Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2320454121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923983

RESUMO

Biologically detailed models of brain circuitry are challenging to build and simulate due to the large number of neurons, their complex interactions, and the many unknown physiological parameters. Simplified mathematical models are more tractable, but harder to evaluate when too far removed from neuroanatomy/physiology. We propose that a multiscale model, coarse-grained (CG) while preserving local biological details, offers the best balance between biological realism and computability. This paper presents such a model. Generally, CG models focus on the interaction between groups of neurons-here termed "pixels"-rather than individual cells. In our case, dynamics are alternately updated at intra- and interpixel scales, with one informing the other, until convergence to equilibrium is achieved on both scales. An innovation is how we exploit the underlying biology: Taking advantage of the similarity in local anatomical structures across large regions of the cortex, we model intrapixel dynamics as a single dynamical system driven by "external" inputs. These inputs vary with events external to the pixel, but their ranges can be estimated a priori. Precomputing and tabulating all potential local responses speed up the updating procedure significantly compared to direct multiscale simulation. We illustrate our methodology using a model of the primate visual cortex. Except for local neuron-to-neuron variability (necessarily lost in any CG approximation) our model reproduces various features of large-scale network models at a tiny fraction of the computational cost. These include neuronal responses as a consequence of their orientation selectivity, a primary function of visual neurons.


Assuntos
Modelos Neurológicos , Neurônios , Córtex Visual , Animais , Neurônios/fisiologia , Córtex Visual/fisiologia , Humanos , Rede Nervosa/fisiologia , Córtex Cerebral/fisiologia , Simulação por Computador
2.
Proc Natl Acad Sci U S A ; 121(14): e2308668121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551836

RESUMO

We introduce a machine learning-based approach called ab initio generalized Langevin equation (AIGLE) to model the dynamics of slow collective variables (CVs) in materials and molecules. In this scheme, the parameters are learned from atomistic simulations based on ab initio quantum mechanical models. Force field, memory kernel, and noise generator are constructed in the context of the Mori-Zwanzig formalism, under the constraint of the fluctuation-dissipation theorem. Combined with deep potential molecular dynamics and electronic density functional theory, this approach opens the way to multiscale modeling in a variety of situations. Here, we demonstrate this capability with a study of two mesoscale processes in crystalline lead titanate, namely the field-driven dynamics of a planar ferroelectric domain wall, and the dynamics of an extensive lattice of coarse-grained electric dipoles. In the first case, AIGLE extends the reach of ab initio simulations to a regime of noise-driven motions not accessible to molecular dynamics. In the second case, AIGLE deals with an extensive set of CVs by adopting a local approximation for the memory kernel and retaining only short-range noise correlations. The scheme is computationally more efficient than molecular dynamics by several orders of magnitude and mimics the microscopic dynamics at low frequencies where it reproduces accurately the dominant far-infrared absorption frequency.

3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305457

RESUMO

The structural modeling of peptides can be a useful aid in the discovery of new drugs and a deeper understanding of the molecular mechanisms of life. Here we present a novel multiscale protocol for the structure prediction of linear and cyclic peptides. The protocol combines two main stages: coarse-grained simulations using the CABS-flex standalone package and an all-atom reconstruction-optimization process using the Modeller program. We evaluated the protocol on a set of linear peptides and two sets of cyclic peptides, with cyclization through the backbone and disulfide bonds. A comparison with other state-of-the-art tools (APPTEST, PEP-FOLD, ESMFold and AlphaFold implementation in ColabFold) shows that for most cases, AlphaFold offers the highest resolution. However, CABS-flex is competitive, particularly when it comes to short linear peptides. As demonstrated, the protocol performance can be further improved by combination with the residue-residue contact prediction method or more efficient scoring. The protocol is included in the CABS-flex standalone package along with online documentation to aid users in predicting the structure of peptides and mini-proteins.


Assuntos
Peptídeos Cíclicos , Proteínas , Proteínas/química , Peptídeos/química , Conformação Proteica
4.
Proc Natl Acad Sci U S A ; 120(48): e2309995120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983502

RESUMO

The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal model for insight into the initial stages of aggregation of larger tau fragments. Even for this small peptide, however, the large length and time scales associated with fibrillization pose challenges for simulation studies of its dynamic assembly, equilibrium configurational landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained model of PHF6 for large-scale simulations of its aggregation, which we use to uncover molecular interactions and thermodynamic driving forces governing its assembly. The model, not trained on any explicit information about fibrillar structure, predicts coexistence of formed fibrils with monomers in solution, and we calculate a putative equilibrium phase diagram in concentration-temperature space. We also characterize the configurational and free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model of heparin that this widely studied cofactor enhances the aggregation propensity of PHF6 by ordering monomers during nucleation and remaining associated with growing fibrils, consistent with experimentally characterized heparin-tau interactions. Overall, this effort provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways and, furthermore, demonstrates the potential of modern multiscale modeling techniques to produce predictive models of amyloidogenic peptides simultaneously capturing sequence-specific effects and emergent aggregate structures.


Assuntos
Peptídeos , Proteínas tau , Proteínas tau/metabolismo , Peptídeos/química , Isoformas de Proteínas , Simulação por Computador , Heparina
5.
Proc Natl Acad Sci U S A ; 119(26): e2119800119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727989

RESUMO

Phase-separated biomolecular condensates that contain multiple coexisting phases are widespread in vitro and in cells. Multiphase condensates emerge readily within multicomponent mixtures of biomolecules (e.g., proteins and nucleic acids) when the different components present sufficient physicochemical diversity (e.g., in intermolecular forces, structure, and chemical composition) to sustain separate coexisting phases. Because such diversity is highly coupled to the solution conditions (e.g., temperature, pH, salt, composition), it can manifest itself immediately from the nucleation and growth stages of condensate formation, develop spontaneously due to external stimuli or emerge progressively as the condensates age. Here, we investigate thermodynamic factors that can explain the progressive intrinsic transformation of single-component condensates into multiphase architectures during the nonequilibrium process of aging. We develop a multiscale model that integrates atomistic simulations of proteins, sequence-dependent coarse-grained simulations of condensates, and a minimal model of dynamically aging condensates with nonconservative intermolecular forces. Our nonequilibrium simulations of condensate aging predict that single-component condensates that are initially homogeneous and liquid like can transform into gel-core/liquid-shell or liquid-core/gel-shell multiphase condensates as they age due to gradual and irreversible enhancement of interprotein interactions. The type of multiphase architecture is determined by the aging mechanism, the molecular organization of the gel and liquid phases, and the chemical makeup of the protein. Notably, we predict that interprotein disorder to order transitions within the prion-like domains of intracellular proteins can lead to the required nonconservative enhancement of intermolecular interactions. Our study, therefore, predicts a potential mechanism by which the nonequilibrium process of aging results in single-component multiphase condensates.


Assuntos
Envelhecimento , Condensados Biomoleculares , Proteína FUS de Ligação a RNA , Envelhecimento/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Modelos Biológicos , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Termodinâmica
6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983849

RESUMO

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Assuntos
Membrana Celular/enzimologia , Lipídeos/química , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais , Humanos
7.
Nano Lett ; 24(9): 2689-2697, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285690

RESUMO

Simulating the behavior of metal nanoparticles on supports is crucial for boosting their catalytic performance and various nanotechnology applications; however, such simulations are limited by the conflicts between accuracy and efficiency. Herein, we introduce a multiscale modeling strategy to unveil the morphology of Ru supported on pristine and N-doped graphene. Our multiscale modeling started with the electronic structures of a supported Ru single atom, revealing the strong metal-support interaction around pyridinic nitrogen sites. To determine the stable configurations of Ru2-13 clusters on three different graphene supports, global energy minimum searches were performed. The sintering of the global minimum Ru13 clusters on supports was further simulated by ab initio molecular dynamics (AIMD). The AIMD data set was then collected for deep potential molecular dynamics to study the melting of Ru nanoparticles. This study presents comprehensive descriptions of carbon-supported Ru and develops modeling approaches that bridge different scales and can be applied to various supported nanoparticle systems.

8.
Mol Syst Biol ; 19(3): e11353, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36727665

RESUMO

Division of labor can evolve when social groups benefit from the functional specialization of its members. Recently, a novel means of coordinating the division of labor was found in the antibiotic-producing bacterium Streptomyces coelicolor, where specialized cells are generated through large-scale genomic re-organization. We investigate how the evolution of a genome architecture enables such mutation-driven division of labor, using a multiscale computational model of bacterial evolution. In this model, bacterial behavior-antibiotic production or replication-is determined by the structure and composition of their genome, which encodes antibiotics, growth-promoting genes, and fragile genomic loci that can induce chromosomal deletions. We find that a genomic organization evolves, which partitions growth-promoting genes and antibiotic-coding genes into distinct parts of the genome, separated by fragile genomic loci. Mutations caused by these fragile sites mostly delete growth-promoting genes, generating sterile, and antibiotic-producing mutants from weakly-producing progenitors, in agreement with experimental observations. This division of labor enhances the competition between colonies by promoting antibiotic diversity. These results show that genomic organization can co-evolve with genomic instabilities to enable reproductive division of labor.


Assuntos
Genoma , Genômica , Mutação , Antibacterianos
9.
Mol Pharm ; 21(6): 2684-2698, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38687999

RESUMO

The large number of studies involving nanoparticles for cancer therapy is due to their peculiar features: they protect loaded active molecules while extending circulation time and can extravasate from the blood flow to the tumor to deliver drugs directly in the target area. Mathematical modeling can provide a preliminary in silico exploration of design space to optimize an experimental activity that often relies on a trial-and-error approach. However, because of the characteristic size of these vectors (10-1000 nm), numerous phenomena of interest occur at different time and length scales, making a single modeling technique insufficient to fully characterize the system of interest. In this work we employed a multiscale modeling approach, which bridges the phenomena of interest across different scales, to study the in vitro release from polymeric core/shell nanoparticles for cancer therapy loaded with an active compound assembled as a hydrophobic ion pair. The "computational microscope" provided by molecular dynamics simulations was used to track drug molecules through the release process at an atomic scale. The outcomes suggested that the drug is mainly partitioned in the polymer and released as hydrophobic ion pair rather than a free molecule, and that the hydrophobic ion pair is preferentially partitioned in Tween 20 micelles in the release media. A model at macroscale, aimed at describing the release rate and elucidating the release mechanism, was developed according to the results from molecular simulations and validated against experimental data. The outcomes provided insights that are challenging to be obtained experimentally and which supported the development and validation of a release model at macroscale. Overall, the adopted multiscale approach corroborated the experimental findings and provided significant insights into the mechanisms of release.


Assuntos
Simulação de Dinâmica Molecular , Nanopartículas , Polímeros , Nanopartículas/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Modelos Teóricos , Sistemas de Liberação de Medicamentos/métodos
10.
Bull Math Biol ; 86(5): 44, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512541

RESUMO

On July 19th, 2023, the National Institute of Allergy and Infectious Diseases co-organized a workshop with the Society of Mathematical Biology, with the authors of this paper as the organizing committee. The workshop, "Bridging multiscale modeling and practical clinical applications in infectious diseases" sought to create an environment for mathematical modelers, statisticians, and infectious disease researchers and clinicians to exchange ideas and perspectives.


Assuntos
Doenças Transmissíveis , Conceitos Matemáticos , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Modelos Biológicos
11.
Cell Mol Life Sci ; 81(1): 2, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38043093

RESUMO

Ovarian cancer is amongst the most morbid of gynecological malignancies due to its diagnosis at an advanced stage, a transcoelomic mode of metastasis, and rapid transition to chemotherapeutic resistance. Like all other malignancies, the progression of ovarian cancer may be interpreted as an emergent outcome of the conflict between metastasizing cancer cells and the natural defense mounted by microenvironmental barriers to such migration. Here, we asked whether senescence in coelom-lining mesothelia, brought about by drug exposure, affects their interaction with disseminated ovarian cancer cells. We observed that cancer cells adhered faster on senescent human and murine mesothelial monolayers than on non-senescent controls. Time-lapse epifluorescence microscopy showed that mesothelial cells were cleared by a host of cancer cells that surrounded the former, even under sub-confluent conditions. A multiscale computational model predicted that such colocalized mesothelial clearance under sub-confluence requires greater adhesion between cancer cells and senescent mesothelia. Consistent with the prediction, we observed that senescent mesothelia expressed an extracellular matrix with higher levels of fibronectin, laminins and hyaluronan than non-senescent controls. On senescent matrix, cancer cells adhered more efficiently, spread better, and moved faster and persistently, aiding the spread of cancer. Inhibition assays using RGD cyclopeptides suggested the adhesion was predominantly contributed by fibronectin and laminin. These findings led us to propose that the senescence-associated matrisomal phenotype of peritoneal barriers enhances the colonization of invading ovarian cancer cells contributing to the metastatic burden associated with the disease.


Assuntos
Fibronectinas , Neoplasias Ovarianas , Feminino , Animais , Humanos , Camundongos , Epitélio , Peritônio/patologia , Matriz Extracelular , Neoplasias Ovarianas/patologia , Adesão Celular/fisiologia
12.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34453000

RESUMO

Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic ß-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic ß-Cell Consortium.


Assuntos
Modelos Biológicos , Teorema de Bayes , Simulação por Computador , Humanos , Modelos Lineares
13.
Entropy (Basel) ; 26(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38920531

RESUMO

Data-driven modeling methods are studied for turbulent dynamical systems with extreme events under an unambiguous model framework. New neural network architectures are proposed to effectively learn the key dynamical mechanisms including the multiscale coupling and strong instability, and gain robust skill for long-time prediction resistive to the accumulated model errors from the data-driven approximation. The machine learning model overcomes the inherent limitations in traditional long short-time memory networks by exploiting a conditional Gaussian structure informed of the essential physical dynamics. The model performance is demonstrated under a prototype model from idealized geophysical flow and passive tracers, which exhibits analytical solutions with representative statistical features. Many attractive properties are found in the trained model in recovering the hidden dynamics using a limited dataset and sparse observation time, showing uniformly high skill with persistent numerical stability in predicting both the trajectory and statistical solutions among different statistical regimes away from the training regime. The model framework is promising to be applied to a wider class of turbulent systems with complex structures.

14.
Biophys J ; 122(18): 3560-3569, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37050874

RESUMO

Cell science has made significant progress by focusing on understanding individual cellular processes through reductionist approaches. However, the sheer volume of knowledge collected presents challenges in integrating this information across different scales of space and time to comprehend cellular behaviors, as well as making the data and methods more accessible for the community to tackle complex biological questions. This perspective proposes the creation of next-generation virtual cells, which are dynamic 3D models that integrate information from diverse sources, including simulations, biophysical models, image-based models, and evidence-based knowledge graphs. These virtual cells would provide statistically accurate and holistic views of real cells, bridging the gap between theoretical concepts and experimental data, and facilitating productive new collaborations among researchers across related fields.

15.
Clin Infect Dis ; 76(3): 479-486, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36056892

RESUMO

BACKGROUND: Developing accurate and reliable methods to estimate vaccine protection is a key goal in immunology and public health. While several statistical methods have been proposed, their potential inaccuracy in capturing fast intraseasonal waning of vaccine-induced protection needs to be rigorously investigated. METHODS: To compare statistical methods for estimating vaccine effectiveness (VE), we generated simulated data using a multiscale, agent-based model of an epidemic with an acute viral infection and differing extents of VE waning. We apply a previously proposed framework for VE measures based on the observational data richness to assess changes of vaccine-induced protection over time. RESULTS: While VE measures based on hard-to-collect information (eg, the exact timing of exposures) were accurate, usually VE studies rely on time-to-infection data and the Cox proportional hazards model. We found that its extension using scaled Schoenfeld residuals, previously proposed for capturing VE waning, was unreliable in capturing both the degree of waning and its functional form and identified the mathematical factors contributing to this unreliability. We showed that partitioning time and including a time-vaccine interaction term in the Cox model significantly improved estimation of VE waning, even in the case of dramatic, rapid waning. We also proposed how to optimize the partitioning scheme. CONCLUSIONS: While appropriate for rejecting the null hypothesis of no waning, scaled Schoenfeld residuals are unreliable for estimating the degree of waning. We propose a Cox-model-based method with a time-vaccine interaction term and further optimization of partitioning time. These findings may guide future analysis of VE waning data.


Assuntos
Vacinas contra Influenza , Vacinação , Humanos , Vacinação/métodos , Simulação por Computador , Modelos de Riscos Proporcionais
16.
Photosynth Res ; 156(1): 147-162, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36207489

RESUMO

In this mini review, we focus on recent advances in the atomistic modeling of biological light-harvesting (LH) complexes. Because of their size and sophisticated electronic structures, multiscale methods are required to investigate the dynamical and spectroscopic properties of such complexes. The excitation energies, in this context also known as site energies, excitonic couplings, and spectral densities are key quantities which usually need to be extracted to be able to determine the exciton dynamics and spectroscopic properties. The recently developed multiscale approach based on the numerically efficient density functional tight-binding framework followed by excited state calculations has been shown to be superior to the scheme based on pure classical molecular dynamics simulations. The enhanced approach, which improves the description of the internal vibrational dynamics of the pigment molecules, yields spectral densities in good agreement with the experimental counterparts for various bacterial and plant LH systems. Here, we provide a brief overview of those results and described the theoretical foundation of the multiscale protocol.


Assuntos
Complexos de Proteínas Captadores de Luz , Teoria Quântica , Complexos de Proteínas Captadores de Luz/metabolismo , Simulação de Dinâmica Molecular , Análise Espectral/métodos
17.
Biotechnol Bioeng ; 120(1): 125-138, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226467

RESUMO

The development of biopharmaceutical downstream processes relies on exhaustive experimental studies. The root cause is the poorly understood relationship between the protein structure of monoclonal antibodies (mAbs) and their macroscopic process behavior. Especially the development of preparative chromatography processes is challenged by the increasing structural complexity of novel antibody formats and accelerated development timelines. This study introduces a multiscale in silico model consisting of homology modeling, quantitative structure-property relationships (QSPR), and mechanistic chromatography modeling leading from the amino acid sequence of a mAb to the digital representation of its cation exchange chromatography (CEX) process. The model leverages the mAbs' structural characteristics and experimental data of a diverse set of 21 therapeutic antibodies to predict elution profiles of two mAbs that were removed from the training data set. QSPR modeling identified mAb-specific protein descriptors relevant for the prediction of the thermodynamic equilibrium and the stoichiometric coefficient of the adsorption reaction. The consideration of two discrete conformational states of IgG4 mAbs enabled prediction of split-peak elution profiles. Starting from the sequence, the presented multiscale model allows in silico development of chromatography processes before protein material is available for experimental studies.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Cromatografia por Troca Iônica/métodos , Termodinâmica , Imunoglobulina G/química , Anticorpos Monoclonais/química , Adsorção
18.
Mol Pharm ; 20(12): 6162-6168, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37919256

RESUMO

Lipid nanoparticle (LNP) constructs have been widely developed for gene therapy delivery. Understanding local absorption and presystemic clearance kinetics of LNPs, however, remains limited. This subsequently restrains the prediction and assessment of the systemic exposure of locally injected LNPs. As such, a multiscale computational approach was developed by integrating multiphysics simulation of intramuscular absorption kinetics of LNPs with whole-body pharmacokinetics modeling, bridged by a presystemic lymphatic kinetic model. The overall framework was enabled by utilizing physiological parameters obtained from the literature and drug-related parameters derived from experiments. The multiscale modeling and simulation approach predicted the systemic exposure of LNPs administered intramuscularly, with a high degree of agreement between the predicted and the experimental data. Sensitivity analyses revealed that the local absorption rate, pinocytosis presystemic clearance rate, and lymph flow rate of the presystemic lymphatic compartment had the most significant impacts on Cmax. The study yielded refreshing perspectives on estimating systemic exposures of locally injected LNPs and their safety and effectiveness.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas , Terapia Genética , Lipídeos , Simulação por Computador , RNA Interferente Pequeno
19.
Proc Natl Acad Sci U S A ; 117(39): 24061-24068, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929015

RESUMO

The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.


Assuntos
Modelos Químicos , Conformação Proteica , Método de Monte Carlo , Redes Neurais de Computação , Transição de Fase
20.
Luminescence ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072397

RESUMO

Fluorophores in aggregated state are commonly used in optoelectronic devices, and the molecular packing are complex and diverse, including crystal, amorphous aggregate in solution, thin film, ordered supramolecular assemblies, and highly ordered cell membrane. In addition, the luminous behavior of the aggregated state can be precisely regulated by external stimuli such as hydrostatic pressure. In this review, we summarize the representative progress on the application of multiscale modeling protocol to illustrate the underlying mechanism of fluorescent emission of organic dyes in different assembles. The aim is to obtain the molecular packing in different forms of assembles and then to understand their underlying mechanism of stimuli-responsive fluorescent behavior at the molecular level. This is essential for the rational design, synthesis, and efficient application of fluorescent dyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA