Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur J Appl Physiol ; 122(8): 1929-1937, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35648211

RESUMO

PURPOSE: Studies have indicated upper body involvement during football, provoking long-term muscular adaptations. This study aimed at examining the acute metabolic response in upper and lower body skeletal muscle to football training organized as small-sided games (SSG). METHODS: Ten healthy male recreational football players [age 24 ± 1 (± SD) yrs; height 183 ± 4 cm; body mass 83.1 ± 9.7 kg; body fat 15.5 ± 5.4%] completed 1-h 5v5 SSG (4 × 12 min interspersed with 4-min recovery periods). Muscle biopsies were obtained from m. vastus lateralis (VL) and m. deltoideus (DE) pre- and post-SSG for muscle glycogen and metabolite analyses. Blood lactate samples were obtained at rest, middle and end of the SSG. RESULTS: Muscle glycogen in VL decreased (P < 0.01) by 21% and tended (P = 0.08) to decrease in DE by 13%. Muscle lactate increased in VL (117%; P < 0.001) and DE (81%; P < 0.001) during the game, while blood lactate rose threefold. Muscle ATP and PCr were unaltered, but intermuscular differences were detected for ATP at both time points (P < 0.001) and for PCr at pre-SSG (P < 0.05) with VL demonstrating higher values than DE, while muscle creatine rose in VL (P < 0.001) by 41% and by 22% in DE (P = 0.02). Baseline citrate synthase maximal activity was higher (P < 0.05) in VL compared to DE, whereas baseline muscle lactate concentration was higher (P < 0.05) in DE than VL. CONCLUSION: The upper body may be extensively involved during football play, but besides a rise in muscle lactate in the deltoideus muscle similar to the leg muscles, the present study did not demonstrate acute metabolic changes of an order that may explain the previously reported training effect of football play in the upper extremities.


Assuntos
Futebol , Adulto , Humanos , Masculino , Adulto Jovem , Trifosfato de Adenosina/metabolismo , Braço , Glicogênio/metabolismo , Lactatos , Perna (Membro) , Músculo Esquelético/fisiologia , Futebol/fisiologia
2.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R687-R698, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549627

RESUMO

Recently it was documented that fatiguing, high-intensity exercise resulted in a significant attenuation in maximal skeletal muscle mitochondrial respiratory capacity, potentially due to the intramuscular metabolic perturbation elicited by such intense exercise. With the utilization of intrathecal fentanyl to attenuate afferent feedback from group III/IV muscle afferents, permitting increased muscle activation and greater intramuscular metabolic disturbance, this study aimed to better elucidate the role of metabolic perturbation on mitochondrial respiratory function. Eight young, healthy males performed high-intensity cycle exercise in control (CTRL) and fentanyl-treated (FENT) conditions. Liquid chromatography-mass spectrometry and high-resolution respirometry were used to assess metabolites and mitochondrial respiratory function, respectively, pre- and postexercise in muscle biopsies from the vastus lateralis. Compared with CTRL, FENT yielded a significantly greater exercise-induced metabolic perturbation (PCr: -67% vs. -82%, Pi: 353% vs. 534%, pH: -0.22 vs. -0.31, lactate: 820% vs. 1,160%). Somewhat surprisingly, despite this greater metabolic perturbation in FENT compared with CTRL, with the only exception of respiratory control ratio (RCR) (-3% and -36%) for which the impact of FENT was significantly greater, the degree of attenuated mitochondrial respiratory capacity postexercise was not different between CTRL and FENT, respectively, as assessed by maximal respiratory flux through complex I (-15% and -33%), complex II (-36% and -23%), complex I + II (-31% and -20%), and state 3CI+CII control ratio (-24% and -39%). Although a basement effect cannot be ruled out, this failure of an augmented metabolic perturbation to extensively further attenuate mitochondrial function questions the direct role of high-intensity exercise-induced metabolite accumulation in this postexercise response.


Assuntos
Metabolismo Energético , Exercício Físico , Mitocôndrias Musculares/metabolismo , Contração Muscular , Músculo Quadríceps/metabolismo , Adulto , Analgésicos Opioides/administração & dosagem , Ciclismo , Respiração Celular , Fentanila/administração & dosagem , Voluntários Saudáveis , Humanos , Injeções Espinhais , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Músculo Quadríceps/inervação , Distribuição Aleatória , Adulto Jovem
3.
Fish Physiol Biochem ; 42(6): 1699-1707, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27325349

RESUMO

Lipoic acid (LA) is an antioxidant that also favors glucose uptake in mammals. Until now, there are no studies evaluating the potential effect of this molecule on glycemic control in fish. It was evaluated LA effects on glucose uptake in common carp Cyprinus carpio fed with carbohydrate diets from two carbohydrate sources: glucose (GLU) and starch (STA), and supplemented or not with LA, being the diets: +GLU/-LA (GLU); +GLU/+LA (GLU + LA); +STA/-LA (STA); and +STA/+LA (STA + LA). Carp juveniles (6.5 ± 0.1 g) were fed with each diet ad libitum 4 times a day, during 68 days. Muscle glycogen concentration was higher (p < 0.05) in GLU and GLU + LA than in STA and STA + LA groups. On fish fed with starch, muscle cholesterol and triglyceride concentrations were higher (p < 0.05) in fish fed diets supplemented with LA. Muscle protein levels were higher in fish fed with LA, independent of the diet carbohydrate source. Lipid peroxidation was significantly reduced (p < 0.05) in fish muscle on fish fed the STA + LA diets when compared with the STA diet. Our findings indicate that LA modulates lipid, proteins and carbohydrate metabolism together with the well-known antioxidant effect. Also, LA showed to enhance starch utilization taking into account muscle cholesterol and triglyceride levels.


Assuntos
Antioxidantes/farmacologia , Carpas/crescimento & desenvolvimento , Carpas/metabolismo , Carboidratos da Dieta/farmacologia , Ácido Tióctico/farmacologia , Animais , Aquicultura/métodos , Colesterol/metabolismo , Dieta , Glucose/metabolismo , Hemoglobinas Glicadas/análise , Glicogênio/metabolismo , Hematócrito , Peroxidação de Lipídeos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Triglicerídeos/metabolismo
4.
Animals (Basel) ; 12(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35953996

RESUMO

Background: It has been demonstrated that low-protein diets can improve the meat quality of pork. This study aimed to investigate the effects of long-term protein restriction from piglets to finishing pigs for 24 weeks on meat quality and muscle metabolites of Shaziling pigs. Results: Compared to the control group, reducing dietary protein levels by 20% reduced the L* value (p < 0.05), increased the a* value (p < 0.01), and tended to decrease pressing loss (p = 0.06) of longissimus thoracis muscle (LTM). Furthermore, compared to the control group, the −20% group had significantly lower levels of muscular danazol, N,N-dimethyl-Safingol, and cer(d18:0/14:0) (p < 0.05), all of which were positively associated with the L* value and negatively associated with the a* value (p < 0.05). Therefore, danazol, N,N-dimethyl-Safingol, and cer(d18:0/14:0) might be potential biomarkers for meat color. Conclusions: These results indicated that reducing dietary crude protein by 20% for 24 weeks could improve meat quality and alter muscular metabolites of Shaziling pigs, and the improvement in meat quality might be ascribable to decreased danazol, N,N-dimethyl-Safingol and cer(d18:0/14:0).

5.
Acta Physiol (Oxf) ; 234(2): e13771, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34984845

RESUMO

AIM: Hypoxia has been shown to reduce resistance exercise-induced stimulation of protein synthesis and long-term gains in muscle mass. However, the mechanism whereby hypoxia exerts its effect is not clear. Here, we examine the effect of acute hypoxia on the activity of several signalling pathways involved in the regulation of muscle growth following a bout of resistance exercise. METHODS: Eight men performed two sessions of leg resistance exercise in normoxia or hypoxia (12% O2 ) in a randomized crossover fashion. Muscle biopsies were obtained at rest and 0, 90,180 minutes after exercise. Muscle analyses included levels of signalling proteins and metabolites associated with energy turnover. RESULTS: Exercise during normoxia induced a 5-10-fold increase of S6K1Thr389 phosphorylation throughout the recovery period, but hypoxia blunted the increases by ~50%. Phosphorylation of JNKThr183/Tyr185 and the JNK target SMAD2Ser245/250/255 was increased by 30- to 40-fold immediately after the exercise in normoxia, but hypoxia blocked almost 70% of the activation. Throughout recovery, phosphorylation of JNK and SMAD2 remained elevated following the exercise in normoxia, but the effect of hypoxia was lost at 90-180 minutes post-exercise. Hypoxia had no effect on exercise-induced Hippo or autophagy signalling and ubiquitin-proteasome related protein levels. Nor did hypoxia alter the changes induced by exercise in high-energy phosphates, glucose 6-P, lactate or phosphorylation of AMPK or ACC. CONCLUSION: We conclude that acute severe hypoxia inhibits resistance exercise-induced mTORC1- and JNK signalling in human skeletal muscle, effects that do not appear to be mediated by changes in the degree of metabolic stress in the muscle.


Assuntos
Sistema de Sinalização das MAP Quinases , Músculo Esquelético , Exercício Físico/fisiologia , Humanos , Hipóxia/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo
6.
Metabolites ; 10(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041181

RESUMO

To clarify the relationship between beef genetic selection for growth and precocity with muscle metabolism and metabolites, we performed metabolomic analysis using Longissimus lumborum (LL) muscle from Nellore cattle with divergent selection for these traits (high growth, HG; low growth, LG; high precocity, HP; low precocity, LP). Genetic potential for growth affected muscle protein and energetic metabolism. HG animals had a high concentration of arginine, carnosine, and leucine compared to LG animals. HP animals presented a high concentration of glutamine, betaine, creatinine, isoleucine, carnitine, acetyl carnitine, and lower levels of glucose compared to LP animals, affecting protein and fatty acid metabolism. Intensity of selection (high or low) was correlated with changes in protein metabolism, and the type of selection (growth or precocity) affected fat metabolism. In conclusion, both HG and HP appear to be correlated with a high concentration of protein metabolites and changes in protein metabolic pathways, while selection for precocity is more correlated with changes in fat metabolism compared to animals selected for growth.

7.
OMICS ; 24(11): 649-659, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33095683

RESUMO

The success of forensic investigations involving fatalities very often depends on the establishment of the correct timeline of events. Currently used methods for estimating the postmortem interval (PMI) are mostly dependent on the professional and tacit experience of the investigator, and often with poor reliability in the absence of robust biological markers. The aim of this study was to investigate the potential of metabolomic approaches to highlight molecular markers for PMI. Rat and human muscle tissues, collected at various times postmortem, were analyzed using an untargeted metabolomics approach. Levels of certain metabolites (skatole, xanthine, n-acetylneuraminate, 1-methylnicotinamide, choline phosphate, and uracil) as well as most proteinogenic amino acids increased steadily postmortem. Threonine, tyrosine, and lysine show the most predictable evolution over the postmortem period, and may thus have potential for possible PMI markers in the future. This study demonstrates how a biomarker discovery approach can be extended to forensic investigations using untargeted metabolomics.


Assuntos
Biomarcadores , Metabolômica/métodos , Mudanças Depois da Morte , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Ratos , Especificidade da Espécie
8.
Meat Sci ; 97(2): 137-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24576772

RESUMO

The objective of this study was to investigate the relationship of blood glucose levels with blood lactate, serum cortisol levels, postmortem muscle glycogen and lactate content, muscle fiber type composition, and pork quality traits. Compared to pigs with lower blood glucose levels, pigs with higher blood glucose levels showed higher blood lactate and serum cortisol levels at exsanguination, and they had lower residual glycogen and higher lactate content in the muscle at 45min postmortem. In addition, pigs with higher blood glucose levels had higher type IIB and lower type I area composition and finally exhibited lower muscle pH, paler color, and excessive loss of fluid on surface. These results imply that measuring blood glucose levels at exsanguination can be useful to indicate early glycolytic rates during postmortem and thus may be of value in the identification of pork with undesirable quality traits.


Assuntos
Glicemia/metabolismo , Hidrocortisona/sangue , Ácido Láctico/sangue , Carne/análise , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Estresse Fisiológico , Matadouros , Animais , Cor , Glicogênio/sangue , Glicólise , Humanos , Concentração de Íons de Hidrogênio , Masculino , Carne/normas , Músculo Esquelético/citologia , Mudanças Depois da Morte , Sus scrofa , Água
9.
Magn Reson Insights ; 5: 29-36, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23471581

RESUMO

A major goal of this pilot study was to quantify intramyocellular lipids (IMCL), extramyocellular lipids (EMCL), unsaturation index (UI) and metabolites such as creatine (Cr), choline (Ch) and carnosine (Car), in the soleus muscle using two-dimensional (2D) localized correlated spectroscopy (L-COSY). Ten subjects with type 2 diabetes (T2D), controlled by lifestyle management alone, and 9 healthy control subjects, were studied. In T2D patients only, the following measurements were obtained: body mass index (BMI); waist circumference (WC); abdominal visceral and subcutaneous fat quantified using breath-held magnetic resonance imaging (MRI); a fasting blood draw for assessment of glucose, insulin, and estimation of homeostasis model assessment of insulin resistance (HOMA-IR), HbA1c, and high-sensitivity c-reactive protein (hs-CRP). Analysis of the soleus muscle 2D L-COSY spectral data showed significantly elevated IMCL ratios with respect to Cr and decreased IMCL UI in T2D when compared to healthy subjects (P < 0.05). In T2D subjects, Pearson correlation analysis showed a positive correlation of IMCL/Cr with EMCL/Cr (0.679, P < 0.05) and HOMA-IR (0.633, P < 0.05), and a non-significant correlation of visceral and subcutaneous fat with magnetic resonance spectroscopy (MRS) and other metrics. Characterization of muscle IMCL and EMCL ratios, UI, and abdominal fat, may be useful for the noninvasive assessment of the role of altered lipid metabolism in the pathophysiology of T2D, and for assessment of the effects of future therapeutic interventions designed to alter metabolic dysfunction in T2D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA