Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Mol Cell ; 81(16): 3294-3309.e12, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34293321

RESUMO

Temperature is a variable component of the environment, and all organisms must deal with or adapt to temperature change. Acute temperature change activates cellular stress responses, resulting in refolding or removal of damaged proteins. However, how organisms adapt to long-term temperature change remains largely unexplored. Here we report that budding yeast responds to long-term high temperature challenge by switching from chaperone induction to reduction of temperature-sensitive proteins and re-localizing a portion of its proteome. Surprisingly, we also find that many proteins adopt an alternative conformation. Using Fet3p as an example, we find that the temperature-dependent conformational difference is accompanied by distinct thermostability, subcellular localization, and, importantly, cellular functions. We postulate that, in addition to the known mechanisms of adaptation, conformational plasticity allows some polypeptides to acquire new biophysical properties and functions when environmental change endures.


Assuntos
Adaptação Fisiológica/genética , Proteoma/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Aclimatação/genética , Animais , Exposição Ambiental/efeitos adversos , Regulação Fúngica da Expressão Gênica/genética , Temperatura Alta/efeitos adversos , Saccharomycetales/genética
2.
Annu Rev Genet ; 54: 265-285, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32870732

RESUMO

The single gene, single protein, single function hypothesis is increasingly becoming obsolete. Numerous studies have demonstrated that individual proteins can moonlight, meaning they can have multiple functions based on their cellular or developmental context. In this review, we discuss moonlighting proteins, highlighting the biological pathways where this phenomenon may be particularly relevant. In addition, we combine genetic, cell biological, and evolutionary perspectives so that we can better understand how, when, and why moonlighting proteins may take on multiple roles.


Assuntos
Proteínas/genética , Animais , Evolução Biológica , Humanos , Transdução de Sinais/genética
3.
Proc Natl Acad Sci U S A ; 121(36): e2321939121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39186649

RESUMO

Developing an effective Staphylococcus aureus (S. aureus) vaccine has been a challenging endeavor, as demonstrated by numerous failed clinical trials over the years. In this study, we formulated a vaccine containing a highly conserved moonlighting protein, the pyruvate dehydrogenase complex E2 subunit (PDHC), and showed that it induced strong protective immunity against epidemiologically relevant staphylococcal strains in various murine disease models. While antibody responses contributed to bacterial control, they were not essential for protective immunity in the bloodstream infection model. Conversely, vaccine-induced systemic immunity relied on γδ T cells. It has been suggested that prior S. aureus exposure may contribute to the reduction of vaccine efficacy. However, PDHC-induced protective immunity still facilitated bacterial clearance in mice previously exposed to S. aureus. Collectively, our findings indicate that PDHC is a promising serotype-independent vaccine candidate effective against both methicillin-sensitive and methicillin-resistant S. aureus isolates.


Assuntos
Infecções Estafilocócicas , Vacinas Antiestafilocócicas , Staphylococcus aureus , Animais , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Camundongos , Staphylococcus aureus/imunologia , Staphylococcus aureus/enzimologia , Vacinas Antiestafilocócicas/imunologia , Complexo Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/imunologia , Feminino , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Humanos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Camundongos Endogâmicos C57BL , Staphylococcus aureus Resistente à Meticilina/imunologia , Piruvato Desidrogenase (Lipoamida)/imunologia , Piruvato Desidrogenase (Lipoamida)/metabolismo , Piruvato Desidrogenase (Lipoamida)/genética
4.
Hum Mol Genet ; 33(12): 1023-1035, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38491801

RESUMO

Breast cancer (BRCA) is a highly heterogeneous disease, with significant differences in prognosis among patients. Existing biomarkers and prognostic models have limited ability to predict BRCA prognosis. Moonlighting genes regulate tumor progression and are associated with cancer prognosis. This study aimed to construct a moonlighting gene-based prognostic model for BRCA. We obtained differentially expressed genes (DEGs) in BRCA from The Cancer Genome Atlas and intersected them with moonlighting genes from MoonProt to acquire differential moonlighting genes. GO and KEGG results showed main enrichment of these genes in the response of BRCA cells to environmental stimuli and pentose phosphate pathway. Based on moonlighting genes, we conducted drug prediction and validated results through cellular experiments. After ABCB1 knockdown, viability and proliferation of BRCA cells were significantly enhanced. Based on differential moonlighting genes, BRCA was divided into three subgroups, among which cluster2 had the highest survival rate and immunophenoscore and relatively low tumor mutation burden. TP53 had the highest mutation frequency in cluster2 and cluster3, while PIK3CA had a higher mutation frequency in cluster1, with the majority being missense mutations. Subsequently, we established an 11-gene prognostic model in the training set based on DEGs among subgroups using univariate Cox regression, LASSO regression, and multivariable Cox regression analyses. Model prognostic performance was verified in GEO, METABRIC and ICGC validation sets. In summary, this study obtained three BRCA moonlighting gene-related subtypes and constructed an 11-gene prognostic model. The 11-gene BRCA prognostic model has good predictive performance, guiding BRCA prognosis for clinical doctors.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Prognóstico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Mutação , Perfilação da Expressão Gênica/métodos , Proteína Supressora de Tumor p53/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Proliferação de Células/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
5.
Proc Natl Acad Sci U S A ; 119(39): e2207257119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122228

RESUMO

Bacterial hibernating 100S ribosomes (the 70S dimers) are excluded from translation and are protected from ribonucleolytic degradation, thereby promoting long-term viability and increased regrowth. No extraribosomal target of any hibernation factor has been reported. Here, we discovered a previously unrecognized binding partner (YwlG) of hibernation-promoting factor (HPF) in the human pathogen Staphylococcus aureus. YwlG is an uncharacterized virulence factor in S. aureus. We show that the HPF-YwlG interaction is direct, independent of ribosome binding, and functionally linked to cold adaptation and glucose metabolism. Consistent with the distant resemblance of YwlG to the hexameric structures of nicotinamide adenine dinucleotide (NAD)-specific glutamate dehydrogenases (GDHs), YwlG overexpression can compensate for a loss of cellular GDH activity. The reduced abundance of 100S complexes and the suppression of YwlG-dependent GDH activity provide evidence for a two-way sequestration between YwlG and HPF. These findings reveal an unexpected layer of regulation linking the biogenesis of 100S ribosomes to glutamate metabolism.


Assuntos
Hibernação , Proteínas Ribossômicas , Bactérias/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Humanos , NAD/metabolismo , Oxirredutases/metabolismo , Proteínas Ribossômicas/metabolismo , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo
6.
J Mol Evol ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214891

RESUMO

Microscopic evolution at the functional biomolecular level is an ongoing process. Leveraging functional and high-throughput assays, along with computational data mining, has led to a remarkable expansion of our understanding of multifunctional protein (and gene) families over the past few decades. Various molecular and intermolecular mechanisms are now known that collectively meet the cumulative multifunctional demands in higher organisms along an evolutionary path. This multitasking ability is attributed to a certain degree of intrinsic or adapted flexibility at the structure-function level. Evolutionary diversification of structure-function relationships in proteins highlights the functional importance of intrinsically disordered proteins/regions (IDPs/IDRs) which are highly dynamic biological soft matter. Multifunctionality is favorably supported by the fluid-like shapes of IDPs/IDRs, enabling them to undergo disorder-to-order transitions upon binding to different molecular partners. Other new malleable members of the protein superfamily, such as those involved in fold-switching, also undergo structural transitions. This new insight diverges from all traditional notions of functional singularity in enzyme classes and emphasizes a far more complex, multi-layered diversification of protein functionality. However, a thorough review in this line, focusing on flexibility and function-driven structural transitions related to evolved multifunctionality in proteins, is currently missing. This review attempts to address this gap while broadening the scope of multifunctionality beyond single protein sequences. It argues that protein intrinsic disorder is likely the most striking mechanism for expressing multifunctionality in proteins. A phenomenological analogy has also been drawn to illustrate the increasingly complex nature of modern digital life, driven by the need for multitasking, particularly involving media.

7.
RNA ; 28(11): 1446-1468, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35973722

RESUMO

About three decades ago, researchers suggested that metabolic enzymes participate in cellular processes that are unrelated to their catalytic activity, and the term "moonlighting functions" was proposed. Recently developed advanced technologies in the field of RNA interactome capture now unveil the unexpected RNA binding activity of many metabolic enzymes, as exemplified here for the enzymes of glycolysis. Although for most of these proteins a precise binding mechanism, binding conditions, and physiological relevance of the binding events still await in-depth clarification, several well explored examples demonstrate that metabolic enzymes hold crucial functions in post-transcriptional regulation of protein synthesis. This widely conserved RNA-binding function of glycolytic enzymes plays major roles in controlling cell activities. The best explored examples are glyceraldehyde 3-phosphate dehydrogenase, enolase, phosphoglycerate kinase, and pyruvate kinase. This review summarizes current knowledge about the RNA-binding activity of the ten core enzymes of glycolysis in plant, yeast, and animal cells, its regulation and physiological relevance. Apparently, a tight bidirectional regulation connects core metabolism and RNA biology, forcing us to rethink long established functional singularities.


Assuntos
Glicólise , RNA , Animais , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicólise/genética , Fosfoglicerato Quinase/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
8.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34849560

RESUMO

Prostate cancer is the second leading cause of cancer-related death in men. Metastasis shows poor survival even though the recovery rate is high. In spite of numerous studies regarding prostate carcinoma, multiple questions are still unanswered. In this regards, gene regulatory network can uncover the mechanisms behind cancer progression, and metastasis. Under a feed forward loop, transcription factors (TFs) can be a good druggable candidate. We have proposed a computational model to study the uncertainty of TFs and suggest the appropriate cellular conditions for drug targeting. We have selected feed-forward loops depending on the shared list of the functional annotations among TFs, genes and miRNAs. From the potential feed forward loop cores, six TFs were identified as druggable targets, which include AR, CEBPB, CREB1, ETS1, NFKB1 and RELA. However, TFs are known for their Protein Moonlighting properties, which provide unrelated multi-functionalities within the same or different subcellular localizations. Following that, we have identified such functions that are suitable for drug targeting. On the other hand, we have tried to identify membraneless organelles for providing more specificity to the proposed time and space theory. The study has provided certain possibilities on TF-based therapeutics. The controlled dynamic nature of the TF may have enhanced the chances where TFs can be considered as one of the prime drug targets. Finally, the combination of membranless phase separation and protein moonlighting has provided possible druggable period within the biological clock.


Assuntos
Redes Reguladoras de Genes , Neoplasias da Próstata , Fatores de Transcrição , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Mol Genet Metab ; 141(1): 108097, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113552

RESUMO

Citrullinemia type 1 (CTLN1) is a rare autosomal recessive urea cycle disorder caused by deficiency of the cytosolic enzyme argininosuccinate synthetase 1 (ASS1) due to pathogenic variants in the ASS1 gene located on chromosome 9q34.11. Even though hyperammenomia is considered the major pathomechanistic factor for neurological impairment and cognitive dysfunction, a relevant subset of individuals presents with a neurodegenerative course in the absence of hyperammonemic decompensations. Here we show, that ASS1 deficiency induced by antisense-mediated knockdown of the zebrafish ASS1 homologue is associated with defective neuronal differentiation ultimately causing neuronal cell loss and consecutively decreased brain size in zebrafish larvae in vivo. Whereas ASS1-deficient zebrafish larvae are characterized by markedly elevated concentrations of citrulline - the biochemical hallmark of CTLN1, accumulation of L-citrulline, hyperammonemia or therewith associated secondary metabolic alterations did not account for the observed phenotype. Intriguingly, coinjection of the human ASS1 mRNA not only normalized citrulline concentration but also reversed the morphological cerebral phenotype and restored brain size, confirming conserved functional properties of ASS1 across species. The results of the present study imply a novel, potentially non-enzymatic (moonlighting) function of the ASS1 protein in neurodevelopment.


Assuntos
Citrulinemia , Hiperamonemia , Animais , Humanos , Citrulinemia/patologia , Peixe-Zebra/genética , Citrulina , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Fenótipo , Hiperamonemia/genética
10.
J Exp Bot ; 75(8): 2494-2509, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38156667

RESUMO

Dark-light and light-dark transitions during the day are switching points of leaf metabolism that strongly affect the regulatory state of the cells, and this change is hypothesized to affect the translatome. The cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1 and GAPC2 function in glycolysis, and carbohydrate and energy metabolism, but GAPC1/C2 also shows moonlighting functions in gene expression and post-transcriptional regulation. In this study we examined the rapid reprogramming of the translatome that occurs within 10 min at the end of the night and the end of the day in wild-type (WT) Arabidopsis and a gapc1/c2 double-knockdown mutant. Metabolite profiling compared to the WT showed that gapc1/c2 knockdown led to increases in a set of metabolites at the start of day, particularly intermediates of the citric acid cycle and linked pathways. Differences in metabolite changes were also detected at the end of the day. Only small sets of transcripts changed in the total RNA pool; however, RNA-sequencing revealed major alterations in polysome-associated transcripts at the light-transition points. The most pronounced difference between the WT and gapc1/c2 was seen in the reorganization of the translatome at the start of the night. Our results are in line with the proposed hypothesis that GAPC1/C2 play a role in the control of the translatome during light/dark transitions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Citosol/metabolismo , Arabidopsis/metabolismo , RNA/metabolismo
11.
J Inherit Metab Dis ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960603

RESUMO

Classic galactosemia (CG) is an autosomal recessive disorder that results from profound deficiency of galactose-1-phosphate uridylyltransferase (GALT), the middle enzyme in the highly conserved Leloir pathway of galactose metabolism. That galactose metabolism is disrupted in patients with CG, and in GALT-null microbial, cell culture, and animal models of CG, has been known for many years. However, whether the long-term developmental complications of CG result from disrupted galactose metabolism alone, or from loss of some independent moonlighting function of GALT, in addition to disrupted galactose metabolism, has been posed but never resolved. Here, we addressed this question using a GALT-null Drosophila melanogaster model of CG engineered to express uridine diphosphate (UDP)-glucose/galactose pyrophosphorylase (UGGP), a plant enzyme that effectively bypasses GALT in the Leloir pathway by converting substrates uridine triphosphate (UTP) plus galactose-1-phosphate (gal-1P) into products UDP-galactose plus pyrophosphate (PPi). While GALT and UGGP share one substrate (gal-1P) and one product (UDP-galactose), they are structurally and evolutionarily unrelated enzymes. It is therefore extremely unlikely that they would also share a moonlighting function. We found that GALT-null flies expressing UGGP showed not only partial rescue of metabolic abnormalities and acute larval sensitivity to dietary galactose, as expected, but also full rescue of an adult motor deficit otherwise seen in this model. By extension, these results may offer insights to the underlying bases of at least some acute and long-term complications experienced by patients with CG.

12.
Biol Pharm Bull ; 47(5): 905-911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692867

RESUMO

Viruses require host cells to replicate and proliferate, which indicates that viruses hijack the cellular machinery. Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4-positive T cells, and efficiently uses cellular proteins to replicate. Cells already have proteins that inhibit the replication of the foreign HIV-1, but their function is suppressed by viral proteins. Intriguingly, HIV-1 infection also changes the cellular metabolism to aerobic glycolysis. This phenomenon has been interpreted as a cellular response to maintain homeostasis during viral infection, yet HIV-1 efficiently replicates even in this environment. In this review, we discuss the regulatory role of glycolytic enzymes in viral replication and the impact of aerobic glycolysis on viral infection by introducing various host proteins involved in viral replication. Furthermore, we would like to propose a "glyceraldehyde-3-phosphate dehydrogenase-induced shock (G-shock) and kill strategy" that maximizes the antiviral effect of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to eliminate latently HIV-1-infected cells.


Assuntos
Glicólise , Infecções por HIV , HIV-1 , Replicação Viral , Humanos , HIV-1/fisiologia , Glicólise/fisiologia , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Infecções por HIV/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo
13.
Cell Mol Life Sci ; 80(5): 130, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37093283

RESUMO

It is not often realized that the absolute protein specificity is an exception rather than a rule. Two major kinds of protein multi-specificities are promiscuity and moonlighting. This review discusses the idea of enzyme specificity and then focusses on moonlighting. Some important examples of protein moonlighting, such as crystallins, ceruloplasmin, metallothioniens, macrophage migration inhibitory factor, and enzymes of carbohydrate metabolism are discussed. How protein plasticity and intrinsic disorder enable the removing the distinction between enzymes and other biologically active proteins are outlined. Finally, information on important roles of moonlighting in human diseases is updated.


Assuntos
Proteínas , Humanos , Proteínas/metabolismo
14.
Biochem J ; 480(10): 715-728, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204401

RESUMO

As sequence and structural databases grow along with powerful analysis tools, the prevalence and diversity of pseudoenzymes have become increasingly evident. Pseudoenzymes are present across the tree of life in a large number of enzyme families. Pseudoenzymes are defined as proteins that lack conserved catalytic motifs based on sequence analysis. However, some pseudoenzymes may have migrated amino acids necessary for catalysis, allowing them to catalyze enzymatic reactions. Furthermore, pseudoenzymes retain several non-enzymatic functions such as allosteric regulation, signal integration, scaffolding, and competitive inhibition. In this review, we provide examples of each mode of action using the pseudokinase, pseudophosphatase, and pseudo ADP-ribosyltransferase families. We highlight the methodologies that facilitate the biochemical and functional characterization of pseudoenzymes to encourage further investigation in this burgeoning field.


Assuntos
Aminoácidos , Proteínas , Proteínas/metabolismo , Catálise
15.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256088

RESUMO

Candida albicans and other closely related pathogenic yeast-like fungi carry on their surface numerous loosely adsorbed "moonlighting proteins"-proteins that play evolutionarily conserved intracellular functions but also appear on the cell surface and exhibit additional functions, e.g., contributing to attachment to host tissues. In the current work, we characterized this "moonlighting" role for glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) of C. albicans and Nakaseomyces glabratus. GAPDH was directly visualized on the cell surface of both species and shown to play a significant part in the total capacity of fungal cells to bind two selected human host proteins-vitronectin and plasminogen. Using purified proteins, both host proteins were found to tightly interact with GAPDH, with dissociation constants in an order of 10-8 M, as determined by bio-layer interferometry and surface plasmon resonance measurements. It was also shown that exogenous GAPDH tightly adheres to the surface of candidal cells, suggesting that the cell surface location of this moonlighting protein may partly result from the readsorption of its soluble form, which may be present at an infection site (e.g., due to release from dying fungal cells). The major dedicated adhesins, covalently bound to the cell wall-agglutinin-like sequence protein 3 (Als3) and epithelial adhesin 6 (Epa6)-were suggested to serve as the docking platforms for GAPDH in C. albicans and N. glabratus, respectively.


Assuntos
Candida albicans , Proteínas Fúngicas , Gliceraldeído-3-Fosfato Desidrogenases , Humanos , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Plasminogênio/metabolismo , Vitronectina/metabolismo , Proteínas Fúngicas/metabolismo
16.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611852

RESUMO

Moonlighting enzymes are multifunctional proteins that perform multiple functions beyond their primary role as catalytic enzymes. Extensive research and clinical practice have demonstrated their pivotal roles in the development and progression of cancer, making them promising targets for drug development. This article delves into multiple notable moonlighting enzymes, including GSK-3, GAPDH, and ENO1, and with a particular emphasis on an enigmatic phosphatase, PTP4A3. We scrutinize their distinct roles in cancer and the mechanisms that dictate their ability to switch roles. Lastly, we discuss the potential of an innovative approach to develop drugs targeting these moonlighting enzymes: target protein degradation. This strategy holds promise for effectively tackling moonlighting enzymes in the context of cancer therapy.


Assuntos
Quinase 3 da Glicogênio Sintase , Neoplasias , Humanos , Monoéster Fosfórico Hidrolases , Neoplasias/tratamento farmacológico , Catálise , Desenvolvimento de Medicamentos , Proteínas de Neoplasias , Proteínas Tirosina Fosfatases
17.
Plant J ; 111(6): 1780-1800, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35899410

RESUMO

The dihydrolipoamide acetyltransferase subunit DLA2 of the chloroplast pyruvate dehydrogenase complex (cpPDC) in the green alga Chlamydomonas reinhardtii has previously been shown to possess moonlighting activity in chloroplast gene expression. Under mixotrophic growth conditions, DLA2 forms part of a ribonucleoprotein particle (RNP) with the psbA mRNA that encodes the D1 protein of the photosystem II (PSII) reaction center. Here, we report on the characterization of the molecular switch that regulates shuttling of DLA2 between its functions in carbon metabolism and D1 synthesis. Determination of RNA-binding affinities by microscale thermophoresis demonstrated that the E3-binding domain (E3BD) of DLA2 mediates psbA-specific RNA recognition. Analyses of cpPDC formation and activity, as well as RNP complex formation, showed that acetylation of a single lysine residue (K197) in E3BD induces the release of DLA2 from the cpPDC, and its functional shift towards RNA binding. Moreover, Förster resonance energy transfer microscopy revealed that psbA mRNA/DLA2 complexes localize around the chloroplast's pyrenoid. Pulse labeling and D1 re-accumulation after induced PSII degradation strongly suggest that DLA2 is important for D1 synthesis during de novo PSII biogenesis.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Acetilação , Carbono/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Lisina/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo
18.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143663

RESUMO

Opsins, the protein moieties of animal visual photo-pigments, have emerged as moonlighting proteins with diverse, light-dependent and -independent physiological functions. This raises the need to revise some basic assumptions concerning opsin expression, structure, classification, and evolution.


Assuntos
Evolução Molecular , Opsinas , Animais , Opsinas/genética , Opsinas/metabolismo , Filogenia , Pigmentos da Retina , Opsinas de Bastonetes/genética
19.
Mol Med ; 29(1): 18, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721084

RESUMO

Triosephosphate isomerase (TPI) is best known as a glycolytic enzyme that interconverts the 3-carbon sugars dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). TPI is an essential enzyme that is required for the catabolism of DHAP and a net yield of ATP from anaerobic glucose metabolism. Loss of TPI function results in the recessive disease TPI Deficiency (TPI Df). Recently, numerous lines of evidence suggest the TPI protein has other functions beyond glycolysis, a phenomenon known as moonlighting or gene sharing. Here we review the numerous functions ascribed to TPI, including recent findings of a nuclear role of TPI implicated in cancer pathogenesis and chemotherapy resistance.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Erros Inatos do Metabolismo dos Carboidratos , Humanos , Triose-Fosfato Isomerase/genética , Núcleo Celular , Glucose
20.
Biol Chem ; 404(2-3): 209-219, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36534601

RESUMO

For the biogenesis and maintenance of peroxisomes several proteins, called peroxins, are essential. Malfunctions of these proteins lead to severe diseases summarized as peroxisome biogenesis disorders. The different genetic background of patient-derived cell lines and the residual expression of mutated PEX genes impede analysis of the whole spectrum of cellular functions of affected peroxins. To overcome these difficulties, we have generated a selected PEX knockout resource of HEK T-REx293 cells using the CRISPR/Cas9 technique. Comparative analyses of whole cell lysates revealed PEX-KO specific alterations in the steady-state level of peroxins and variations in the import efficacy of matrix proteins with a Type 2 peroxisomal targeting signal. One of the observed differences concerned PEX1 as in the complete absence of the protein, the number of peroxisomal ghosts is significantly increased. Upon expression of PEX1, import competence and abundance of peroxisomes was adjusted to the level of normal HEK cells. In contrast, expression of an alternatively spliced PEX1 isoform lacking 321 amino acids of the N-terminal region failed to rescue the peroxisomal import defects but reduced the number of peroxisomal vesicles. All in all, the data suggest a novel 'moonlighting' function of human PEX1 in the regulation of pre-peroxisomal vesicles.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Biogênese de Organelas , Peroxissomos , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Linhagem Celular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxinas/genética , Peroxinas/análise , Peroxinas/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA