Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 102(4): 1797-1807, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29305699

RESUMO

Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers of heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. This strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.


Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/genética , Enzimas/biossíntese , Enzimas/genética , Expressão Gênica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Testes Genéticos , Mutagênese , Mutação , Sequenciamento Completo do Genoma
2.
Biochem Biophys Rep ; 16: 56-61, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30302405

RESUMO

The Th2 cytokine IL-4 triggers a signaling cascade which activates transcription by STAT6. The goals of the present study are to define the transcriptomic response of mouse spleen B cells (mSBC) to IL-4 used as single stimulus, its specificity compared to human peripheral blood B cells (hPBBC) and to mouse spleen T cells (mSTC), and the pathways affected. Oligonucleotide-based microarrays were performed using two references, the untreated sample and the cells cultured without IL-4, an experimental design which reduces the potential confounding effect of cellular stress during culture. Specificity was addressed by comparing the response of mSBC and our previously published study on hPBBC, of similar design, and a study by other authors on mSTC. We detected an mSBC-specific response (including novel genes, e.g., Sertad4, Lifr, Pmepa1, Epcam, Tbxas1; and common genes, e.g., Usp2, Cst7, Grtp1, and Casp6), an hPBBC-specific response (e.g., CCL17, MTCL1, GCSAM, HOMER2, IL2RA), and a common mSBC/hPBBC response (e.g., CISH, NFIL3, SOCS1, VDR, CDH1). In contrast, the mSBC and mSTC responses were largely divergent. Gene set enrichment analysis (GSEA) was applied for the first time to identify the pathways affected. Both in mSBC and hPBBC, IL-4 activated Myc, the transcriptional machinery itself, cell cycle, mitochondria and respiratory chain, ribosome, proteasome and antigen presentation, and Wnt signaling, and inhibited GPCR signaling. However, significant differences were found in histone demethylation, Nod signaling, and Rho signaling, which were downregulated in mSBC, and in chromatin condensation, which was downregulated in hPBBC. These findings may have therapeutic implications for the treatment of allergic diseases and parasitic infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA