabetic (PD) Asian Indian men, at fasting and in response to 75 g oral glucose load. METHODS: Illumina HT12 bead chip-based microarray was performed on PBMCs at fasting and 2-h post load conditions for NGT (N = 6) and PD (N = 9) subjects. Following normalization and due quality control of the raw data, differentially expressed genes (DEGs) under different conditions within and across the two groups were identified using GeneSpring GX V12.0 software. Paired and unpaired Student's t-tests were applied along with fold change cut-offs for appropriate comparisons. Validation of the microarray data was carried out through real-time qPCR analysis. Significantly regulated biological pathways were analyzed by employing DEGs and DAVID resource. Deconvolution of the DEGs between NGT and PD subjects at fasting was performed using CIBERSORT and genes involved in regulatory T-cell (Treg) function were further analyzed for biological significance. RESULTS: Glucose load specifically altered the expression of 112 genes in NGT and 356 genes in PD subjects. Biological significance analysis revealed transient up-regulation of innate and adaptive immune response related genes following oral glucose load in NGT individuals, which was not observed in PD subjects. Instead, in the PD group, glucose load led to an increase in the expression of pro-atherogenic and anti-angiogenic genes. Comparison of gene expression at fasting state in PD versus NGT revealed 21,707 differentially expressed genes. Biological significance analysis of the immune function related genes between these two groups (at fasting) revealed higher gene expression of members of the TLR signaling, MHC class II molecules, and T-cell receptor, chemotaxis and adhesion pathways in PD subjects. Expression of interferon-γ (IFN-γ) and TNFα was higher and that of type-1 interferons and TGF-ß was lower at fasting state in PD subjects compared to NGT. Additionally, expression of multiple proteasome subunits and protein arginine methyl transferase genes (PRMTs) were higher and that of Treg specific genes was significantly distinct at fasting in PD subjects compared to NGT. CONCLUSION: Prediabetes uncovers constitutive TLR activation, enhanced IFN-γ signaling, and Treg dysfunction at fasting along with altered gene expression response to oral glucose load.


Assuntos
Jejum/fisiologia , Regulação da Expressão Gênica , Glucose/administração & dosagem , Imunidade Inata/genética , Estado Pré-Diabético/imunologia , Adulto , Aterosclerose/genética , Quimiocinas/genética , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Teste de Tolerância a Glucose , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Índia , Insulina/fisiologia , Masculino , Estado Pré-Diabético/genética , Análise Serial de Proteínas , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptores Toll-Like/metabolismo
2.
J Alzheimers Dis ; 69(2): 443-453, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958382

RESUMO

BACKGROUND/OBJECTIVE: Alzheimer's disease (AD) is a progressive incurable neurodegenerative disorder. Glial cell line-derived neurotrophic factor (GDNF) is a prominent regulator of brain tissue and has an impressive potential for use in AD therapy. While its metabolism is still not fully understood, delivering neuropeptides such as GDNF via umbilical cord blood mononuclear cells (UCBMCs) to the sites of neurodegeneration is a promising approach in the development of innovative therapeutic avenues. METHODS: UCBMCs were transduced with adenoviral vectors expressing GDNF and injected into AD transgenic mice. Various parameters including homing and survival of transplanted cells, expression of GDNF and synaptic proteins, as well as spatial memory were evaluated. RESULTS: UCBMCs were observed in the hippocampus and cortex several weeks after transplantation, and their long-term presence was associated with improved spatial memory. Post-synaptic density protein 95 (PSD-95) and synaptophysin levels in the hippocampus were also effectively restored following the procedure in AD mice. CONCLUSIONS: Our data indicate that gene-cell therapy with GDNF-overexpressing UCBMCs may produce long-lasting neuroprotection and stimulation of synaptogenesis. Such adenoviral constructs could potentially possess a high therapeutic potential for the treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Hipocampo/metabolismo , Memória Espacial/fisiologia , Doença de Alzheimer/genética , Animais , Proteína 4 Homóloga a Disks-Large/biossíntese , Proteína 4 Homóloga a Disks-Large/genética , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Gravidez , Sinaptofisina/biossíntese , Sinaptofisina/genética
3.
Oncotarget ; 9(4): 5287-5300, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435179

RESUMO

Multiple sclerosis is a chronic autoimmune disorder of the central nervous system. In MS, the genetic susceptibility is high and currently there is no effective treatment. MicroRNA, a small non-coding RNA, plays a vital role in immune responses. Aberrant or dysfunctional miRNAs may cause several diseases, including MS, thus miRNAs and miRNA related genes may be therapeutic weapons against MS. Here, we identified 21 miRNAs in peripheral blood mono-nuclear cells from over 600 persons, including healthy controls. By using informatics databases, 1637 susceptibility genes were evaluated and Cytoscape was used to integrate and visualize the relation between the miRNA identified and susceptibility genes. By using the cluster Profile package, a total of 10 risk pathways were discovered. Top pathways included: hsa05200 (pathway in cancer), hsa04010 (MAPK signaling pathway), and hsa04060 (cytokine-cytokine receptor interaction). By using the STRING database, a protein-protein interaction network was conducted to identify highly susceptibility genes. Moreover, the GSE21942 dataset was used to indicate the gene expression profiles and to correct prediction results, thereby identifying the most pivotal genes. The MiRSystem database provided information on both pivotal miRNAs and genes. In conclusion, miR-199a and miR-142-3p may be crucial for MS by targeting pivotal susceptibility genes, in particular KRAS and IL7R.

4.
Mutat Res ; 806: 39-50, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28963924

RESUMO

High level natural radiation areas (HLNRA) of Kerala coastal strip (55km long and 0.5km wide) in southwest India exhibit wide variations in the level of background dose (< 1.0-45.0mGy/year) due to thorium deposits in the beach sand. The areas with ≤1.5mGy/year are considered as normal level natural radiation area (NLNRA), whereas areas with >1.5mGy/year are HLNRA. Individuals belonging to HLNRA were stratified into two groups, Low dose group (LDG: 1.51-5.0mGy/year) and high dose group (HDG: >5.0mGy/year). The mean annual dose received by the individuals from NLNRA, LDG and HDG was 1.3±0.1, 2.7±0.9 and 9.4±2.3mGy/year, respectively. Induction and repair of DNA double strand breaks (DSBs) in terms of gamma-H2AX positive cells were analysed in peripheral blood mononuclear cells (PBMCs) using flow cytometry. Induction of DSBs was studied at low (0.25Gy) and high challenge doses (1.0 and 2.0Gy) of gamma radiation in 78 individuals {NLNRA, N=23; HLNRA (LDG, N=21 and HDG, N=34)}. Repair kinetics of DSBs were evaluated in PBMCs of 30 individuals belonging to NLNRA (N=8), LDG (N=7) and HDG (N=15) at low (0.25Gy) and high doses (2.0Gy) of gamma radiation. Transcription profile of DNA damage response (DDR) and DSB repair genes involved in non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways was analysed after a challenge dose of 2.0Gy in PBMCs of NLNRA (N=10) and HDG, HLNRA (N=10) group. Our results revealed significantly lower induction and efficient repair of DSBs in HLNRA groups as compared to NLNRA. Transcription profile of DCLRE1C, XRCC4, NBS1 and CDK2 showed significant up-regulation (p≤0.05) in HDG at a challenge dose of 2.0Gy indicating active involvement of DDR and DSB repair pathways. In conclusion, lower induction and efficient repair of DNA DSBs in HLNRA groups is suggestive of an in vivo radio-adaptive response due to priming effect of chronic low dose radiation prevailing in this area.


Assuntos
Radiação de Fundo/efeitos adversos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/fisiologia , Raios gama/efeitos adversos , Regulação da Expressão Gênica/efeitos da radiação , Leucócitos Mononucleares/metabolismo , Proteínas de Ciclo Celular/genética , Quinase 2 Dependente de Ciclina/genética , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta à Radiação , Endonucleases/genética , Humanos , Índia , Leucócitos Mononucleares/patologia , Leucócitos Mononucleares/efeitos da radiação , Proteínas Nucleares/genética
5.
Transl Stroke Res ; 7(4): 322-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26997513

RESUMO

Cell-based therapies including bone-marrow derived mononuclear cells (MNCs) are now widely being studied because of their pleotropic effects and promising results to improve recovery after stroke in animal models. Unlike other types of cell therapies, MNCs is a mixture of lymphoid, myeloid, erythroid, and stem cell populations. Which cell population(s) accounts for the beneficial effects of MNCs in stroke recovery is unclear. In this paper, we employed a mouse stroke model with middle cerebral artery occlusion (MCAo), and used positively and negatively sorted autologous MNCs by MACs to determine which fractions of the MNCs contribute to their beneficial effects. We evaluated the benefits of neurofunctional recovery produced by individual cell lineages within MNCs in a long-term observation study up to 28 days after stroke. Mortality and modulation of inflammation were also compared among different sub-populations. We further studied the impact of neurotoxicity posed by activated microglia in the presence of different cell lineages within MNCs. We concluded that myeloid cell lineage and stem cell/progenitors appeared to be important components within MNCs that contribute to improved outcomes after stroke.


Assuntos
Células da Medula Óssea/fisiologia , Transplante de Medula Óssea , Leucócitos Mononucleares/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/cirurgia , Animais , Antígenos CD/metabolismo , Atrofia/etiologia , Atrofia/patologia , Células Cultivadas , Técnicas de Cocultura , Dactinomicina/análogos & derivados , Dactinomicina/toxicidade , Modelos Animais de Doenças , Feminino , Inflamação/induzido quimicamente , Leucócitos Mononucleares/efeitos dos fármacos , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Células Mieloides/fisiologia , Células Mieloides/transplante , Gravidez , Desempenho Psicomotor/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos
6.
Int J Radiat Biol ; 90(12): 1143-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24844371

RESUMO

UNLABELLED: Abstract Background: Ionizing radiation induces a plethora of DNA damage including double-strand breaks (DSB) that may trigger a series of events such as transcription, DNA repair and alteration in the conformation of chromatin structure in human cells. We have made an attempt to study the conformational changes in chromatin fibers in irradiated human peripheral blood mononuclear cells (PBMC) using Dynamic Light Scattering (DLS) as a new tool. MATERIALS AND METHODS: Venous blood samples were collected from 10 random, healthy individuals with written informed consent, approved by institutional ethics committee. PBMC were separated from blood, irradiated with different doses of gamma radiation from 0.25-1.0 Gy. Native chromatin was isolated from irradiated PBMC and changes in the hydrodynamic diameter of the chromatin fiber were measured using DLS. Both dose response and time kinetics was studied in order to see the chromatin changes. Radiation-induced DNA double-strand breaks were measured using gamma-H2AX (histone 2A member X) as a biomarker using flow cytometry and foci were visualized in confocal microscopy. RESULTS: A significant alteration in hydrodynamic diameter of the chromatin fiber was observed at lower doses (0.25 and 0.50 Gy), whereas at higher dose (1.0 Gy), the size of the chromatin fiber was comparable to unirradiated control. Among the 10 individuals studied, five individuals showed significant increase (p ≤ 0.002) in hydrodynamic size at 0.25 Gy whereas four individuals showed significant decrease (p ≤ 0.009) at 0.25 Gy. One individual did not show any significant difference as compared to control. However, dose-dependent increase in gamma-H2AX fluorescence signals as well as foci number was observed. Increased fragmentation of chromatin fiber was also observed using Atomic Force Microscopy at higher doses. CONCLUSION: Radiation-induced DNA damage response can lead to individual specific conformational changes in chromatin structure at lower doses (0.25 Gy and 0.50 Gy) which can be detected using dynamic light scattering method in resting human PBMC.


Assuntos
Cromatina/química , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos da radiação , Cromatina/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fragmentação do DNA/efeitos da radiação , Humanos , Conformação Proteica/efeitos da radiação
7.
Am J Case Rep ; 15: 128-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24711886

RESUMO

PATIENT: Male, 9 FINAL DIAGNOSIS: Duchenne muscular dystrophy Symptoms: Hyporeflexia • hypotonia • weaknes of lower limbs MEDICATION: - Clinical Procedure: - Specialty: Neurology. OBJECTIVE: Congenital defects/diseases. BACKGROUND: Duchenne muscular dystrophy (DMD) is a fatal, genetic, progressive, degenerating muscle disorder. Current treatment options are palliative. Newer options of cellular therapy promise to alter the disease process. Preclinical studies have successfully tested myogenic, neurogenic potential and dystrophin expression of bone marrow mononuclear cells. CASE REPORT: We treated a 9-year-old boy suffering from DMD with serial autologous bone marrow mononuclear cell transplantations followed by multidisciplinary rehabilitation. Brooke-Vignos score was 10 and he was wheelchair-bound. Over 36 months, gradual progressive improvement was noticed in muscle strength, ambulation with assistive devices, fine motor movements, Brooke-Vignos score, and functional independence measure score. Nine months after the transplantation, electromyography findings showed development of new normal motor unit potentials of the vastus medialis muscle. CONCLUSIONS: Magnetic resonance imaging scan of musculoskeletal systems showed no increase in fatty infiltration. This case report provides early investigative findings or the restorative effects of cellular therapy in DMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA