Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Imaging Biol ; 25(5): 844-856, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37715090

RESUMO

PURPOSE: In vivo immune cell tracking using MRI can be a valuable tool for studying the mechanisms underlying successful cancer therapies. Current cell labeling methods using superparamagnetic iron oxide (SPIO) lack the persistence to track the fate and location of transplanted cells long-term. Magnetospirillum magneticum is a commercially available, iron-producing bacterium that can be taken up by and live harmoniously within mammalian cells as magneto-endosymbionts (MEs). MEs have shown promise as labeling agents for in vivo stem and cancer cell tracking but have yet to be evaluated in immune cells. This pilot study examined ME labeling in myeloid-derived suppressor cells (MDSCs), cytotoxic T lymphocytes (CTLs), and dendritic cells (DCs) and its effects on cell purity, function, and MRI contrast. PROCEDURES: MDSCs, CTLs, and DCs were incubated with MEs at various ME labeling ratios (MLR), and various biological metrics and iron uptake were assessed. For in vivo imaging, MDSCs were labeled overnight with either MEs or SPIO (Molday ION Rhodamine B) and injected into C3 tumor-bearing mice via tail vein injection 24 days post-implant and scanned daily with MRI for 1 week to assess cellular quantification. RESULTS: Following incubations, MDSCs contained > 0.6 pg Fe/cell. CTLs achieved Fe loading of < 0.5 pg/cell, and DCs achieved Fe loading of ~ 1.4 pg/cell. The suppressive functionality of MDSCs at 1000 MLR was not affected by ME labeling but was affected at 2000 MLR. Markers of CTL dysfunction were not markedly affected by ME labeling nor were DC markers. In vivo data demonstrated that the MDSCs labeled with MEs generated sufficient contrast to be detectable using TurboSPI, similar to SPIO-labeled cells. CONCLUSIONS: Cells can be labeled with sufficient numbers of MEs to be detectable with MRI without compromising cell viability. Care must be taken at higher concentrations of MEs, which may affect some cell types' functional activity and/or morphology. Immune cells with minimal phagocytic behavior have much lower iron content per cell after incubation with MEs vs SPIO; however, MEs can successfully be used as a contrast agent for phagocytic immune cells.

2.
Oncoimmunology ; 9(1): 1851539, 2020 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33299663

RESUMO

DPX is a unique T cell activating formulation that generates robust immune responses (both clinically and preclinically) which can be tailored to various cancers via the use of tumor-specific antigens and adjuvants. While DPX-based immunotherapies may act complementary with checkpoint inhibitors, combination therapy is not always easily predictable based on individual therapeutic responses. Optimizing these combinations can be improved by understanding the mechanism of action underlying the individual therapies. Magnetic Resonance Imaging (MRI) allows tracking of cells labeled with superparamagnetic iron oxide (SPIO), which can yield valuable information about the localization of crucial immune cell subsets. In this work, we evaluated the use of a multi-echo, single point MRI pulse sequence, TurboSPI, for tracking and quantifying cytotoxic T lymphocytes (CTLs) and myeloid lineage cells (MLCs). In a subcutaneous cervical cancer model (C3) we compared untreated mice to mice treated with either a single therapy (anti-PD-1 or DPX-R9F) or a combination of both therapies. We were able to detect, using TurboSPI, significant increases in CTL recruitment dynamics in response to combination therapy. We also observed differences in MLC recruitment to therapy-draining (DPX-R9F) lymph nodes in response to treatment with DPX-R9F (alone or in combination with anti-PD-1). We demonstrated that the therapies presented herein induced time-varying changes in cell recruitment. This work establishes that these quantitative molecular MRI techniques can be expanded to study a number of cancer and immunotherapy combinations to improve our understanding of longitudinal immunological changes and mechanisms of action.


Assuntos
Rastreamento de Células , Neoplasias , Animais , Imunoterapia , Linfonodos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA