Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.041
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 375-404, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37126421

RESUMO

Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.


Assuntos
Monócitos , Neutrófilos , Camundongos , Humanos , Animais , Macrófagos , Células Mieloides , Inflamação , Diferenciação Celular
2.
Annu Rev Immunol ; 39: 131-166, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33481643

RESUMO

Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.


Assuntos
Células Dendríticas , Imunidade Inata , Animais , Linhagem da Célula , Humanos , Camundongos
3.
Annu Rev Immunol ; 37: 439-456, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026415

RESUMO

Monocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16- in humans and Ly6Chi in mice), intermediate (CD14+CD16+ in humans and Ly6C+Treml4+ in mice), and nonclassical (CD14-CD16+ in humans and Ly6Clo in mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.


Assuntos
Artrite Reumatoide/imunologia , Aterosclerose/imunologia , Vasos Sanguíneos/fisiologia , Monócitos/imunologia , Infarto do Miocárdio/imunologia , Animais , Autoimunidade , Hematopoese , Homeostase , Humanos , Inflamação , Camundongos
4.
Annu Rev Immunol ; 37: 269-293, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30649988

RESUMO

Myeloid cells are a major cellular compartment of the immune system comprising monocytes, dendritic cells, tissue macrophages, and granulocytes. Models of cellular ontogeny, activation, differentiation, and tissue-specific functions of myeloid cells have been revisited during the last years with surprising results; for example, most tissue macrophages are yolk sac derived, monocytes and macrophages follow a multidimensional model of activation, and tissue signals have a significant impact on the functionality of all these cells. While these exciting results have brought these cells back to center stage, their enormous plasticity and heterogeneity, during both homeostasis and disease, are far from understood. At the same time, the ongoing revolution in single-cell genomics, with single-cell RNA sequencing (scRNA-seq) leading the way, promises to change this. Prevailing models of hematopoiesis with distinct intermediates are challenged by scRNA-seq data suggesting more continuous developmental trajectories in the myeloid cell compartment. Cell subset structures previously defined by protein marker expression need to be revised based on unbiased analyses of scRNA-seq data. Particularly in inflammatory conditions, myeloid cells exhibit substantially vaster heterogeneity than previously anticipated, and work performed within large international projects, such as the Human Cell Atlas, has already revealed novel tissue macrophage subsets. Based on these exciting developments, we propose the next steps to a full understanding of the myeloid cell compartment in health and diseases.


Assuntos
Diferenciação Celular , Microambiente Celular , Inflamação/imunologia , Células Mieloides/fisiologia , Animais , Biomarcadores , Plasticidade Celular , Homeostase , Humanos , Análise de Sequência de RNA
5.
Cell ; 187(16): 4318-4335.e20, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38964327

RESUMO

Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Dexametasona , Monócitos , SARS-CoV-2 , Análise de Célula Única , Humanos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Masculino , Feminino , Transcriptoma , Pessoa de Meia-Idade , Idoso , Glucocorticoides/uso terapêutico , Glucocorticoides/farmacologia , Pulmão/patologia , Adulto
6.
Cell ; 186(13): 2823-2838.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37236193

RESUMO

Mental health profoundly impacts inflammatory responses in the body. This is particularly apparent in inflammatory bowel disease (IBD), in which psychological stress is associated with exacerbated disease flares. Here, we discover a critical role for the enteric nervous system (ENS) in mediating the aggravating effect of chronic stress on intestinal inflammation. We find that chronically elevated levels of glucocorticoids drive the generation of an inflammatory subset of enteric glia that promotes monocyte- and TNF-mediated inflammation via CSF1. Additionally, glucocorticoids cause transcriptional immaturity in enteric neurons, acetylcholine deficiency, and dysmotility via TGF-ß2. We verify the connection between the psychological state, intestinal inflammation, and dysmotility in three cohorts of IBD patients. Together, these findings offer a mechanistic explanation for the impact of the brain on peripheral inflammation, define the ENS as a relay between psychological stress and gut inflammation, and suggest that stress management could serve as a valuable component of IBD care.


Assuntos
Sistema Nervoso Entérico , Doenças Inflamatórias Intestinais , Humanos , Glucocorticoides/farmacologia , Inflamação , Sistema Nervoso Entérico/fisiologia , Estresse Psicológico
7.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37597510

RESUMO

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Assuntos
COVID-19 , Memória Epigenética , Síndrome de COVID-19 Pós-Aguda , Animais , Humanos , Camundongos , Diferenciação Celular , COVID-19/imunologia , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Inflamação/genética , Imunidade Treinada , Monócitos/imunologia , Síndrome de COVID-19 Pós-Aguda/genética , Síndrome de COVID-19 Pós-Aguda/imunologia , Síndrome de COVID-19 Pós-Aguda/patologia
8.
Cell ; 184(21): 5338-5356.e21, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34624222

RESUMO

The tumor microenvironment (TME) influences cancer progression and therapy response. Therefore, understanding what regulates the TME immune compartment is vital. Here we show that microbiota signals program mononuclear phagocytes in the TME toward immunostimulatory monocytes and dendritic cells (DCs). Single-cell RNA sequencing revealed that absence of microbiota skews the TME toward pro-tumorigenic macrophages. Mechanistically, we show that microbiota-derived stimulator of interferon genes (STING) agonists induce type I interferon (IFN-I) production by intratumoral monocytes to regulate macrophage polarization and natural killer (NK) cell-DC crosstalk. Microbiota modulation with a high-fiber diet triggered the intratumoral IFN-I-NK cell-DC axis and improved the efficacy of immune checkpoint blockade (ICB). We validated our findings in individuals with melanoma treated with ICB and showed that the predicted intratumoral IFN-I and immune compositional differences between responder and non-responder individuals can be transferred by fecal microbiota transplantation. Our study uncovers a mechanistic link between the microbiota and the innate TME that can be harnessed to improve cancer therapies.


Assuntos
Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Microbiota , Monócitos/metabolismo , Microambiente Tumoral , Akkermansia/efeitos dos fármacos , Akkermansia/fisiologia , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Fibras na Dieta/farmacologia , Fosfatos de Dinucleosídeos/administração & dosagem , Fosfatos de Dinucleosídeos/farmacologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunomodulação/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
9.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34914922

RESUMO

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/virologia , Macrófagos/patologia , Macrófagos/virologia , SARS-CoV-2/fisiologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , COVID-19/diagnóstico por imagem , Comunicação Celular , Estudos de Coortes , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/genética , Células-Tronco Mesenquimais/patologia , Fenótipo , Proteoma/metabolismo , Receptores de Superfície Celular/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Tomografia Computadorizada por Raios X , Transcrição Gênica
10.
Cell ; 184(7): 1804-1820.e16, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691139

RESUMO

SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes and CD8+ T cells for optimal clinical and virological benefit. Thus, potently neutralizing mAbs utilize Fc effector functions during therapy to mitigate lung infection and disease.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19 , Fragmentos Fc das Imunoglobulinas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Células CHO , COVID-19/imunologia , COVID-19/terapia , Chlorocebus aethiops , Cricetulus , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2/imunologia , Células Vero , Carga Viral
11.
Cell ; 184(7): 1671-1692, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33743212

RESUMO

The introduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the human population represents a tremendous medical and economic crisis. Innate immunity-as the first line of defense of our immune system-plays a central role in combating this novel virus. Here, we provide a conceptual framework for the interaction of the human innate immune system with SARS-CoV-2 to link the clinical observations with experimental findings that have been made during the first year of the pandemic. We review evidence that variability in innate immune system components among humans is a main contributor to the heterogeneous disease courses observed for coronavirus disease 2019 (COVID-19), the disease spectrum induced by SARS-CoV-2. A better understanding of the pathophysiological mechanisms observed for cells and soluble mediators involved in innate immunity is a prerequisite for the development of diagnostic markers and therapeutic strategies targeting COVID-19. However, this will also require additional studies addressing causality of events, which so far are lagging behind.


Assuntos
COVID-19/imunologia , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , SARS-CoV-2/fisiologia , Humanos , Índice de Gravidade de Doença
12.
Cell ; 183(5): 1383-1401.e19, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33159858

RESUMO

Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno/genética , Análise de Célula Única , Animais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Efeito Espectador , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Ebolavirus/genética , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferons/genética , Interferons/metabolismo , Macaca mulatta , Macrófagos/metabolismo , Monócitos/metabolismo , Mielopoese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcriptoma/genética
13.
Cell ; 183(3): 752-770.e22, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125891

RESUMO

A greater understanding of hematopoietic stem cell (HSC) regulation is required for dissecting protective versus detrimental immunity to pathogens that cause chronic infections such as Mycobacterium tuberculosis (Mtb). We have shown that systemic administration of Bacille Calmette-Guérin (BCG) or ß-glucan reprograms HSCs in the bone marrow (BM) via a type II interferon (IFN-II) or interleukin-1 (IL1) response, respectively, which confers protective trained immunity against Mtb. Here, we demonstrate that, unlike BCG or ß-glucan, Mtb reprograms HSCs via an IFN-I response that suppresses myelopoiesis and impairs development of protective trained immunity to Mtb. Mechanistically, IFN-I signaling dysregulates iron metabolism, depolarizes mitochondrial membrane potential, and induces cell death specifically in myeloid progenitors. Additionally, activation of the IFN-I/iron axis in HSCs impairs trained immunity to Mtb infection. These results identify an unanticipated immune evasion strategy of Mtb in the BM that controls the magnitude and intrinsic anti-microbial capacity of innate immunity to infection.


Assuntos
Células-Tronco Hematopoéticas/microbiologia , Imunidade , Mycobacterium tuberculosis/fisiologia , Mielopoese , Animais , Células da Medula Óssea/metabolismo , Proliferação de Células , Suscetibilidade a Doenças , Homeostase , Interferon Tipo I/metabolismo , Ferro/metabolismo , Cinética , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Necrose , Transdução de Sinais , Transcrição Gênica , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologia
14.
Cell ; 181(7): 1626-1642.e20, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32470397

RESUMO

Brain malignancies can either originate from within the CNS (gliomas) or invade from other locations in the body (metastases). A highly immunosuppressive tumor microenvironment (TME) influences brain tumor outgrowth. Whether the TME is predominantly shaped by the CNS micromilieu or by the malignancy itself is unknown, as is the diversity, origin, and function of CNS tumor-associated macrophages (TAMs). Here, we have mapped the leukocyte landscape of brain tumors using high-dimensional single-cell profiling (CyTOF). The heterogeneous composition of tissue-resident and invading immune cells within the TME alone permitted a clear distinction between gliomas and brain metastases (BrM). The glioma TME presented predominantly with tissue-resident, reactive microglia, whereas tissue-invading leukocytes accumulated in BrM. Tissue-invading TAMs showed a distinctive signature trajectory, revealing tumor-driven instruction along with contrasting lymphocyte activation and exhaustion. Defining the specific immunological signature of brain tumors can facilitate the rational design of targeted immunotherapy strategies.


Assuntos
Neoplasias Encefálicas/imunologia , Leucócitos/imunologia , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Imunoterapia , Leucócitos/metabolismo , Leucócitos/fisiologia , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Microglia/patologia , Metástase Neoplásica/patologia
15.
Cell ; 182(6): 1419-1440.e23, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32810438

RESUMO

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.


Assuntos
Infecções por Coronavirus/imunologia , Células Mieloides/imunologia , Mielopoese , Pneumonia Viral/imunologia , Adulto , Idoso , Antígenos CD11/genética , Antígenos CD11/metabolismo , COVID-19 , Células Cultivadas , Infecções por Coronavirus/sangue , Infecções por Coronavirus/patologia , Feminino , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Células Mieloides/citologia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/patologia , Proteoma/genética , Proteoma/metabolismo , Proteômica , Análise de Célula Única
16.
Immunity ; 57(6): 1225-1242.e6, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38749446

RESUMO

Classical monocytes (CMs) are ephemeral myeloid immune cells that circulate in the blood. Emerging evidence suggests that CMs can have distinct ontogeny and originate from either granulocyte-monocyte- or monocyte-dendritic-cell progenitors (GMPs or MDPs). Here, we report surface markers that allowed segregation of murine GMP- and MDP-derived CMs, i.e., GMP-Mo and MDP-Mo, as well as their functional characterization, including fate definition following adoptive cell transfer. GMP-Mo and MDP-Mo yielded an equal increase in homeostatic CM progeny, such as blood-resident non-classical monocytes and gut macrophages; however, these cells differentially seeded various other selected tissues, including the dura mater and lung. Specifically, GMP-Mo and MDP-Mo differentiated into distinct interstitial lung macrophages, linking CM dichotomy to previously reported pulmonary macrophage heterogeneity. Collectively, we provide evidence for the existence of two functionally distinct CM subsets in the mouse that differentially contribute to peripheral tissue macrophage populations in homeostasis and following challenge.


Assuntos
Diferenciação Celular , Macrófagos , Monócitos , Animais , Monócitos/imunologia , Monócitos/citologia , Camundongos , Diferenciação Celular/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Pulmão/citologia , Pulmão/imunologia , Homeostase , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Linhagem da Célula , Transferência Adotiva
17.
Cell ; 172(1-2): 135-146.e9, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328908

RESUMO

Innate immune cells can develop long-term memory after stimulation by microbial products during infections or vaccinations. Here, we report that metabolic signals can induce trained immunity. Pharmacological and genetic experiments reveal that activation of the cholesterol synthesis pathway, but not the synthesis of cholesterol itself, is essential for training of myeloid cells. Rather, the metabolite mevalonate is the mediator of training via activation of IGF1-R and mTOR and subsequent histone modifications in inflammatory pathways. Statins, which block mevalonate generation, prevent trained immunity induction. Furthermore, monocytes of patients with hyper immunoglobulin D syndrome (HIDS), who are mevalonate kinase deficient and accumulate mevalonate, have a constitutive trained immunity phenotype at both immunological and epigenetic levels, which could explain the attacks of sterile inflammation that these patients experience. Unraveling the role of mevalonate in trained immunity contributes to our understanding of the pathophysiology of HIDS and identifies novel therapeutic targets for clinical conditions with excessive activation of trained immunity.


Assuntos
Imunidade Inata , Memória Imunológica , Deficiência de Mevalonato Quinase/imunologia , Ácido Mevalônico/metabolismo , Monócitos/imunologia , Animais , Células Cultivadas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo
18.
Immunity ; 56(8): 1761-1777.e6, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506694

RESUMO

Conventional dendritic cells (cDCs) are professional antigen-presenting cells that control the adaptive immune response. Their subsets and developmental origins have been intensively investigated but are still not fully understood as their phenotypes, especially in the DC2 lineage and the recently described human DC3s, overlap with monocytes. Here, using LEGENDScreen to profile DC vs. monocyte lineages, we found sustained expression of FLT3 and CD45RB through the whole DC lineage, allowing DCs and their precursors to be distinguished from monocytes. Using fate mapping models, single-cell RNA sequencing and adoptive transfer, we identified a lineage of murine CD16/32+CD172a+ DC3, distinct from DC2, arising from Ly6C+ monocyte-DC progenitors (MDPs) through Lyz2+Ly6C+CD11c- pro-DC3s, whereas DC2s develop from common DC progenitors (CDPs) through CD7+Ly6C+CD11c+ pre-DC2s. Corresponding DC subsets, developmental stages, and lineages exist in humans. These findings reveal DC3 as a DC lineage phenotypically related to but developmentally different from monocytes and DC2s.


Assuntos
Monócitos , Células-Tronco , Camundongos , Humanos , Animais , Fenótipo , Células Cultivadas , Células Dendríticas , Diferenciação Celular
19.
Immunity ; 55(3): 442-458.e8, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35182483

RESUMO

Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1+ monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1+ monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1+ monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity.


Assuntos
Infecções Bacterianas , Listeriose , Linfócitos B , Centro Germinativo , Humanos , Monócitos
20.
Immunity ; 55(8): 1483-1500.e9, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908547

RESUMO

Primary tumors are drivers of pre-metastatic niche formation, but the coordination by the secondary organ toward metastatic dissemination is underappreciated. Here, by single-cell RNA sequencing and immunofluorescence, we identified a population of cyclooxygenase 2 (COX-2)-expressing adventitial fibroblasts that remodeled the lung immune microenvironment. At steady state, fibroblasts in the lungs produced prostaglandin E2 (PGE2), which drove dysfunctional dendritic cells (DCs) and suppressive monocytes. This lung-intrinsic stromal program was propagated by tumor-associated inflammation, particularly the pro-inflammatory cytokine interleukin-1ß, supporting a pre-metastatic niche. Genetic ablation of Ptgs2 (encoding COX-2) in fibroblasts was sufficient to reverse the immune-suppressive phenotypes of lung-resident myeloid cells, resulting in heightened immune activation and diminished lung metastasis in multiple breast cancer models. Moreover, the anti-metastatic activity of DC-based therapy and PD-1 blockade was improved by fibroblast-specific Ptgs2 deletion or dual inhibition of PGE2 receptors EP2 and EP4. Collectively, lung-resident fibroblasts reshape the local immune landscape to facilitate breast cancer metastasis.


Assuntos
Neoplasias Pulmonares , Receptores de Prostaglandina E Subtipo EP2 , Ciclo-Oxigenase 2/genética , Fibroblastos/patologia , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Receptores de Prostaglandina E Subtipo EP4/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA