Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Endocrinol Invest ; 43(9): 1259-1269, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32157664

RESUMO

PURPOSE: Nowadays, no human neuroendocrine cell models derived from the neural crest are available. In this study, we present non-transformed long-term primary Neural Crest Cells (NCCs) isolated from the trunk region of the neural crest at VIII-XII gestational weeks of human foetuses obtained from voluntary legal abortion. METHODS AND RESULTS: In NCC, quantitative real-time RT PCR demonstrated the expression of neural crest specifier genes, such as Snail1, Snail2/SLUG, Sox10, FoxD3, c-Myc, and p75NTR. Moreover, these cell populations expressed stemness markers (such as Nanog and nestin), as well as markers of motility and invasion (TAGLN, MMP9, CXCR4, and CXCR7), and of neuronal/glial differentiation (MAP2, GFAP, SYP, and TAU). Functional analysis demonstrated that these cells not only possessed high migration properties, but most importantly, they expressed markers of sympatho-adrenal lineage, such as ASCL1 and tyrosine hydroxylase (TH). Moreover, the expression of TH increased after the induction with two different protocols of differentiation towards neuronal and sympatho-adrenal phenotypes. Finally, exposure to conditioned culture media from NCC induced a mature phenotype in a neuronal cell model (namely SH-SY5Y), suggesting that NCC may also act like Schwann precursors. CONCLUSION: This unique human cell model provides a solid tool for future studies addressing the bases of human neural crest-derived neuroendocrine tumours.


Assuntos
Separação Celular , Feto/citologia , Crista Neural/citologia , Células Neuroendócrinas/citologia , Diferenciação Celular , Linhagem Celular , Movimento Celular , Separação Celular/métodos , Feminino , Humanos , Crista Neural/embriologia , Crista Neural/fisiologia , Células Neuroendócrinas/fisiologia , Fenótipo , Gravidez , Cultura Primária de Células
2.
J Cell Mol Med ; 22(3): 1840-1854, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314633

RESUMO

The wound healing is a complex process wherein inflammation, proliferation and regeneration evolve according to a spatio-temporal pattern from the activation of coagulation cascade to the formation of a plug clot including fibrin matrix, blood-borne cells and cytokines/growth factors. Creating environments conducive to tissue repair, the haemoderivatives are commonly proposed for the treatment of hard-to-heal wounds. Here, we explored in vitro the intrinsic regenerative potentialities of a leucocyte- and platelet-rich fibrin product, known as CPL-MB, defining the stemness grade of cells sprouting from the haemoderivative. Using highly concentrated serum-based medium to simulate wound conditions, we isolated fibroblast-like cells (CPL-CMCs) adhering to plastic and showing stable in vitro propagation, heterogeneous stem cell expression pattern, endothelial adhesive properties and immunomodulatory profile. Due to their blood derivation and expression of CXCR4, CPL-CMCs have been suggested to be immature cells circulating in peripheral blood at quiescent state until activation by both coagulation event and inflammatory stimuli such as stromal-derived factor 1/SDF1. Expressing integrins (CD49f, CD103), vascular adhesion molecules (CD106, CD166), endoglin (CD105) and remodelling matrix enzymes (MMP2, MMP9, MMP13), they showed a transendothelial migratory potential besides multipotency. Taken together, our data suggested that a standardized, reliable and economically feasible blood product such as CPL-MB functions as an artificial stem cell niche that, under permissive conditions, originate ex vivo immature cells that could be useful for autologous stem cell-based therapies.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Leucócitos/metabolismo , Células-Tronco Multipotentes/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Medicina Regenerativa/métodos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Proteômica/métodos , Cicatrização/efeitos dos fármacos
3.
Development ; 142(11): 1960-70, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977366

RESUMO

Vasa is a conserved RNA-helicase found in the germ lines of all metazoans tested. Whereas Vasa presence is often indicated as a metric for germline determination in animals, it is also expressed in stem cells of diverse origin. Recent research suggests, however, that Vasa has a much broader function, including a significant role in cell cycle regulation. Results herein indicate that Vasa is utilized widely, and often induced transiently, during development in diverse somatic cells and adult precursor tissues. We identified that Vasa in the sea urchin is essential for: (1) general mRNA translation during embryogenesis, (2) developmental re-programming upon manipulations to the embryo and (3) larval wound healing. We also learned that Vasa interacted with mRNAs in the perinuclear area and at the spindle in an Importin-dependent manner during cell cycle progression. These results suggest that, when present, Vasa functions are essential to contributing to developmental regulation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células Germinativas/metabolismo , Biossíntese de Proteínas , Strongylocentrotus purpuratus/citologia , Strongylocentrotus purpuratus/enzimologia , Animais , Divisão Celular , Linhagem da Célula/genética , Reprogramação Celular , RNA Helicases DEAD-box/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Carioferinas/metabolismo , Larva/genética , Modelos Biológicos , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fuso Acromático/metabolismo , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Cicatrização
4.
Histochem Cell Biol ; 148(2): 157-171, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28386635

RESUMO

Germ line segregation can occur during embryogenesis or after embryogenesis completion, with multipotent cells able to give rise to both germ and somatic cells in the developing juvenile or even in adulthood. These undifferentiated cells, in some animals, are self-renewing stem cells. In all these cell lineages, the same set of genes, among which vasa, appears to be expressed. We traced VASA expression during the peculiar gonad rebuilding of bivalves to verify its presence from undifferentiated germ cells to mature gametes in an animal taxon in which the mechanism of germ line establishment is still under investigation. We utilized antibodies produced against VASPH, VASA homolog of Ruditapes philippinarum (Subclass Heterodonta), to compare the known expression pattern of R. philippinarum to two species of the Subclass Pteriomorphia, Anadara kagoshimensis and Crassostrea gigas, and another species of the Subclass Heterodonta, Mya arenaria. The immunohistological data obtained support a conserved mechanism of proliferation of "primordial stem cells" among the simple columnar epithelium of the gut, as well as in the connective tissue, contributing to the seasonal gonad reconstitution. Given the taxonomic separation of the analyzed species, we suggest that the process could be shared in bivalve molluscs. The presence of germ cell precursors in the gut epithelium appears to be a feature in common with model organisms, such as mouse, fruit fly, and human. Thus, the comparative study of germ line establishment can add details on bivalve development, but can also help to clarify the role that VASA plays during germ cell specification.


Assuntos
Bivalves/metabolismo , RNA Helicases DEAD-box/genética , Células Germinativas/metabolismo , Sequência de Aminoácidos , Animais , Bivalves/citologia , RNA Helicases DEAD-box/metabolismo , Células Germinativas/citologia , Alinhamento de Sequência
5.
Mol Med ; 22: 244-257, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27257938

RESUMO

Perinatal asphyxia, a condition of impaired gas exchange during birth, leads to fetal hypoxia-ischemia (HI) and is associated with postnatal adverse outcomes including intestinal dysmotility and necrotizing enterocolitis (NEC). Evidence from adult animal models of transient, locally-induced intestinal HI has shown that inflammation is essential in HI-induced injury of the gut. Importantly, mesenchymal stem cell (MSC) treatment prevented this HI-induced intestinal damage. We therefore assessed whether fetal global HI induced inflammation, injury and developmental changes in the gut and whether intravenous MSC administration ameliorated these HI-induced adverse intestinal effects. In a preclinical ovine model, fetuses were subjected to umbilical cord occlusion (UCO), with or without MSC treatment, and sacrificed 7 days after UCO. Global HI increased the number of myeloperoxidase positive cells in the mucosa, upregulated mRNA levels of interleukin (IL)-1ß and IL-17 in gut tissue and caused T-cell invasion in the intestinal muscle layer. Intestinal inflammation following global HI was associated with increased Ki67+ cells in the muscularis and subsequent muscle hyperplasia. Global HI caused distortion of glial fibrillary acidic protein immunoreactivity in the enteric glial cells and increased synaptophysin and serotonin expression in the myenteric ganglia. Intravenous MSC treatment did not ameliorate these HI-induced adverse intestinal events. Global HI resulted in intestinal inflammation and enteric nervous system abnormalities which are clinically associated with postnatal complications including feeding intolerance, altered gastrointestinal transit and NEC. The intestinal histopathological changes were not prevented by intravenous MSC treatment directly after HI, indicating that alternative treatment regimens for cell-based therapies should be explored.

6.
Biochim Biophys Acta ; 1843(4): 703-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24418624

RESUMO

Observations that Glioma-associated transcription factors Gli1 and Gli2 (Gli1/2), executers of the Sonic Hedgehog (Shh) signaling pathway and targets of the Transforming Growth Factor ß (TGF-ß) signaling axis, are involved in numerous developmental and pathological processes unveil them as attractive pharmaceutical targets. Unc-51-like serine/threonine kinase Ulk3 has been suggested to play kinase activity dependent and independent roles in the control of Gli proteins in the context of the Shh signaling pathway. This study aimed at investigating whether the mechanism of generation of Gli1/2 transcriptional activators has similarities regardless of the signaling cascade evoking their activation. We also elucidate further the role of Ulk3 kinase in regulation of Gli1/2 proteins and examine SU6668 as an inhibitor of Ulk3 catalytic activity and a compound targeting Gli1/2 proteins in different cell-based experimental models. Here we demonstrate that Ulk3 is required not only for maintenance of basal levels of Gli1/2 proteins but also for TGF-ß or Shh dependent activation of endogenous Gli1/2 proteins in human adipose tissue derived multipotent stromal cells (ASCs) and mouse immortalized progenitor cells, respectively. We show that cultured ASCs possess the functional Shh signaling axis and differentiate towards osteoblasts in response to Shh. Also, we demonstrate that similarly to Ulk3 RNAi, SU6668 prevents de novo expression of Gli1/2 proteins and antagonizes the Gli-dependent activation of the gene expression programs induced by either Shh or TGF-ß. Our data suggest SU6668 as an efficient inhibitor of Ulk3 kinase allowing manipulation of the Gli-dependent transcriptional outcome.


Assuntos
Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Indóis/farmacologia , Fatores de Transcrição Kruppel-Like/biossíntese , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Camundongos , Células-Tronco Multipotentes/efeitos dos fármacos , Neoplasias/patologia , Proteínas Nucleares/biossíntese , Oxindóis , Propionatos , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco
7.
Dev Growth Differ ; 57(4): 324-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25864452

RESUMO

Germline segregation is a complex process by which germline cells are separated from somatic tissues during development. Recent animal studies on germline segregation allow for comparisons of the mechanisms used by different species and to propose evolutionary scenarios underlying the diversification of these processes. In this review, several proposed models of germline segregation are presented, and in addition, recent findings from the increasing number of studies are discussed, particularly concerning the need to reconsider these models based on available data.


Assuntos
Evolução Biológica , Células Germinativas , Animais
8.
Biochem Biophys Res Commun ; 438(4): 666-72, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23933253

RESUMO

Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.


Assuntos
Membrana Celular/ultraestrutura , Células-Tronco Multipotentes/citologia , Mioblastos/citologia , Animais , Ciclo Celular , Linhagem Celular , Membrana Celular/química , Separação Celular/instrumentação , Técnicas de Cocultura , Capacitância Elétrica , Eletroforese/instrumentação , Desenho de Equipamento , Fibroblastos/citologia , Camundongos , Microscopia Eletrônica de Varredura
9.
Anim Nutr ; 8(1): 91-101, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34977379

RESUMO

Nutritional stimulation of the developing small intestine of chick embryos can be conducted by in-ovo feeding (IOF). We hypothesized that IOF of glutamine and leucine can enhance small intestinal development by promoting proliferation and differentiation of multipotent small intestinal epithelial cells. Broiler embryos (n = 128) were subject to IOF of glutamine (IOF-Gln), leucine (IOF-Leu), NaCl (IOF-NaCl) or no injection (control) at embryonic d 17 (E 17). Multipotent, progenitor and differentiated cells were located and quantified in the small intestinal epithelium between E 17 and d 7 after hatch (D 7) in all treatment groups by immunofluorescence of SRY-box transcription factor 9 (Sox9) and proliferating cell nuclear antigen (PCNA), in-situ hybridization of leucine-rich repeat containing G-protein coupled receptor 5 (Lgr5) and peptide transporter 1 (PepT1) and histochemical goblet cell staining. The effects of IOF treatments at E 19 (48 h post-IOF), in comparison to control embryos, were as follows: total cell counts increased by 40%, 33% and 19%, and multipotent cell counts increased by 52%, 50% and 38%, in IOF-Gln, IOF-Leu and IOF-NaCl embryos, respectively. Only IOF-Gln embryos exhibited a significance, 36% increase in progenitor cell counts. All IOF treatments shifted Lgr5+ stem cell localizations to villus bottoms. The differentiated, PepT1+ region of the villi was 1.9 and 1.3-fold longer in IOF-Gln and IOF-Leu embryos, respectively, while goblet cell densities decreased by 20% in IOF-Gln embryos. Post-hatch, crypt and villi epithelial cell counts were significantly higher IOF-Gln chicks, compared to control chicks (P < 0.05). We conclude IOF of glutamine stimulates small intestinal maturation and functionality during the peri-hatch period by promoting multipotent cell proliferation and differentiation, resulting in enhanced compartmentalization of multipotent and differentiated cell niches and expansions of the absorptive surface area.

10.
Taiwan J Obstet Gynecol ; 61(2): 270-276, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35361387

RESUMO

OBJECTIVE: We tested the osteoblastic differentiation effects caused by physical stimulation such as hydrostatic pressure using placenta-derived multipotent cells. MATERIALS AND METHODS: The placenta-derived multipotent cells (PDMCs) were treated with osteogenic medium to induce PDMCs differentiation into osteoblast-like cells. The induced PDMCs were stimulated using hydrostatic pressure at a magnitude of 30 kPa for 1 h/day for up to 12 days. The calcium deposition monitored by Alizarin Red staining and the calcium content of each experimental group were quantified. RESULTS: The results demonstrated both the calcium deposition and concentration were elevated through hydrostatic pressure stimulation. Moreover, in order to indicate of PDMC osteodifferentiation, RT-qPCR analysis were performed and mRNA expression of osteoblast differentiation markers (type I collagen, alkaline phosphatase, RUNX2, and BGLAP), the bone morphogenetic protein family (BMP1-7) and BMP receptors (BMPR1A, BMPR1B, and BMPR2) were examined. Among them, the mRNA levels of RUNX2, COL1A1, BMP1, BMP3, and BMPR1A increased significantly in the hydrostatic-pressure-stimulated groups, whereas BGLAP, ALP, BMP2, BMP6, BMPR1B, and BMPR2 exhibited a slight upregulation between the control and experimental groups, indicating the specific signal route induced by hydrostatic pressure on PDMCs. CONCLUSION: Our results revealed the beneficial effects of stem cells stimulated using hydrostatic pressure, which could enhance calcium deposition considerably and facilitate osteodifferentiation, and the results may be applied to tissue regeneration in the near future.


Assuntos
Cálcio , Osteogênese , Feminino , Expressão Gênica , Humanos , Pressão Hidrostática , Osteogênese/genética , Placenta/metabolismo , Gravidez
11.
J Orthop Res ; 38(1): 128-138, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31329308

RESUMO

Intra-synovial tendon injuries are a common orthopedic problem with limited treatment options. The synovium is a specialized connective tissue forming the inner encapsulating lining of diarthrodial joints and intra-synovial tendons. It contains multipotent mesenchymal stromal cells that render it a viable source of progenitors for tendon repair. This study evaluated the effects of autologous implantation of cells derived from normal synovium (synovial membrane cells [SMCs]) in augmenting repair in an ovine model of intra-synovial tendon injury. For this purpose, synovial biopsies were taken from the right digital flexor tendon sheath following creation of a defect to the lateral deep digital flexor tendon. Mononuclear cells were isolated by partial enzymatic digestion and assessed for MSC characteristics. Cell tracking and tendon repair were assessed by implanting 5 × 106 cells into the digital flexor tendon sheath under ultrasound guidance with the effects evaluated using magnetic resonance imaging and histopathology. Synovial biopsies yielded an average 4.0 × 105 ± 2.7 × 105 SMCs that exhibited a fibroblastic morphology, variable osteogenic, and adipogenic responses but were ubiquitously strongly chondrogenic. SMCs displayed high expression of CD29 with CD271NEGATIVE and MHC-IILOW cell-surface marker profiles, and variable expression of CD73, CD90, CD105, CD166, and MHC-I. Implanted SMCs demonstrated engraftment within the synovium, though a lack of repair of the tendon lesion over 24 weeks was observed. We conclude healthy synovium is a viable source of multipotent cells, but that the heterogeneity of synovium underlies the variability between different SMC populations, which while capable of engraftment and persistence within the synovium exhibit limited capacity of influencing tendon repair. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 38:128-138, 2020.


Assuntos
Células-Tronco Multipotentes/transplante , Membrana Sinovial/citologia , Traumatismos dos Tendões/cirurgia , Tendões/fisiopatologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imageamento por Ressonância Magnética , Células-Tronco Multipotentes/citologia , Ovinos , Traumatismos dos Tendões/fisiopatologia
12.
Nanomaterials (Basel) ; 10(3)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120984

RESUMO

Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds' inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.

13.
Theriogenology ; 125: 56-63, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30388472

RESUMO

The aim of this study was to evaluate the effect of the conditioned medium of ovine Wharton's jelly-derived mesenchymal stem cells (oWJ-MSCs) on the morphology, growth, reactive oxygen species (ROS) and glutathione (GSH) intracellular levels, active mitochondria, and meiotic resumption of isolated ovine secondary follicles in vitro. The oWJ-MSCs were isolated and the medium where they were cultured was recovered (conditioned medium). Isolated ovine secondary follicles were cultured for 6 days in 1) supplemented α-MEM+ (control); 2) 50% α-MEM+ + 50% conditioned medium (α-MEM + CM group) or 3) conditioned medium only (CM group). The parameters analyzed were morphology, antrum formation, follicle and oocyte growth, ROS and GSH levels, mitochondrial activity and meiotic resumption. The percentage of normal follicles, antrum formation, and fully grown oocytes did not differ (P > 0.05) among treatments. Follicles cultured in α-MEM + CM group had greater (P < 0.05) diameter than other treatments after culture. Moreover, the diameter of the follicles cultured in CM alone was higher (P < 0.05) than in the α-MEM+. In addition, α-MEM + CM and CM treatments increased the growth rate compared to the α-MEM+. Treatments containing conditioned medium (α-MEM + CM or CM) significantly reduced ROS levels compared to the control medium. Moreover, mitochondrial activity was higher in α-MEM+ and α-MEM + CM than in CM alone. All treatments showed oocytes in GV, GVBD and MI. In conclusion, oWJ-MSCs conditioned medium, especially when associated with α-MEM, improves the growth of secondary follicles and reduces ROS generation after short-term culture.


Assuntos
Meios de Cultivo Condicionados , Células-Tronco Mesenquimais/fisiologia , Folículo Ovariano/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ovinos/fisiologia , Geleia de Wharton/citologia , Animais , Feminino , Técnicas de Cultura de Tecidos
14.
J Orthop Res ; 37(6): 1429-1439, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30977556

RESUMO

Adipose-derived stromal vascular fraction (SVF) is a heterogeneous population of cells that yields a homogeneous population of plastic-adherent adipose tissue-derived stromal cells (ASC) when culture-expanded. SVF and ASC have been used clinically to improve tendon healing, yet their mechanism of action is not fully elucidated. The objective of this study was to investigate the potential for ASC to act as trophic mediators for tendon healing. Flexor digitorum superficialis tendons and adipose tissue were harvested from adult horses to obtain SVF, ASC, and tenocytes. Growth factor gene expression was quantified in SVF and ASC in serial passages and growth factors were quantified in ASC-conditioned medium (CM). Microchemotaxis assays were performed using ASC-CM. Tenocytes were grown in co-culture with autologous ASC or allogeneic SVF. Gene expression for insulin-like growth factor 1 (IGF-1), stromal cell-derived factor-1α (SDF-1α), transforming growth factor-ß1 (TGF-ß1) and TGF-ß3 was significantly higher in SVF compared to ASC. Concentrations were significantly increased in ASC-CM compared to controls for IGF-1 (4-fold) and SDF-1α (6-fold). Medium conditioned by ASC induced significant cell migration in a dose-dependent manner. Gene expression for collagen types I and III, decorin, and cartilage oligomeric matrix protein was modestly, but significantly increased following co-culture of tenocytes with autologous ASC. Our findings support the ability of SVF and ASC to act as trophic mediators in tendon healing, particularly through chemotaxis, which stands to critically impact the intrinsic healing response. In vivo studies to further delineate the potential for SVF and/or ASC to improve tendon healing are warranted. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1429-1439, 2019.


Assuntos
Tecido Adiposo/citologia , Células Estromais/fisiologia , Tendões/fisiologia , Animais , Células Cultivadas , Quimiocina CXCL12/análise , Quimiocina CXCL12/genética , Técnicas de Cocultura , Cavalos , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/genética
15.
Transfus Clin Biol ; 26(4): 316-323, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30391125

RESUMO

OBJECTIVES: The first-passage adherent human bone marrow fibroblast-like cell population corresponds, in terms of phenotype and three-lineage differentiation capacity (assayed in bulk culture), to commonly termed "mesenchymal stem cells". Here we determine the proportion of high proliferative capacity multipotent cells present in this population in order to estimate the proportion of cells that can or cannot be considered as stem and progenitor cells. MATERIAL AND METHODS: The single-cell cultures were established starting from human bone marrow-derived first-passage fibroblast-like cells and the proliferating clones were either transferred to secondary cultures to evaluate their further clonogenicity, or split into three wells to assess differentiation into each of the three different lineages. RESULTS: The analysis of 197 single-cell cultures from three different bone marrow donors shows that only∼40% of so-called "mesenchymal stem cells" exhibit multipotency and are capable of sustained clonogenicity in secondary cultures. CONCLUSION: Even in the first ex vivo passage under favorable conditions the majority (∼60%) of so-called "mesenchymal stem cells" are not multipotent and thus do not represent a stem cell entity.


Assuntos
Células-Tronco Mesenquimais/citologia , Antígenos CD/análise , Células da Medula Óssea/classificação , Adesão Celular , Divisão Celular , Linhagem da Célula , Autorrenovação Celular , Separação Celular , Células Cultivadas , Células Clonais/citologia , Ensaio de Unidades Formadoras de Colônias , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Análise de Célula Única , Células Estromais/citologia
16.
Biotechnol Adv ; 36(4): 1111-1126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563048

RESUMO

Stem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies. When seeded on synthetic or nature-derived scaffolds in vitro, stem cells can be differentiated towards the desired phenotype by an appropriate composition, by an appropriate architecture, and by appropriate physicochemical and mechanical properties of the scaffolds, particularly if the scaffold properties are combined with a suitable composition of cell culture media, and with suitable mechanical, electrical or magnetic stimulation. For cell therapy, stem cells can be injected directly into damaged tissues and organs in vivo. Since the regenerative effect of stem cells is based mainly on the autocrine production of growth factors, immunomodulators and other bioactive molecules stored in extracellular vesicles, these structures can be isolated and used instead of cells for a novel therapeutic approach called "stem cell-based cell-free therapy". There are four main sources of stem cells, i.e. embryonic tissues, fetal tissues, adult tissues and differentiated somatic cells after they have been genetically reprogrammed, which are referred to as induced pluripotent stem cells (iPSCs). Although adult stem cells have lower potency than the other three stem cell types, i.e. they are capable of differentiating into only a limited quantity of specific cell types, these cells are able to overcome the ethical and legal issues accompanying the application of embryonic and fetal stem cells and the mutational effects associated with iPSCs. Moreover, adult stem cells can be used in autogenous form. These cells are present in practically all tissues in the organism. However, adipose tissue seems to be the most advantageous tissue from which to isolate them, because of its abundancy, its subcutaneous location, and the need for less invasive techniques. Adipose tissue-derived stem cells (ASCs) are therefore considered highly promising in present-day regenerative medicine.


Assuntos
Tecido Adiposo/citologia , Medicina Regenerativa , Transplante de Células-Tronco , Células-Tronco , Engenharia Tecidual , Animais , Diferenciação Celular , Humanos , Camundongos , Células-Tronco/citologia , Células-Tronco/fisiologia
17.
Biomaterials ; 143: 65-78, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28763631

RESUMO

Multipotent cells have similar basic features of all stem cells but limitation in ability of self-renewal and differentiation compared with pluripotent cells. Here, we have developed an ultra effective, gene- and chemical-free method of generating extra multipotent (xpotent) cells which have differentiation potential more than limited cell types, by the mechanism of ultrasound-directed permeation of environmental transition-guided cellular reprogramming (Entr). Ultrasound stimulus generated a massive number of Entr-mediated xpotent (x/Entr) spheroids from human dermal fibroblasts (HDFs) 6 days after treatment. The emergence of x/Entr was first initiated by the introduction of human embryonic stem cell (ESC) environments into the HDFs to start fast cellular reprogramming including activation of stress-related kinase signaling pathways, subsequent chromatin remodeling, and expression of pluripotent-related genes via transient membrane damage caused by ultrasound-induced cavitation. And then, pluripotent markers were transported into their adjacent HDFs via direct cell-to-cell connections in order to generate xpotent clusters. The features of x/Entr cells were intermediate between pluripotency and multipotency in terms of pluripotency with three germ layer markers, multi-lineage differentiation potential, and no teratoma formation. This physical stimulus-mediated reprogramming strategy was cost-effective, simple, quick, produced significant yields, and was safe, and can therefore provide a new paradigm for clinical application.


Assuntos
Diferenciação Celular , Reprogramação Celular/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Adulto , Técnicas de Cultura de Células , Linhagem Celular , Autorrenovação Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina/efeitos da radiação , Fibroblastos/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/efeitos da radiação , Humanos , Pessoa de Meia-Idade , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos da radiação , Ondas Ultrassônicas
18.
Int J Nanomedicine ; 11: 5041-5055, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27789941

RESUMO

Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality.


Assuntos
Valva Aórtica/citologia , Células-Tronco Multipotentes/citologia , Valva Pulmonar/citologia , Alicerces Teciduais , Animais , Células Sanguíneas/citologia , Diferenciação Celular , Células Cultivadas , Células Endoteliais , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Expressão Gênica , Implante de Prótese de Valva Cardíaca , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/fisiologia , Nanoestruturas , Sus scrofa , Suínos , Engenharia Tecidual/métodos
19.
Nanomedicine (Lond) ; 11(15): 1929-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27246559

RESUMO

AIM: We aimed to set up a self-standing, biomimetic scaffold system able to induce and support per se neuronal differentiation of autologous multipotent cells. MATERIALS & METHODS: We isolated a population of human circulating multipotent cells (hCMCs), and used carbon nanotube/polymer nanocomposite scaffolds to mimic electrical/nanotopographical features of the neural environment, and biomimetic peptides reproducing axon guidance cues from neural proteins. RESULTS: hCMCs showed high degree of stemness and multidifferentiative potential; stimuli from the scaffolds and biomimetic peptides could induce and boost hCMC differentiation toward neuronal lineage despite the absence of exogenously added, specific growth factors. CONCLUSION: This work suggests the scaffold-peptides system combined with autologous hCMCs as a functional biomimetic, self-standing prototype for neural regenerative medicine applications.


Assuntos
Células-Tronco Adultas/citologia , Materiais Biomiméticos/química , Células-Tronco Multipotentes/citologia , Nanotubos de Carbono/química , Neurônios/citologia , Peptídeos/química , Poliésteres/química , Alicerces Teciduais/química , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Medicina Regenerativa , Engenharia Tecidual
20.
Taiwan J Obstet Gynecol ; 53(2): 187-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25017264

RESUMO

OBJECTIVE: Stem cells offer great potential for clinical therapeutic use because of their ability to rejuvenate and to differentiate into numerous types of cells. We isolated multipotent cells from the human term placenta that were capable of differentiation into cells of all three germ layers. MATERIALS AND METHODS: We examined the ability of these placenta-derived multipotent cells (PDMCs) to differentiate into osteoblasts (OBs) or OB-like cells. The PDMCs were treated with osteogenic medium (OM) consisting of dexamethasone, ß-glycerol phosphate, and ascorbic acid. At sequential time intervals (0 day, 3 days, 6 days, 9 days, and 12 days) we measured several parameters. These included alkaline phosphatase (ALP) activity, alizarin red staining (ARS) to measure calcium deposition, messenger RNA (mRNA) expressions of osteogenesis-related transcription factor (Cbfa1), and calcium coordination protein (osteocalcin). These variables were used as indicators of PDMC osteodifferentiation. RESULTS: We showed that ALP activity in the early stage of differentiation and calcium deposition were both significantly increased in PDMCs after OM induction. Moreover, the Cbfa1 and osteocalcin gene expressions were upregulated. The results suggested that OM induced an osteodifferentiation potential in PDMCs. CONCLUSION: PDMC-derived osteocytes provide a useful model to evaluate the mechanisms of key biomolecules and bioengineering processes.


Assuntos
Diferenciação Celular , Células-Tronco Multipotentes/fisiologia , Osteogênese , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feminino , Expressão Gênica , Humanos , Células-Tronco Multipotentes/enzimologia , Osteocalcina/genética , Osteogênese/genética , Placenta , Gravidez , RNA Mensageiro/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA