Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Int Microbiol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530479

RESUMO

Polyethylene (PE), a non-biodegradable plastic, is widely used in agriculture as a mulch material, which causes serious plastic pollution when it is discarded. Recent studies have described the biodeterioration of PE by bacteria, but it is difficult for a single bacterial species to effectively degrade PE plastic. We isolated two strains with PE-degrading ability, Bacillus cereus (E1) and Rhodococcus equi (E3), from the soil attached to plastic waste on the south side of Mount Tai, China, using a medium with PE plastic as the only carbon source. By clear zone area analysis, we found that E1 mixed with E3 could improve the degradation of PE plastics. The mixture of E1 and E3 was incubated for 110 days in a medium containing PE and mulch film as the only carbon source, respectively. After 110 days, a decrease in pH and mass was observed. Obvious slits and depressions were observed on the surface of the PE film and the mulch films using scanning electron microscopy. The surface hydrophobicity of both films decreased, and FTIR revealed the formation of new oxidation groups on their surfaces during the degradation process and the destruction of the original CH2 long chains of PE. Besides, we found that surface of the mulch films contained more viable bacteria than the liquid medium. In conclusion, we identified two PE-degrading strains whose mixture can effectively degrade mulch film than pure PE film. Our results provide a reference for understanding PE plastic degradation pathways and their associated degradation processes.

2.
Environ Res ; 248: 118342, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295980

RESUMO

Biodegradable mulch films (BDMs) are increasingly used in agricultural production as desirable alternatives to the current widespread use of polyethylene (PE) mulch films in China. However, potential effects of different colors of BDMs on field crop production and microbiomes remain unexplored. Here, the differences in bacterial communities of peanut rhizosphere soil (RS) and bulk soil (BS) under non-mulching (CK), PE, and three different colors of BDMs were studied. The results indicated that all treatments could increase the soil temperature, which positively affected the growth of the peanut plants. Moreover, mulching affected the bacterial community structure in RS and BS compared to CK. Furthermore, certain BDM treatments significantly enriched N-fixing bacteria (Bradyrhizobium and Mesorhizobium) and functional groups, increased the closeness of bacterial networks, and harbored more beneficial bacteria as keystone taxa in the RS. This in turn facilitated the growth and development of the peanut plants under field conditions. Our study provides new insights into the micro-ecological effects of mulch films, which can be affected by both the mulch type and color. The observed effects are likely caused by temperature and prevalence of specific microbial functions under the employed films and could guide the development of optimized mulching materials.


Assuntos
Arachis , Solo , Solo/química , Agricultura/métodos , Bactérias , Polietileno
3.
Environ Res ; 236(Pt 1): 116725, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487922

RESUMO

The objectives of this study were to assess the role of soil organic matter on retaining plastic additives, Di(2-ethylhexyl) phthalate (DEHP), Bisphenol A (BPA) and Benzophenone (BP), to postulate the retention mechanisms and mobility in soil. Batch experiments were conducted for red yellow podzolic soil (OM) and soil subjected to high temperature oxidation at 600 °C for 2 h to remove total organic matter (OMR). Pristine soil, which contains organic matter abbreviated as OM (soil with organic matter) whereas total organic matter removed soil is abbreviated as OMR (organic matter removed soil). The pH edge and kinetic experiments were conducted with 20 g/L soil suspension spiked with 10 mg/L of each additive, whereas 1-20 mg/L concentration range was used in isotherm experiments and analyzed using high performance liquid chromatography. DEHP demonstrated the highest retention, 331 and 615.16 mg/kg in OM and OMR soils respectively, at pH 6.6. However, BPA and BP showed highest retentions of 132 and 128 mg/kg, respectively around pH 4.3 in pristine soil. DEHP interaction with soil OM indicated weak physical bonding whereas chemisorption to OMR soil. In the case of BPA, physisorption governed its interaction with both soil organic matter and mineral fraction. Nevertheless, BP demonstrated chemical interactions with OM and minerals. Desorption of DEHP was close to 100% however, BPA and BP were <15%. Overall, DEHP and BPA could be easily released into soil water and possibly be available for plant uptake while, BP is immobilized in soil.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes do Solo , Dietilexilftalato/análise , Solo/química , Poluentes do Solo/análise , Benzofenonas/análise
4.
Ecotoxicol Environ Saf ; 262: 115180, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37379665

RESUMO

Heavy metals (HMs) and microplastics (MPs) are two emerging factors threatening global food security. Whether long-term MPs pollution will affect the distribution of HMs and their resistance genes (MRGs) in soil is unknown. Here, metagenomic approach was used to decipher the fate of MRGs in cropland soils with long-term film MPs residues. Similar distribution pattern of MRGs was formed in long-term film MPs contaminated soil. A total of 202 MRG subtypes were detected, with resistance genes for Multimetal, Cu, and As being the most prevalent type of MRGs. MRGs formed a modular distribution of five clusters centered on MRGs including ruvB in long-term film MPs contaminated soil. MRGs also formed tight co-occurrence networks with mobile genetic elements (MGEs: integrons, insertions and plasmids). Redundancy analysis showed that HMs together with microbial communities and MGEs affected the distribution of MRGs in soil. Thirteen genera including Pseudomonas were identified as potential hosts for MRGs and MGEs. The research provides preliminary progress on the synergistic effect of HMs and MPs in affecting soil ecological security. The synergistic effect of MPs and HMs needs to be considered in the remediation of contaminated soils.

5.
Ecotoxicol Environ Saf ; 263: 115274, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499389

RESUMO

Polyethylene microplastics have been detected in farmland soil, irrigation water, and soil organisms in agroecosystems, while plastic mulching is suggested as a crucial source of microplastic pollution in the agroecosystem. Plastic mulch can be broken down from plastic mulch debris to microplastics through environmental aging and degradation process in farmlands, and the colonization of polyethylene-degrading microorganisms on polyethylene microplastics can eventually enzymatically depolymerize the polyethylene molecular chains with CO2 release through the tricarboxylic acid cycle. The selective colonization of microplastics by soil microorganisms can cause changes in soil microbial community composition, and it can consequently elicit changes in enzyme activities and nutrient element content in the soil. The biological uptake of polyethylene microplastics and the associated disturbance of energy investment are the main mechanisms impacting soil-dwelling animal development and behavior. As polyethylene microplastics are highly hydrophobic, their presence among soil particles can contribute to soil water repellency and influence soil water availability. Polyethylene microplastics have been shown to cause impacts on crop plant growth, as manifested by the effects of polyethylene microplastics on soil properties and soil biota in the agroecosystems. This review reveals the degradation process, biological impacts, and associated mechanisms of polyethylene microplastics in agroecosystems and could be a critical reference for their risk assessment and management.


Assuntos
Microplásticos , Poluentes do Solo , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Agricultura , Polietileno/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo/química
6.
Ecotoxicol Environ Saf ; 264: 115402, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634481

RESUMO

Biodegradable mulch films are recognized as a promising substitute of polyethylene (PE) films to alleviate the "white pollution". Biodegradable mulch films with optimum degradation rates increase crop yield even compared to PE films. However, the mechanisms underlying this yield-increasing effect remains elusive. In this study, three biodegradable film treatments (BFM1, BFM2 and BFM3) and one PE film treatment (PFM) were used to evaluate their effects on soil and winter potatoes, and a partial least squares path model (PLS-PM) was constructed to investigate their relationships. The degradation rates of films under different treatments were ranked as BFM3 > BFM2 >BFM1 > PFM, and presented distinctive effects on soil properties and nutrients, structure of soil bacterial community, and yield traits of winter potatoes. The PLS-PM showed that mulch treatments affected potato yield through effects on soil properties (soil water and temperature) and soil nutrients (TOC, DOC, TN and NO3--N). The disintegration of the biodegradable films decreased soil water content and temperature, and reduced the loss of soil nutrients in the topsoil at the later growth stage of winter potatoes compared to PE films. Additionally, the elevated content of soil TN and NO3--N under treatment BFM1 may play a key role in its yield-increasing effect on potatoes compared to treatments PFM and BFM2. Thus, biodegradable mulch films with proper degradation rates regulate soil TN and NO3--N through their effects on soil water and temperature, and subsequently improve the yield of winter potatoes compared to PE mulch films.


Assuntos
Plásticos Biodegradáveis , Solanum tuberosum , Solo , Agricultura , Polietileno , Água
7.
J Environ Manage ; 338: 117852, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023607

RESUMO

Amelioration and management of large volumes of tailings resulting from alumina refining is a major challenge owing to the high alkalinity and salinity of residues. Blended byproduct caps are a potential new and more cost-effective approach to tailings management, where tailings are blended with other local byproducts in order to reduce pH, salinity and toxic elements. Here, alkaline bauxite residue was blended with four byproducts (waste acid, sewage water, fly ash and eucalypt mulch) to create a range of potential capping materials. We leached and weathered materials in the glasshouse with deionized water over nine weeks to investigate if byproducts on their own or in combination improved cap conditions. Combining all four byproducts (10 wt % waste acid, 5 wt % sewage water, 20 wt % fly ash and 10 wt % eucalypt mulch) achieved lower pH (9.60) compared to any byproduct applied individually, or un-remediated bauxite residue (pH 10.7). Leaching decreased EC by dissolving and exporting salts and minerals from the bauxite residue. Fly ash addition increased organic carbon (likely from non-combusted organic material) and nitrogen, while eucalypt mulch increased inorganic phosphorus. Addition of byproducts also decreased the concentration of potentially toxic elements (e.g., Al, Na, Mo and V) and enhanced pH neutralisation. Initial pH with single byproduct treatments was 10.4-10.5, which decreased to between 9.9-10.0. Further lowering of pH and salinity as well as increased nutrient concentrations may be possible through higher addition rates of byproducts, incorporation of other materials such as gypsum, and increasing leaching/weathering time of tailings in situ.


Assuntos
Óxido de Alumínio , Esgotos , Óxido de Alumínio/química , Cinza de Carvão , Concentração de Íons de Hidrogênio , Água
8.
J Sci Food Agric ; 103(14): 7176-7186, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37347845

RESUMO

BACKGROUND: High tunnels (HT) and plastic mulch can increase yield, extend growing seasons, protect plants from harsh weather conditions, and produce more marketable and attractive tomatoes. However, plastic covering reduces solar radiation, which may affect the quality of tomatoes. This study investigated the effects of single-layer versus double-layer HT and plastic mulch versus bare soil on the quality of fully ripe tomato fruits. The study was conducted over 2 years (2021 and 2022). The fruit color (L*, a*, and b*), vitamin C, pH, total titratable acid (TTA), total soluble solids (TSS), and lycopene content of the two tomato cultivars (Brandywine and Rebelski) were quantified. RESULTS: The results showed that quality parameters varied with the plastic layers of HT, plastic mulch, and planting year. The double-layer HT only showed a slight but significant influence on the color of tomatoes of both cultivars in the same year (P < 0.05). Brandywine tomatoes grown in the double-layer HT had significantly lower pH and lycopene content than those grown in single-layer HT, regardless of mulching. The effect of plastic layers on TTA, TSS, and lycopene depended on whether the soil was mulched. Tomatoes grown on bare soil had higher TTA and TSS values than those grown on mulched soil in double-layer HT. Tomatoes grown in single-layer HTs had significantly higher vitamin C content than those in the double-layer HT for both cultivars regardless of mulching. CONCLUSION: This study demonstrates that double-layer HT is unnecessary for the improvement of the overall quality of tomatoes. © 2023 Society of Chemical Industry.


Assuntos
Solo , Solanum lycopersicum , Solo/química , Licopeno/análise , Frutas/química , Ácido Ascórbico/análise
9.
J Nematol ; 55(1): 20230037, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37664002

RESUMO

While the nematicidal effectiveness of mulching against root-knot nematodes (Meloidogyne spp.) is calculated within organic crop protection, underlying mechanisms are not yet fully explored. Laboratory experiments were set up to determine whether mulch-derived substances cause mortality directly, or repel Meloidogyne juveniles from crop rhizosphere. Mortality and area choice tests were conducted with mulch-derived extracts, supported by the measurements on tannic acid content and the pH values of extracts as supplementary examinations. In our study, leaf litter and straw extracts were generally found lethal to the juveniles, which is in line with the results from area preference tests. However, compost extract had no effect on Meloidogyne incognita juveniles. Tannic acid content showed positive correlation with mortality only in the case of straw and sycamore leaf litter extracts. Tannic acid and pH weakly correlated with repellent effect of the applied extracts generally. Our results have inspired further experiments to explore nematicidal components of leaf litters, contributing to the development of a new approach in crop protection based on the repellent effect of these materials.

10.
Waste Manag Res ; 41(9): 1453-1459, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36950979

RESUMO

Ultraviolet absorbents (UVAs) in the environment have been of increasing concern because of their potential toxicity. However, data on UVAs in the biodegradable plastics are still limited. In this work, we determined the concentrations of 13 UVAs in 6 different types of biodegradable plastic products from Beijing, China, by an ultra-high-performance liquid chromatography with mass spectrometry and found the total concentrations in the range of 37.21-1,138,526 ng g-1. These target UVAs, BP (benzophenone), BP-3, BP-12, UV-328, UV-234, UV-326, UV-329, UV-360 and UV-P are prevalent in the plastic bags, garbage bags, food packaging bags, plastic lunch boxes and tableware, product packing bags and mulch films, except for BP-1, UV-320, UV-327 and UV-PS. This finding showed that the total concentrations of the 13 UVAs in biodegradable mulch films (mean: 1,138,527 ng g-1) were several orders of magnitude higher than those in the other 5 categories of samples (mean: 37.21-186.9 ng g-1). And the UV-328 and BP-1 were the most important components of UVAs in the biodegradable mulch films, with the levels ranging of 726,568-1,062,687 ng g-1 and 317,470-506,178 ng g-1, respectively. As the majority of UVAs were detected in biodegradable plastics, the potential risk of UVAs exposure may exist in the environment with the large-scale use of biodegradable plastics.


Assuntos
Plásticos Biodegradáveis , Plásticos , China
11.
Erwerbsobstbau (Berl) ; 65(2): 215-229, 2023.
Artigo em Alemão | MEDLINE | ID: mdl-37006815

RESUMO

The objective of the present work was to study the effects of contamination on the reflective properties of groundcovers used for enhancing fruit colouration in the orchard. Contamination also affects longevity and possible sustainable re-use of materials. A white, woven textile (polypropylene Lumilys™) and silver aluminium foil were experimentally contaminated with soil, similar to the situation after an autumn storm in a fruit orchard. Clean material served as control.Using a spectrophotometer (StellarNet; Tampa, FL, USA), vertically directed (0°) and diffuse (45°) light reflection in the range of 500-850 nm was compared from clean and contaminated groundcover in the laboratory. Reflection from vertically directed aluminium foil exceeded that of Lumilys™; however, the highest reflection in all spectral measurements was at 45° (diffuse) from the clean woven textile, i.e., in all directions, and exceeded that of aluminium foil. In contrast, the contaminated vertically directed (0°) aluminium foil reflected less light than the clear foil but, surprisingly, reflected much more light at 45° than the clean foil. Both materials showed reflection peaks at 625-640 nm; light spectra and peaks remained unchanged irrespective of soil contamination.Light reflection in the visible range (PAR, 400-700 nm) was concomitantly measured in the field at CKA Klein-Altendorf near Bonn (50°N), Germany, at 0.5 m and 1 m height using a portable TRP­3 light sensor (PP-Systems, Amesbury, MA, USA) on sunny and cloudy days at a solar angle of 49°. Surprisingly, in these field measurements, Lumilys and aluminium foil reflected most light in both directions (0° and 45°) when slightly to moderately contaminated. Only with heavy contamination did the reflection decrease. Both groundcovers reflected more light than the grass in alleyways of fruit orchards or open soil under the trees.UV­B reflection (280-315 nm) was examined in parallel in the field using an X1 optometer (Gigahertz Optik, Türkenfels, Deutschland), as it enhances anthocyanin biosynthesis and red fruit colouration in combination with PAR and low temperature. Straight (0°) UV­B reflection from aluminium foil exceeded that from white woven textile (Lumilys™) on both clear and overcast autumn days. As expected, straight (0°) UV­B reflection from aluminium foil decreased with soil contamination to a certain extent, but it unexpectedly increased from the woven textile with soil contamination.Surface roughness in dependence of contamination was measured non-destructively by a profilometer type VR5200 (Keyence, Osaka, Japan). The roughness index, Sa, increased from 22 to 28 µm with soil contamination of the woven textile and from to 2 to 11 µm with aluminium foil, possibly explaining differences in the observed reflectivity.Overall, the expected severe decline in light reflection (PAR and UV-B) was not seen. In contrast, light (2-3 g soil/m2) and moderate (4-12 g soil/m2) contamination improved light reflection of PAR (400-700 nm) and UV­B (280-315 nm) by woven textile (Lumilys™) and aluminum foil. Thus, with slight contamination the materials can be reused, whereas severe contamination (24-51 g soil/m2) reduces light reflection.

12.
BMC Microbiol ; 22(1): 189, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918663

RESUMO

Despite the known influence of continuous cropping on soil microorganisms, little is known about the associated difference in the effects of continuous cropping on the community compositions of soil bacteria and fungi. Here, we assessed soil physicochemical property, as well as bacterial and fungal compositions across different years (Uncropped control, 1, 6, 11, 16, and 21 years) and in the watermelon system of a gravel mulch field in the Loess Plateau of China. Our results showed that long-term continuous cropping led to substantial shifts in soil bacterial and fungal compositions. The relative abundances of dominant bacterial and fungal genera (average relative abundance > 1.0%) significantly varied among different continuous cropping years (P < 0.05). Structural equation models demonstrated that continuous cropping alter soil bacterial and fungal compositions mainly by causing substantial variations in soil attributes. Variations in soil pH, nutrient, salinity, and moisture content jointly explained 73% and 64% of the variation in soil bacterial and fungal compositions, respectively. Variations in soil moisture content and pH caused by continuous cropping drove the shifts in soil bacterial and fungal compositions, respectively (Mantel R = 0.74 and 0.54, P < 0.01). Furthermore, the variation in soil bacterial and fungal composition showed significant correlation with watermelon yield reduction (P < 0.01). Together, long-term continuous cropping can alter soil microbial composition, and thereby influencing watermelon yield. Our findings are useful for alleviating continuous cropping obstacles and guiding agricultural production.


Assuntos
Citrullus , Micobioma , Bactérias/genética , Biodiversidade , Fungos/genética , Rizosfera , Solo/química , Microbiologia do Solo
13.
BMC Microbiol ; 22(1): 155, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35689202

RESUMO

BACKGROUND: Organic mulch is an important management practice in agricultural production to improve soil quality, control crop pests and diseases and increase the biodiversity of soil microecosystem. However, the information about soil microbial diversity and composition in litchi plantation response to organic mulch and its attribution to litchi downy blight severity was limited. This study aimed to investigate the effect of organic mulch on litchi downy blight, and evaluate the biodiversity and antimicrobial potential of soil microbial community of litchi plantation soils under organic mulch. RESULTS: Organic mulch could significantly suppress the disease incidence in the litchi plantation, and with a reduction of 37.74% to 85.66%. As a result of high-throughput 16S rRNA and ITS rDNA gene illumine sequencing, significantly higher bacterial and fungal community diversity indexes were found in organic mulch soils, the relative abundance of norank f norank o Vicinamibacterales, norank f Vicinamibacteraceae, norank f Xanthobacteraceae, Unclassified c sordariomycetes, Aspergillus and Thermomyces were significant more than that in control soils. Isolation and analysis of antagonistic microorganism showed that 29 antagonistic bacteria strains and 37 antagonistic fungi strains were unique for mulching soils. CONCLUSIONS: Thus, we believe that organic mulch has a positive regulatory effect on the litchi downy blight and the soil microbial communities, and so, is more suitable for litchi plantation.


Assuntos
Litchi , Micobioma , Bactérias , Litchi/genética , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
14.
Environ Sci Technol ; 56(12): 9041-9051, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35580299

RESUMO

Eco-friendly biodegradable PBAT/PLA mulch films are attracting increasing interest in sustainable agricultural production. However, currently, little is known about the service life for the PBAT/PLA mulch films. Herein, PBAT/PLA mulch films are subjected to indoor UV-accelerated degradation (UAD) experiments and field cultivation environment degradation (CED) experiments to systematically investigate the relationship between UAD and CED processes. Results demonstrate that 10 days of indoor UAD treatment corresponds to around 120 days aging under outdoor CED conditions. Using eight PBAT/PLA evaluation indicators (haze, elongation at break, tensile strength, gel content, light transmittance, polydispersity index, Mn, Mw), we established a service life prediction model for PBAT/PLA mulch films based on short-term indoor UAD experiments, which could accurately estimate the long-term service life of the mulch films in the field. In particular, using the haze value, near-perfect correlation (R2 = 0.995 for eq. 1 and R2 = 0.993 for eq. 2) was found between CED days and UAD days. The establishment of these reliable predictive models for the service lifetime of PBAT/PLA mulch films will avoid the undesirable premature breakdown during crop growth, thus fostering end-user confidence in eco-friendly biodegradable mulch films.


Assuntos
Agricultura , Poliésteres , Fotólise
15.
Environ Res ; 214(Pt 4): 114133, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995229

RESUMO

Plastic pollution in the soil ecosystem is currently receiving worldwide attention. However, little is known whether the presence of microplastics (MPs) in soil will affect the environmental behavior of pesticide residues in soil. Here, the effect of the addition of new mulch MPs (New-MPs), aged mulch MPs (Aged-MPs) and biodegradable mulch MPs (BioD-MPs) on the adsorption and degradation behaviors of two pesticides (imidacloprid and flumioxazin) in soil was investigated. Three MPs slowed down rapid adsorption stage of pesticides in soil and delayed the time to reach adsorption equilibrium. Adsorption rates: Soil > Soil + New-MPs > Soil + Aged-MPs > Soil + BioD-MPs. Three MPs enhanced the adsorption strength of the soil system for the two pesticides, and the aging treatment of the MPs enhanced this effect. Three MPs affected the degradation process of the two pesticides. New-MPs promoted the degradation of two pesticides imidacloprid and flumioxazin, and the degradation half-lives were shortened to 0.93 and 0.85 times, respectively; while Aged-Mps and BioD-MPs delayed the degradation process of two pesticides, and the degradation half-lives were extended to 1.64 times and 1.21 times, respectively. The effect was more significant with the increase of MPs and pesticides concentration. Pesticide polarity, surface structure and functional groups of MPs are potentially important reasons for the differences in adsorption and degradation of MPs-soil systems. Our findings provide a deep insight into understanding the mechanism of interaction between MPs and pesticide residues in soil environment.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Adsorção , Ecossistema , Microplásticos , Resíduos de Praguicidas/análise , Praguicidas/análise , Plásticos , Solo/química , Poluentes do Solo/análise
16.
Environ Res ; 209: 112807, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093312

RESUMO

The occurrence of microplastics (MPs) in soils can negatively affect soil biodiversity and function. Soil amendments applied to MP-contaminated soil can alter the overall soil properties and enhance its functions and processes. However, little is known about how soil amendments improve the quality of MP-contaminated soils. Thus, the present study used a microcosm experiment to explore the potential effects of four types of biochar on the chemical and microbial properties of low-density polyethylene (LDPE) MP-contaminated soil under both drought and well-watered conditions. The results show that the biochars altered soil pH, electrical conductivity (EC), available phosphorous, and total exchangeable cations (TEC) with some variability depending on the biochar type. Oilseed rape straw (OSR)-derived biochars increased soil pH, EC, and TEC under both water conditions with the highest values of 7.94, 0.54 dS m-1 and 22.0 cmol(+) kg-1, respectively. Soil enzyme activities varied under all treatments; in particular, under drought conditions, the fluorescein diacetate activity increased in soils with high temperature (700 °C) biochar. The application of soft wood pellet biochar (700 °C) to MP-contaminated soil increased urease activity by 146% under well-watered conditions. OSR-derived biochars significantly reduced soil acid phosphatase activity under both water conditions. With biochar supplementation, the diversity indices of the bacterial community increased in well-watered soil but not in soil under drought conditions. The abundance of bacterial phyla, such as Firmicutes, Proteobacteria, Actinobacteria, Dictyoglomi, and Gemmatimonadetes, was relatively high in all treatments. Biochar application resulted in negligible variations in bacterial communities under drought conditions but significant variations under well-watered conditions. The findings of this study imply that biochar can be used as a soil amendment to improve the overall soil quality of MP-contaminated soil, but its impact varies depending on the pyrolysis feedstock and temperature. Thus, selecting a suitable biochar is important for improving the soil quality in MP-contaminated soils.


Assuntos
Plásticos , Poluentes do Solo , Carvão Vegetal , Microplásticos , Solo/química , Poluentes do Solo/análise
17.
Anim Biotechnol ; : 1-16, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332181

RESUMO

This study was conducted to evaluate the effects of Allzyme addition on biologically-treated date-palm mulch (DPM) based diets for growing rabbits. DPM was treated by Trichoderma viride, Trichoderma reesi 230, Plorotus oysterous, and Phanaerochyte chrysosporium. Eighty rabbits were assigned to four groups: a control group, tDPM (10% tDPM inclusion of total diet), Allzyme (Allzyme supplementation), and tDPM + Allzyme (tDPM and Allzyme supplementation). The biological treatment resulted in a significant increase in crude protein and reductions in crude fiber. There was an interaction between tDPM and Allzyme at 9- and 10-week BW. The negative effects of tDPM on BW started at 8-week of age. The tDPM had unfavorable effects on slaughter and meat quality traits. The tDPM-by-Allzyme interaction affected total protein and globulin concentrations. However, blood glucose concentration was influenced by both tDPM and Allzyme. A significant tDPM effect was detected on the expression of INSR, GHSR, and IGF1 genes. However, the Allzyme effect was significant for PPARg and FASN genes. In conclusion, feeding tDPM negatively impacted rabbit's performance, however, Allzyme supplementation alleviated some of those effects. Accordingly, tDPM is recommended to be included in the diets of growing rabbits along with Allzyme supplementation.

18.
Ecotoxicol Environ Saf ; 244: 114030, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058163

RESUMO

Plastic mulch films (PMFs) are widely used to improve crop quality and quantity. Although they provide a range of benefits, they degrade into widespread microplastics (MPs), which can cause an unavoidable risk of environmental problems. The residue of PMFs is a significant source of MPs in soils, which can then spread into various ecosystems and be easily absorbed by organisms due to their small size, and subsequently transported through food chain. Notably, MPs have been found in the human placenta, stool and blood, raising an urgent reminder of the potential dangers of MPs to human health. This review summarizes recent studies concerning the effects of MPs on the reproductive system in soil invertebrates, aquatic animals and rodents of both sexes and the mechanisms by which MPs affect the animal reproductive system. The studies on females demonstrated that MPs decrease oocyte quantity and quality, and induce ovary fibrosis, pyroptosis and apoptosis of granulosa cells. In addition, disrupted integrity of the blood-testis barrier, damaged spermatogenesis and compromised sperm quality have been shown in most studies on male animals. The studies on the mechanisms of these effects have provided evidence that MPs act on the animal reproductive system through reactive oxygen species-related mechanisms by initiating the Wnt/ß-Catenin and NLRP3/Caspase-1 pathways in females, and the Nrf2/HO-1/NF-κB, p38 MAPK and MAPK/Nrf2 pathways in males. Taken together, these studies reveal the reproductive toxicity of MPs from PMF on animals and serve as a reminder to properly dispose of PMF waste.


Assuntos
Microplásticos , Plásticos , Animais , Caspases , Ecossistema , Genitália , Humanos , Masculino , Fator 2 Relacionado a NF-E2 , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Plásticos/toxicidade , Espécies Reativas de Oxigênio , Sêmen , Solo , beta Catenina , Proteínas Quinases p38 Ativadas por Mitógeno
19.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235287

RESUMO

Diisocyanates are highly reactive compounds with two functional isocyanate groups. The exposure of diisocyanates is associated with severely adverse health effects, such as asthma, inflammation in the respiratory tract, and cancer. The hydrolysis product from diisocyanates to related diamines is also a potential carcinogen. Here, we developed an effective, accurate, and precise method for simultaneous determination of residual diisocyanates and related diamines in biodegradable mulch films, based on N-ethoxycarbonylation derivatization and gas chromatography-mass spectrometry. The method development included the optimization of ultrasonic hydrolysis and extraction, screening of N-ethoxycarbonylation conditions with ethyl chloroformate, evaluation of the diamines degradation, and analysis of the fragmentation mechanisms. Under the optimum experimental conditions, good linearity was observed with R2 > 0.999. The extraction recoveries were found in the range of 93.9−101.2% with repeatabilities and reproducibilities in 0.89−8.12% and 2.12−10.56%, respectively. The limits of detection ranged from 0.0025 to 0.057 µg/mL. The developed method was applied to commercial polybutylene adipate co-terephthalate (PBAT) biodegradable mulch film samples for analysis of the diverse residual diisocyanates and related diamine additives. The components varied greatly among the sample from different origin. Overall, this study provides a reliable method for assessing safety in biodegradable mulch films.


Assuntos
Diaminas , Isocianatos , Carcinógenos , Cromatografia Gasosa-Espectrometria de Massas
20.
BMC Plant Biol ; 21(1): 303, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187364

RESUMO

BACKGROUND: Organic mulches are widely used in crop production systems. Due to their benefits in improving soil fertility, retention of soil moisture and weed control. Field experiments were conducted during wheat growing seasons of 2018-2019 and 2019-2020 to evaluate the effects of Jatropha leaves mulch on the growth of wheat varieties 'Wadan-17' (rainfed) and 'Pirsabaq-2013' (irrigated) under well irrigated and water stress conditions (non-irrigated maintaining 40% soil field capacity). Jatropha mulch was applied to the soil surface at 0, 1, 3 and 5 Mg ha-1 before sowing grains in the field. Under conditions of water stress, Jatropha mulch significantly maintained the soil moisture content necessary for normal plant growth. RESULTS: We noted a decrease in plant height, shoot and root fresh/dry weight, leaf area, leaf relative water content (LRWC), chlorophyll, and carotenoid content due to water stress. However, water stress caused an increase in leaf and root phenolics content, leaf soluble sugars and electrolytes leakage. We observed that Jatropha mulch maintained LRWC, plant height, shoot and root fresh/dry weight, leaf area and chlorophyll content under water stress. Moreover, water stress adverse effects on leaf soluble sugar content and electrolyte leakage were reversed to normal by Jatropha mulch. CONCLUSION: Therefore, it may be concluded that Jatropha leaves mulch will minimize water stress adverse effects on wheat by maintaining soil moisture and plant water status.


Assuntos
Produção Agrícola/métodos , Jatropha , Folhas de Planta , Triticum/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Carotenoides/metabolismo , Clorofila/metabolismo , Desidratação , Raízes de Plantas/crescimento & desenvolvimento , Solo , Triticum/metabolismo , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA