Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Physiology (Bethesda) ; 38(5): 0, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013947

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is now the most common form of heart failure and a significant public health concern for which limited effective therapies exist. Inflammation triggered by comorbidity burden is a critical element of HFpEF pathophysiology. Here, we discuss evidence for comorbidity-driven systemic and myocardial inflammation and the mechanistic role of inflammation in pathological myocardial remodeling in HFpEF.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/patologia , Volume Sistólico/fisiologia , Miocárdio , Comorbidade , Inflamação/patologia
2.
Eur J Clin Pharmacol ; 80(2): 223-230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991525

RESUMO

PURPOSE: To investigate the effect of azilsartan on myocardial remodeling after acute myocardial infarction (AMI). METHODS: A total of 200 AMI patients under percutaneous coronary intervention (PCI) were selected from the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University from Jan 2021 to Dec 2021. The subjects were randomly divided to take either azilsartan or benazepril. Serum C1q tumor necrosis factor-associated protein 1 (CTRP1) levels were detected in all subjects after admission, and the indices of left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic diameter (LVEDD), and left ventricular ejection fraction (LVEF) were measured by using echocardiography. At the follow-up of 6 months and 1 year after PCI, the differences in CTRP1 and echocardiogram indices between the two groups were compared, and the influencing factors of myocardial remodeling after acute myocardial infarction were analyzed. RESULTS: The levels of LVEDV and CTRP1 in all subjects at 6 months and 1 year after PCI were lower than those before discharge, and the LVEDV in the azilsartan group at 6 months and 1 year after PCI was lower than that in the benazepril group. An improvement in myocardial remodeling was obviously observed within 6 months after PCI, but the effect declined over time. CONCLUSIONS: Azilsartan can improve myocardial remodeling after acute myocardial infarction. CTRP1 may become an effective target for the prevention and treatment of myocardial remodeling after acute myocardial infarction.


Assuntos
Benzimidazóis , Infarto do Miocárdio , Oxidiazóis , Intervenção Coronária Percutânea , Humanos , Volume Sistólico , Função Ventricular Esquerda , Infarto do Miocárdio/tratamento farmacológico
3.
Curr Cardiol Rep ; 26(5): 413-421, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38517604

RESUMO

PURPOSE OF REVIEW: Cardiac magnetic resonance (CMR) is emerging as a valuable imaging modality for the assessment of aortic regurgitation (AR). In this review, we discuss the assessment of AR severity, left ventricular (LV) remodeling, and tissue characterization by CMR while highlighting the latest studies and addressing future research needs. RECENT FINDINGS: Recent studies have further established CMR-based thresholds of AR severity and LV remodeling that are associated with adverse clinical outcomes, and lower than current guideline criteria. In addition, tissue profiling with late gadolinium enhancement (LGE) and extracellular volume (ECV) quantification can reliably assess adverse myocardial tissue remodeling which is also associated with adverse outcomes. The strengths and reproducibility of CMR in evaluating ventricular volumes, tissue characteristics, and regurgitation severity position it as an excellent modality in evaluating and following AR patients. Advanced CMR techniques for the detection of tissue remodeling have shown significant potential and merit further investigation.


Assuntos
Insuficiência da Valva Aórtica , Fibrose , Índice de Gravidade de Doença , Remodelação Ventricular , Humanos , Insuficiência da Valva Aórtica/diagnóstico por imagem , Insuficiência da Valva Aórtica/fisiopatologia , Fibrose/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Meios de Contraste
4.
Medicina (Kaunas) ; 60(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256409

RESUMO

Background and Objectives: Biochemical and molecular regulation of both adaptive and pathological responses of heart tissue to ischemic injury is widely investigated. However, it is still not fully understood. Several biomarkers are tested as predictors of left ventricle (LV) remodeling after myocardial infarction (MI). The aim of this study was to assess the relationship between selected microRNAs (miRNAs) and LV function and morphology in patients after MI. Materials and Methods: Selected miRNAs related to heart failure were assessed in the acute phase of MI: miR-150-3p, miR-21-5p, miR-19b-3p, miR-155-5p, miR-22-5p. Echocardiography with 3D imaging was performed at baseline and after 6 months. Remodeling was defined as >20% increase in LV end-diastolic volume, whereas reverse remodeling was defined as >10% reduction in LV end-systolic volume. Results: Eighty patients entered the registry. Remodeling occurred in 26% and reverse remodeling was reported in 51% of patients. In the presented study, none of the analyzed miRNAs were found to be a significant LV remodeling predictor. The observed correlations between miRNAs and other circulating biomarkers of myocardial remodeling were relatively weak. Conclusions: Our analysis does not demonstrate an association between the analyzed miRNAs and LV remodeling in patients with MI.


Assuntos
MicroRNA Circulante , MicroRNAs , Infarto do Miocárdio , Humanos , Remodelação Ventricular , Infarto do Miocárdio/genética , Síndrome , Hospitais , Biomarcadores
5.
Medicina (Kaunas) ; 60(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674301

RESUMO

Coronavirus disease 2019 (COVID-19) has affected medical practice. More than 7,000,000 patients died worldwide after being infected with COVID-19; however, no specific laboratory markers have yet been established to predict death related to this disease. In contrast, electrocardiographic changes due to COVID-19 include QT prolongation and ST-T changes; however, there have not been studies on the ambulatory electrocardiographic markers of COVID-19. We encountered three patients diagnosed as having COVID-19 who did not have a prior history of significant structural heart diseases. All patients had abnormalities in ambulatory echocardiogram parameters detected by high-resolution 24 h electrocardiogram monitoring: positive late potentials (LPs) and T-wave alternans (TWA), abnormal heart rate variability (HRV), and heart rate turbulence (HRT). Case 1 involved a 78-year-old woman with a history of chronic kidney disease, Case 2 involved a 76-year-old man with hypertension and diabetes, and Case 3 involved a 67-year-old man with renal cancer, lung cancer, and diabetes. None of them had a prior history of significant structural heart disease. Although no significant consistent increases in clinical markers were observed, all three patients died, mainly because of respiratory failure with mild heart failure. The LP, TWA, HRV, and HRT were positive in all three cases with no significant structural cardiac disease at the initial phase of admission. The further accumulation of data regarding ambulatory electrocardiographic markers in patients with COVID-19 is needed. Depending on the accumulation of data, the LP, TWA, HRV, and HRT could be identified as potential risk factors for COVID-19 pneumonia in the early phase of admission.


Assuntos
COVID-19 , Eletrocardiografia Ambulatorial , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/fisiopatologia , COVID-19/diagnóstico , Idoso , Feminino , Masculino
6.
J Mol Cell Cardiol ; 183: 27-41, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37603971

RESUMO

Peroxisome proliferator-activated receptor (PPAR) δ is a major transcriptional regulator of cardiac energy metabolism with pleiotropic properties, including anti-inflammatory, anti-oxidative and cardioprotective action. In this study, we sought to investigate whether pharmacological activation of PPARδ via intraperitoneal administration of the selective ligand GW0742 could ameliorate heart failure and mitochondrial dysfunction that have been previously reported in a characterized genetic model of heart failure, the desmin null mice (Des-/-). Our studies demonstrate that treatment of Des-/- mice with the PPARδ agonist attenuated cardiac inflammation, fibrosis and cardiac remodeling. In addition, PPARδ activation alleviated oxidative stress in the failing myocardium as evidenced by decreased ROS levels. Importantly, PPARδ activation stimulated mitochondrial biogenesis, prevented mitochondrial and sarcoplasmic reticulum vacuolar degeneration and improved the mitochondrial intracellular distribution. Finally, PPARδ activation alleviated the mitochondrial respiratory dysfunction, prevented energy depletion and alleviated excessive autophagy and mitophagy in Des-/- hearts. Nevertheless, improvement of all these parameters did not suffice to overcome the significant structural deficiencies that desmin deletion incurs in cardiomyocytes and cardiac function did not improve significantly. In conclusion, pharmacological PPARδ activation in Des-/- hearts exerts protective effects during myocardial degeneration and heart failure by preserving the function and quality of the mitochondrial network. These findings implicate PPARδ agonists as a supplemental constituent of heart failure medications.

7.
Rev Cardiovasc Med ; 24(7): 212, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39077021

RESUMO

Herbal-based medications have been used as therapeutic agents for thousands of years, particularly in Asian cultures. It is now well established that these herbal medications contain potent bioactive phytochemicals which exert a plethora of beneficial effects such as those seen on the cardiovascular system. Among the most widely studied of these herbal agents is ginseng, a member of the genus Panax, which has been shown to produce beneficial effects in terms of reducing cardiac pathology, at least in experimental studies. The beneficial effects of ginseng observed in such studies are likely attributable to their constituent ginsenosides, which are steroid-like saponins of which there are at least 100 and which vary according to ginseng species. Many ginseng species such as Panax ginseng (also known as Asian ginseng) and P quinquefolius (North American ginseng) as well as specific ginsenosides have been shown to attenuate hypertrophy as well as other indices of myocardial remodeling in a wide variety of experimental models. Ginkgo biloba on the other hand has been much less studied although the leaf extract of the ancient ginkgo tree has similarly consistently been shown to produce anti-remodeling effects. Ginkgo's primary bioactive constituents are thought to be terpene trilactones called ginkgolides, of which there are currently seven known types. Ginkgo and ginkgolides have also been shown to produce anti-remodeling effects as have been shown for ginseng in a variety of experimental models, in some cases via similar mechanisms. Although a common single mechanism for the salutary effects of these compounds is unlikely, there are a number of examples of shared effects including antioxidant and antiapoptotic effects as well as inhibition of pro-hypertrophic intracellular signaling such as that involving the calcineurin pathway which results in the upregulation of pro-hypertrophic genes. Robust clinical evidence represented by large scale phase 3 trials is lacking although there is limited supporting evidence from small trials at least with respect to ginseng. Taken together, both ginseng and ginkgo as well as their bioactive components offer potential as adjuvant therapy for the treatment of myocardial remodeling and heart failure.

8.
Rev Cardiovasc Med ; 24(2): 51, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39077394

RESUMO

Background: Atrial fibrillation (AF) is observed in arterial hypertension, heart failure, ischemic heart disease, and pulmonary pathology, particularly, chronic obstructive pulmonary disease (COPD). COPD in turn is a risk factor for developing these cardiovascular diseases and various arrhythmias. In the coronavirus disease (COVID) situation, such comorbid patients are the most vulnerable group with a high risk of adverse outcomes. The relevance of the relationship between COPD and coronavirus infection is explained by the similarity of clinical and pathophysiological manifestations, creating more difficulties in diagnosing and determining rational treatment. The aim of the current study is to explore the role COPD plays in the onset and progression of AF, especially in the situation of COVID-19. Methods: We searched PubMed databases and included studies with information on comorbid patients suffering from COPD and AF, as well as similar patients in the context of COVID-19. Results: A modern view on the problem of comorbidity of COPD and AF is presented. In the presence of cardiorespiratory comorbidity, symptoms of mutual worsening of the clinical course are observed, due to the commonality of some links of pathogenesis, including hypoxia, hemodynamic disturbances, activation of the sympathoadrenal system, systemic inflammation, and development of fibrosis, leading to myocardial remodeling, a decrease in the effectiveness of the therapy, and a worsening prognosis, especially in the context of COVID-19. Conclusions: The results of a study of the features of the pathogenesis and course of AF in COPD are presented, as well as the formation and progression of this comorbid pathology in the context of the COVID-19 pandemic.

9.
Clin Sci (Lond) ; 137(21): 1665-1681, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37903290

RESUMO

BACKGROUND: The inflammatory response and subsequent ventricular remodeling are key factors contributing to ventricular arrhythmias (VAs) after myocardial infarction (MI). Ubiquitin-specific protease 38 (USP38) is a member of the USP family, but the impact of USP38 in arrhythmia substrate generation after MI remains unclear. This study aimed to determine the role of USP38 in post-MI VAs and its underlying mechanisms. METHODS AND RESULTS: Surgical left descending coronary artery ligation was used to construct MI models. Morphological, biochemical, histological, and electrophysiological studies and molecular analyses were performed after MI on days 3 and 28. We found that the USP38 expression was remarkably increased after MI. Cardiac-conditional USP38 knockout (USP38-CKO) reduces the expression of the inflammatory marker CD68 as well as the inflammatory factors TNF-α and IL-1ß after MI, thereby alleviating advanced cardiac fibrosis, electrical remodeling, ion channel remodeling, and susceptibility to VAs. In contrast, cardiac-specific USP38 overexpression (USP38-TG) showed a significant opposite effect, exacerbating the early inflammatory response and cardiac remodeling after MI. Mechanistically, USP38 knockout inhibited activation of the TAK1/NF-κB signaling pathway after MI, whereas USP38 overexpression enhanced activation of the TAK1/NF-κB signaling pathway after MI. CONCLUSIONS: Our study confirms that USP38-CKO attenuates the inflammatory response, improves ventricular remodeling after myocardial infarction, and reduces susceptibility to malignant VA by inhibiting the activation of the TAK1/NF-κB pathway, with USP38-TG playing an opposing role. These results suggest that USP38 may be an important target for the treatment of cardiac remodeling and arrhythmias after MI.


Assuntos
Infarto do Miocárdio , NF-kappa B , Humanos , Animais , NF-kappa B/metabolismo , Remodelação Ventricular , Infarto do Miocárdio/metabolismo , Coração , Transdução de Sinais , Modelos Animais de Doenças , Proteases Específicas de Ubiquitina
10.
Clin Sci (Lond) ; 137(19): 1513-1531, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37728308

RESUMO

Myeloid cells, including macrophages, play important roles as first responders to cardiac injury and stress. Epidermal growth factor receptor (EGFR) has been identified as a mediator of macrophage responsiveness to select diseases, though its impact on cardiac function or remodeling following acute ischemic injury is unknown. We aimed to define the role of myeloid cell-specific EGFR in the regulation of cardiac function and remodeling following acute myocardial infarction (MI)-induced injury. Floxed EGFR mice were bred with homozygous LysM-Cre (LMC) transgenic mice to yield myeloid-specific EGFR knockout (mKO) mice. Via echocardiography, immunohistochemistry, RNA sequencing and flow cytometry, the impact of myeloid cell-specific EGFR deletion on cardiac structure and function was assessed at baseline and following injury. Compared with LMC controls, myeloid cell-specific EGFR deletion led to an increase in cardiomyocyte hypertrophy at baseline. Bulk RNASeq analysis of isolated cardiac Cd11b+ myeloid cells revealed substantial changes in mKO cell transcripts at baseline, particularly in relation to predicted decreases in neovascularization. In response to myocardial infarction, mKO mice experienced a hastened decline in cardiac function with isolated cardiac Cd11b+ myeloid cells expressing decreased levels of the pro-reparative mediators Vegfa and Il10, which coincided with enhanced cardiac hypertrophy and decreased capillary density. Overall, loss of EGFR qualitatively alters cardiac resident macrophages that promotes a low level of basal stress and a more rapid decrease in cardiac function along with worsened repair following acute ischemic injury.


Assuntos
Receptores ErbB , Infarto do Miocárdio , Camundongos , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Mieloides/metabolismo , Macrófagos/metabolismo , Coração , Infarto do Miocárdio/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Remodelação Ventricular/genética
11.
Cardiovasc Drugs Ther ; 37(6): 1065-1076, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35488974

RESUMO

OBJECTIVE: MicroRNA-30a-5p (miR-30a-5p) has been identified as a marker of heart failure; however, its functional mechanisms in chronic heart failure (CHF) remain unknown. We aim to investigate the role of miR-30a-5p targeting sirtuin-1 (SIRT1) in myocardial remodeling in CHF via the nuclear factor-κB/NOD-like receptor 3 (NF-κB/NLRP3) signaling pathway. METHODS: CHF rat models were established using aortic coarctation. The expression of miR-30a-5p, SIRT1, and the NF-κB/NLRP3 signaling pathway-related factors in CHF rats was determined. The CHF rats were then respectively treated with altered miR-30a-5p or SIRT1 to explore their roles in cardiac function, myocardial function, inflammatory response, pathological changes, and cardiomyocyte apoptosis. The binding relation between miR-30a-5p and SIRT1 was confirmed. RESULTS: MiR-30a-5p was upregulated whereas SIRT1 was downregulated in myocardial tissues of CHF rats. MiR-30a-5p inhibition or SIRT1 overexpression improved cardiac and myocardial function, and suppressed the inflammatory response, alleviated pathological changes and inhibited cardiomyocyte apoptosis in CHF rats. MiR-30a-5p targeted SIRT1 to regulate the NF-κB/NLRP3 signaling pathway. In CHF rats, downregulated miR-30a-5p and silenced SIRT1 could reverse the beneficial effects of downregulated miR-30a-5p. CONCLUSION: Inhibited miR-30a-5p inhibits CHF progression via the SIRT1-mediated NF-κB/NLRP3 signaling pathway.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Ratos , Animais , NF-kappa B/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Insuficiência Cardíaca/genética , Apoptose
12.
BMC Cardiovasc Disord ; 23(1): 39, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681789

RESUMO

BACKGROUND: We examined the effect of switching from angiotensin receptor-neprilysin inhibitor (ARNI) to angiotensin-receptor blocker (ARB) on plasma levels of natriuretic peptides and myocardial remodeling. METHODS: This is a prospective study that included 11 patients with heart failure (HF) treated with ARNI. The patients were divided into two groups: 5 patients who continued treatment with sacubitril/valsartan 194/206 mg/day (ARNI-continue group) and 6 patients who were switched to valsartan 160 mg/day (ARB-switch group). The primary endpoint was percent change (%Change) in plasma A-, B-, and N-terminal pro-B-type natriuretic peptide (ANP, BNP, and NT-proBNP) levels from the baseline to week 24. The secondary endpoint was the change in echocardiographic parameters related to myocardial remodeling from the baseline to week 24. RESULTS: ANP levels in the ARB-switch group significantly decreased (from 1155.7 ± 592.6 pg/mL to 231.6 ± 233.8 pg/mL, p = 0.035), whereas those in the ARNI-continue group were not significant (p = 0.180). The %Change of decrease in ANP levels was significantly greater in the ARB-switch group than the ARNI-continue group (- 76.9% vs. -9.1%, p = 0.009). BNP levels were not significantly different between the baseline and week 24 in both groups. NT-proBNP levels in the ARB-switch group increased from 1185.3 ± 835.6 pg/mL to 1515.2 ± 1213.5 pg/mL, although the changes were not statistically significant (p = 0.345). The %Change of increase in NT-proBNP levels was significantly greater in the ARB-switch group than the ARNI-continue group (57.9% vs. 17.3%, p = 0.016). In the ARB-switch group, there was a significant increase in left ventricular (LV) end-systolic volume (from 41.3 ± 24.1 mL/m2 to 71.4 ± 8.8 mL/m2, p = 0.043) and LV peak-systolic wall stress (from 187.0 ± 42.7 × 103 dynes/cm2 to 279.7 ± 34.1 × 103 dynes/cm2, p = 0.012) from the baseline to week 24 and a trend toward a decrease in LV ejection fraction (p = 0.080). In the ARNI-continue group, no differences in echocardiographic parameters were observed from the baseline to week 24. CONCLUSION: Switching from ARNI to ARB may worsen HF due to returning to myocardial remodeling induced by a sustained decline in ANP levels.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Antagonistas de Receptores de Angiotensina/efeitos adversos , Volume Sistólico , Estudos Prospectivos , Tetrazóis/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina , Resultado do Tratamento , Valsartana , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/tratamento farmacológico , Disfunção Ventricular Esquerda/induzido quimicamente , Anti-Hipertensivos/farmacologia
13.
Ultrastruct Pathol ; : 1-8, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36789548

RESUMO

Cardiovascular diseases, the leading global cause of death, are usually associated with cardiac hypertrophy (CH). CH is an adaptive response of the heart against cardiac overloading, but continuous CH accelerates cardiac remodeling and results in heart failure. Available CH therapies delay the progress of heart failure, but they often fail to control symptoms or restore quality of life. Although flaxseed lignans have been shown to have significant anti-oxidant, anti-hypertensive, anti-inflammatory, and anti-fibrotic effects in various cardiovascular diseases, little is known about their effect on CH. Thus, this study evaluated the therapeutic effect of flaxseed lignans on CH, which was induced by subcutaneous injections with isoproterenol (5 mg/kg b.w) for 14 consecutive days. Flaxseed lignans (200 mg/kg) was given orally for 4 weeks. Cardiac pathological remodeling was evaluated by echocardiography, after which morphometric, biochemical, histological, and ultrastructural analyses were performed. Flaxseed lignans significantly ameliorated CH structural and functional alterations as shown by echocardiography. Lignans also reduced the relative heart weight, significantly decreased the elevated CK-MB and the lipid peroxidation marker malondialdehyde, augmented the myocardial total antioxidant capacity, and ameliorated the histopathological and ultrastructural changes in cardiac tissues and prevented interstitial collagen deposition. The results demonstrate promising anti-hypertrophic effect of flaxseed lignans against isoproterenol-induced cardiac hypertrophy, via regulating myocardial remodeling and oxidative stress. Therefore, lignans could be used as potential pharmacological intervention in the management of CH.

14.
Int Heart J ; 64(6): 1148-1156, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37967985

RESUMO

Astragalus (Astragalus mongholicus) alleviates myocardial remodeling caused by hypertension. However, the detailed molecular mechanism is unclear. This study aims to investigate the effect of Astragalus on ventricular remodeling in ovariectomized spontaneous hypertensive rats (OVX-SHR).Female SHR/NCrl rats were subjected to bilateral ovariectomy to establish the OVX-SHR model and treated with Astragalus extract by gavage. The hemodynamics and cardiac function parameters were measured. HE and Masson staining were used to detect the pathological structure of myocardial remodeling and observe the hyperplasia of myocardial collagen fibers. The immunohistochemistry tested the level of α-SMA. The expression levels of inflammatory cytokines, IκB, p65, Cleaved-Caspase3, RhoA, and ROCK1/2 were detected using Western blot. The method of qRT-PCR measured the expression of matrix metalloproteinase (MMP-2 and MMP-9).Hemodynamic and cardiac function parameters were significantly improved after a high dose of Astragalus extract and Valsartan treatment. The myocardial integrity of the model group was significantly reduced, arranged loosely, and disordered, while the expression of α-SMA was increased. However, Astragalus extract and Valsartan treatments significantly reduced the pathological damage and α-SMA. The levels of TNF-α, IL-1ß, IL-6, TGF-ß, MMP-2, and MMP-9 in the model group were increased but decreased after Astragalus extract treatment. Adding an ESR1 inhibitor attenuated the improvement effect of Astragalus extract on myocardial remodeling and restored the expression of RhoA and ROCK1/2.Astragalus extract attenuates the cardiac damage in OVX-SHR by downregulating the RhoA/ROCK pathway through ESR1.


Assuntos
Astragalus propinquus , Metaloproteinase 2 da Matriz , Ratos , Feminino , Animais , Ratos Endogâmicos SHR , Metaloproteinase 9 da Matriz , Regulação para Baixo , Remodelação Ventricular , Transdução de Sinais , Valsartana/farmacologia
15.
Vopr Pitan ; 92(6): 73-82, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38198421

RESUMO

The relationship between dietary sodium, hypertension, and cardiovascular injury is far from clear. One of the important links in this process can be microRNAs that have the ability to modulate gene expression at the post-transcriptional level. However, their role in this process has not been fully studied. In addition, further studies require the identification of structural changes in the myocardium in conditions of long-term consumption of a high-salt diet. The aim of the study was to evaluate the expression levels of nuclear transcription factor κB (NFκB), microRNA (miRNA)-21 and structural changes in the myocardium during long-term consumption of a diet containing 8% (high) sodium chloride in Wistar rats. Material and methods. 20 Wistar rats with initial body weight 280.5±42.7 g were divided into two equal groups. The high salt (HS) group received 8% NaCl in the diet, the control (NS) group received the standard diet (0.34% NaCl). After 4 months, systolic blood pressure was measured in rats using the cuff method on the tail; the myocardial mass index was assessed after dissection; histological and electron microscopic examination of the myocardium was performed, and the expression levels of miRNA-21 and NFκB in the myocardium were determined. Results and discussion. Consumption of a diet high in sodium chloride for 4 months did not significantly affect the level of systolic blood pressure in normotensive Wistar rats, but led to an increase in myocardial mass index by 25.0% (p<0.05). In the HS group, hypertrophy of cardiomyocytes and an increase in the wall thickness of arterial vessels were revealed. The area of perivascular fibrosis in rats of the HS-group was almost 1.8 fold higher than in the NS-group. In animals of HS-group, the relative levels of expression of NFκB (more than 2 times) and miRNA-21 (almost 6 times) increased compared with the control. It can be assumed that the negative impact on the cardiovascular system of high-salt diets is partially realized through NFκB-associated signaling pathways and miRNA-21 activation. Conclusion. In Wistar rats, long-term use of a high-salt diet results in myocardial remodeling that is not associated with changes in blood pressure. At the same time, the adverse effects of high salt intake on the myocardium are mediated, in particular, by postgenomic mechanisms, namely an increase in the expression levels of NFκB and microRNA-21.


Assuntos
MicroRNAs , Cloreto de Sódio , Ratos , Animais , Cloreto de Sódio na Dieta/efeitos adversos , Ratos Wistar , Dieta , Miocárdio , MicroRNAs/genética
16.
Biochem Biophys Res Commun ; 615: 136-142, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35617800

RESUMO

Hyperthyroidism can potentiate arrhythmias and cardiac hypertrophy, whereas Ca2+/calmodulin-dependent kinase II (CaMKII) promotes maladaptive myocardial remodeling. However, it remains unclear whether CaMKII contributes to the progression of hyperthyroid heart disease (HHD). This study demonstrated that CaMKII inhibition can relieve adverse myocardial remodeling and reduce sinus tachycardia, isoproterenol-induced atrial fibrillation, and ventricular arrhythmias in hyperthyroid mice with preserved heart function. Hyperthyroid cardiac hypertrophy was promoted by CaMKII upregulation-induced HDAC4/MEF2a activation. Briefly, CaMKII inhibition benefits HHD management greatly in mice by preventing arrhythmias and maladaptive remodeling.


Assuntos
Fibrilação Atrial , Hipertireoidismo , Animais , Fibrilação Atrial/prevenção & controle , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiomegalia/prevenção & controle , Hipertireoidismo/complicações , Camundongos , Miocárdio , Miócitos Cardíacos
17.
J Cardiovasc Magn Reson ; 24(1): 45, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35897100

RESUMO

BACKGROUND: Since cardiovascular magnetic resonance (CMR) imaging allows comprehensive quantification of both myocardial function and structure we aimed to assess myocardial remodeling processes in patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). METHODS: CMR imaging was performed in 40 patients with severe AS before and 1 year after TAVR. Image analyses comprised assessments of myocardial volumes, CMR-feature-tracking based atrial and ventricular strain, myocardial T1 mapping, extracellular volume fraction-based calculation of left ventricular (LV) cellular and matrix volumes, as well as ischemic and non-ischemic late gadolinium enhancement analyses. Moreover, biomarkers including NT-proBNP as well as functional and clinical status were documented. RESULTS: Myocardial function improved 1 year after TAVR: LV ejection fraction (57.9 ± 16.9% to 65.4 ± 14.5%, p = 0.002); LV global longitudinal (- 21.4 ± 8.0% to -25.0 ± 6.4%, p < 0.001) and circumferential strain (- 36.9 ± 14.3% to - 42.6 ± 11.8%, p = 0.001); left atrial reservoir (13.3 ± 6.3% to 17.8 ± 6.7%, p = 0.001), conduit (5.5 ± 3.2% to 8.4 ± 4.6%, p = 0.001) and boosterpump strain (8.2 ± 4.6% to 9.9 ± 4.2%, p = 0.027). This was paralleled by regression of total myocardial volume (90.3 ± 21.0 ml/m2 to 73.5 ± 17.0 ml/m2, p < 0.001) including cellular (55.2 ± 13.2 ml/m2 to 45.3 ± 11.1 ml/m2, p < 0.001) and matrix volumes (20.7 ± 6.1 ml/m2 to 18.8 ± 5.3 ml/m2, p = 0.036). These changes were paralleled by recovery from heart failure (decrease of NYHA class: p < 0.001; declining NT-proBNP levels: 2456 ± 3002 ng/L to 988 ± 1222 ng/L, p = 0.001). CONCLUSION: CMR imaging enables comprehensive detection of myocardial remodeling in patients undergoing TAVR. Regression of LV matrix volume as a surrogate for reversible diffuse myocardial fibrosis is accompanied by increase of myocardial function and recovery from heart failure. Further data are required to define the value of these parameters as therapeutic targets for optimized management of TAVR patients. Trial registration DRKS, DRKS00024479. Registered 10 December 2021-Retrospectively registered, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00024479.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Substituição da Valva Aórtica Transcateter , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/cirurgia , Meios de Contraste , Gadolínio , Humanos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Estudos Prospectivos , Volume Sistólico , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento , Função Ventricular Esquerda , Remodelação Ventricular
18.
MAGMA ; 35(6): 911-921, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35585430

RESUMO

OBJECTIVE: We propose a deep learning-based fully automatic right ventricle (RV) segmentation technique that targets radially reconstructed long-axis (RLA) images of the center of the RV region in routine short axis (SA) cardiovascular magnetic resonance (CMR) images. Accordingly, the purpose of this study is to compare the accuracy of deep learning-based fully automatic segmentation of RLA images with the accuracy of conventional deep learning-based segmentation in SA orientation in terms of the measurements of RV strain parameters. MATERIALS AND METHODS: We compared the accuracies of the above-mentioned methods in RV segmentations and in measuring RV strain parameters by Dice similarity coefficients (DSCs) and correlation coefficients. RESULTS: DSC of RV segmentation of the RLA method exhibited a higher value than those of the conventional SA methods (0.84 vs. 0.61). Correlation coefficient with respect to manual RV strain measurements in the fully automatic RLA were superior to those in SA measurements (0.5-0.7 vs. 0.1-0.2). DISCUSSION: Our proposed RLA realizes accurate fully automatic extraction of the entire RV region from an available CMR cine image without any additional imaging. Our findings overcome the complexity of image analysis in CMR without the limitations of the RV visualization in echocardiography.


Assuntos
Aprendizado Profundo , Ventrículos do Coração , Ventrículos do Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
19.
Scand J Med Sci Sports ; 32(8): 1170-1181, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35460300

RESUMO

INTRODUCTION: Abuse of anabolic-androgenic steroids (AAS) has been linked to a variety of different cardiovascular (CV) side effects, but still the clinical effects of AAS abuse on CV risk are not clear. The aim of this study was to assess the CV phenotype of a large cohort of men with long-term AAS use compared with strength-trained athletes without AAS use. METHODS: Fifty one strength-trained men with ≥3 years of AAS use was compared with twenty one strength-trained competing athletes. We verified substance abuse and non-abuse by blood and urine analyses. The participants underwent comprehensive CV evaluation including laboratory analyses, 12-lead ECG with measurement of QT dispersion, exercise ECG, 24 h ECG with analyses of heart rate variability, signal averaged ECG, basic transthoracic echocardiography, and coronary computed tomography angiography (CCTA). RESULTS: Hemoglobin levels and hematocrit were higher among the AAS users compared with non-users (16.8 vs. 15.0 g/dl, and 0.50% vs. 0.44%, respectively, both p < 0.01) and HDL cholesterol significantly lower (0.69 vs. 1.25 mmol/L, p < 0.01). Maximal exercise capacity was 270 and 280 W in the AAS and the non-user group, respectively (p = 0.04). Echocardiography showed thicker intraventricular septum and left ventricular (LV) posterior wall among AAS users (p < 0.01 for both), while LV ejection fraction was lower (50 vs. 54%, p = 0.02). Seven AAS users (17%) had evidence of coronary artery disease on CCTA. There were no differences in ECG measures between the groups. CONCLUSIONS: A divergent CV phenotype dominated by increased CV risk, accelerated coronary artery disease, and concentric myocardial hypertrophy was revealed among the AAS users.


Assuntos
Anabolizantes , Doença da Artéria Coronariana , Transtornos Relacionados ao Uso de Substâncias , Anabolizantes/efeitos adversos , Atletas , Humanos , Fenótipo , Esteroides/efeitos adversos , Congêneres da Testosterona/efeitos adversos
20.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499336

RESUMO

Heart failure is defined as a clinical syndrome consisting of key symptoms and is due to a structural and/or functional alteration of the heart that results in increased intracardiac pressures and/or inadequate cardiac output at rest and/or during exercise. One of the key mechanisms determining myocardial dysfunction in heart failure is oxidative stress. MicroRNAs (miRNAs, miRs) are short, endogenous, conserved, single-stranded non-coding RNAs of around 21-25 nucleotides in length that act as regulators of multiple processes. A systematic review following the PRISMA guidelines was performed on the evidence on the interplay between microRNA and oxidative stress in heart failure. A search of Pubmed, Embase, Scopus, and Scopus direct databases using the following search terms: 'heart failure' AND 'oxidative stress' AND 'microRNA' or 'heart failure' AND 'oxidative stress' AND 'miRNA' was conducted and resulted in 464 articles. Out of them, 15 full text articles were eligible for inclusion in the qualitative analysis. Multiple microRNAs are involved in the processes associated with oxidative stress leading to heart failure development including mitochondrial integrity and function, antioxidant defense, iron overload, ferroptosis, and survival pathways.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Insuficiência Cardíaca/metabolismo , Estresse Oxidativo/genética , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA