RESUMO
The nucleocapsid (N) protein of coronaviruses serves two major functions: compaction of the RNA genome in the virion and regulation of viral gene transcription. It is not clear how the N protein mediates such distinct functions. The N protein contains two RNA-binding domains surrounded by regions of intrinsic disorder. Phosphorylation of the central disordered region promotes the protein's transcriptional function, but the underlying mechanism is not known. Here, we show that the N protein of SARS-CoV-2, together with viral RNA, forms biomolecular condensates. Unmodified N protein forms partially ordered gel-like condensates and discrete 15-nm particles based on multivalent RNA-protein and protein-protein interactions. Phosphorylation reduces these interactions, generating a more liquid-like droplet. We propose that distinct oligomeric states support the two functions of the N protein: unmodified protein forms a structured oligomer that is suited for nucleocapsid assembly, and phosphorylated protein forms a liquid-like compartment for viral genome processing.
Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/química , Multimerização Proteica , RNA Viral/química , SARS-CoV-2/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Domínios Proteicos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismoRESUMO
SARS-CoV-2, the causative agent of COVID-19 encodes at least 16 nonstructural proteins of variably understood function. Nsp3, the largest nonstructural protein contains several domains, including a SARS-unique domain (SUD), which occurs only in Sarbecovirus. The SUD has a role in preferentially enhancing viral translation. During isolation of mouse-adapted SARS-CoV-2, we isolated an attenuated virus that contained a single mutation in a linker region of nsp3 (nsp3-S676T). The S676T mutation decreased virus replication in cultured cells and primary human cells and in mice. Nsp3-S676T alleviated the SUD translational enhancing ability by decreasing the interaction between two translation factors, Paip1 and PABP1. We also identified a compensatory mutation in the nucleocapsid (N) protein (N-S194L) that restored the virulent phenotype, without directly binding to SUD. Together, these results reveal an aspect of nsp3-N interactions, which impact both SARS-CoV-2 replication and, consequently, pathogenesis.
Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Animais , Camundongos , SARS-CoV-2 , Virulência , MutaçãoRESUMO
Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of the coronavirus family and caused severe economic losses to the global swine industry. Previous studies have established that p53 is a host restriction factor for PEDV infection, and p53 degradation occurs in PEDV-infected cells. However, the underlying molecular mechanisms through which PEDV viral proteins regulate p53 degradation remain unclear. In this study, we found that PEDV infection or expression of the nucleocapsid protein downregulates p53 through a post-translational mechanism: increasing the ubiquitination of p53 and preventing its nuclear translocation. We also show that the PEDV N protein functions by recruiting the E3 ubiquitin ligase COP1 and suppressing COP1 self-ubiquitination and protein degradation, thereby augmenting COP1-mediated degradation of p53. Additionally, COP1 knockdown compromises N-mediated p53 degradation. Functional mapping using truncation analysis showed that the N-terminal domains of N protein were responsible for interacting with COP1 and critical for COP1 stability and p53 degradation. The results presented here suggest the COP1-dependent mechanism for PEDV N protein to abolish p53 activity. This study significantly increases our understanding of PEDV in antagonizing the host antiviral factor p53 and will help initiate novel antiviral strategies against PEDV.
Assuntos
Proteínas do Nucleocapsídeo , Vírus da Diarreia Epidêmica Suína , Proteólise , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Vírus da Diarreia Epidêmica Suína/metabolismo , Animais , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Chlorocebus aethiops , Células HEK293 , Suínos , Células VeroRESUMO
Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.
Assuntos
Infecções por Coronavirus , Interferons , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Autofagia , Linhagem Celular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Interferons/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Replicação ViralRESUMO
Interferon (IFN)-stimulated gene 15 (ISG15), a ubiquitin-like protein, is covalently conjugated to host immune proteins such as MDA5 and IRF3 in a process called ISGylation, thereby promoting type I IFN induction to limit the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, whether SARS-CoV-2 proteins can be directly targeted for ISGylation remains elusive. In this study, we identified the nucleocapsid (N) protein of SARS-CoV-2 as a major substrate of ISGylation catalyzed by the host E3 ligase HERC5; however, N ISGylation is readily removed through deISGylation by the papain-like protease (PLpro) activity of NSP3. Mass spectrometry analysis identified that the N protein undergoes ISGylation at four lysine residues (K266, K355, K387, and K388), and mutational analysis of these sites in the context of a SARS-CoV-2 replicon (N-4KR) abolished N ISGylation and alleviated ISGylation-mediated inhibition of viral RNA synthesis. Furthermore, our results indicated that HERC5 targets preferentially phosphorylated N protein for ISGylation to regulate its oligomeric assembly. These findings reveal a novel mechanism by which the host ISGylation machinery directly targets SARS-CoV-2 proteins to restrict viral replication and illuminate how an intricate interplay of host (HERC5) and viral (PLpro) enzymes coordinates viral protein ISGylation and thereby regulates virus replication.IMPORTANCEThe role of protein ISGylation in regulating host cellular processes has been studied extensively; however, how ISG15 conjugation influences the activity of viral proteins, particularly coronaviral proteins, is largely unknown. Our study uncovered that the nucleocapsid (N) protein of SARS-CoV-2 is ISGylated by the HERC5 ISGylation machinery and that this modification impedes the functional assembly of N into oligomers ultimately inhibiting viral RNA synthesis. This antiviral restriction mechanism is antagonized by the PLpro deISGylation activity of SARS-CoV-2 NSP3. This study deepens our understanding of SARS-CoV-2 protein regulation by posttranslational modifications and may open new avenues for designing antiviral strategies for COVID-19.
Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , Proteases Semelhantes à Papaína de Coronavírus , Citocinas , RNA Viral , SARS-CoV-2 , Ubiquitina-Proteína Ligases , Ubiquitinas , Replicação Viral , Humanos , Ubiquitinas/metabolismo , Ubiquitinas/genética , SARS-CoV-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Citocinas/metabolismo , Células HEK293 , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Fosfoproteínas/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
There is still much to uncover regarding the molecular details of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. As the most abundant protein, coronavirus nucleocapsid (N) protein encapsidates viral RNAs, serving as the structural component of ribonucleoprotein and virion, and participates in transcription, replication, and host regulations. Virus-host interaction might give clues to better understand how the virus affects or is affected by its host during infection and identify promising therapeutic candidates. Considering the critical roles of N, we here established a new cellular interactome of SARS-CoV-2 N by using a high-specific affinity purification (S-pulldown) assay coupled with quantitative mass spectrometry and immunoblotting validations, uncovering many N-interacting host proteins unreported previously. Bioinformatics analysis revealed that these host factors are mainly involved in translation regulations, viral transcription, RNA processes, stress responses, protein folding and modification, and inflammatory/immune signaling pathways, in line with the supposed actions of N in viral infection. Existing pharmacological cellular targets and the directing drugs were then mined, generating a drug-host protein network. Accordingly, we experimentally identified several small-molecule compounds as novel inhibitors against SARS-CoV-2 replication. Furthermore, a newly identified host factor, DDX1, was verified to interact and colocalize with N mainly by binding to the N-terminal domain of the viral protein. Importantly, loss/gain/reconstitution-of-function experiments showed that DDX1 acts as a potent anti-SARS-CoV-2 host factor, inhibiting the viral replication and protein expression. The N-targeting and anti-SARS-CoV-2 abilities of DDX1 are consistently independent of its ATPase/helicase activity. Further mechanism studies revealed that DDX1 impedes multiple activities of N, including the N-N interaction, N oligomerization, and N-viral RNA binding, thus likely inhibiting viral propagation. These data provide new clues to better depiction of the N-cell interactions and SARS-CoV-2 infection and may help inform the development of new therapeutic candidates.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Chlorocebus aethiops , SARS-CoV-2/metabolismo , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Células Vero , Replicação Viral , RNA ViralRESUMO
Porcine epidemic diarrhea virus (PEDV) causes severe morbidity and mortality among newborn piglets. It significantly threatens the porcine industry in China and around the globe. To accelerate the developmental pace of drugs or vaccines against PEDV, a deeper understanding of the interaction between viral proteins and host factors is crucial. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), is crucial for controlling RNA metabolism and biological processes. The present work focused on exploring the effect of PTBP1 on PEDV replication. PTBP1 was upregulated during PEDV infection. The PEDV nucleocapsid (N) protein was degraded through the autophagic and proteasomal degradation pathways. Moreover, PTBP1 recruits MARCH8 (an E3 ubiquitin ligase) and NDP52 (a cargo receptor) for N protein catalysis and degradation through selective autophagy. Furthermore, PTBP1 induces the host innate antiviral response via upregulating the expression of MyD88, which then regulates TNF receptor-associated factor 3/ TNF receptor-associated factor 6 expression and induces the phosphorylation of TBK1 and IFN regulatory factor 3. These processes activate the type â IFN signaling pathway to antagonize PEDV replication. Collectively, this work illustrates a new mechanism related to PTBP1-induced viral restriction, where PTBP1 degrades the viral N protein and induces type â IFN production to suppress PEDV replication.
Assuntos
Infecções por Coronavirus , Interferon Tipo I , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Vírus da Diarreia Epidêmica Suína , Proteólise , Doenças dos Suínos , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/veterinária , Interferon Tipo I/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Transdução de Sinais , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/virologia , Células Vero , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismoRESUMO
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compacts the RNA genome into viral ribonucleoprotein (vRNP) complexes within virions. Assembly of vRNPs is inhibited by phosphorylation of the N protein serine/arginine (SR) region. Several SARS-CoV-2 variants of concern carry N protein mutations that reduce phosphorylation and enhance the efficiency of viral packaging. Variants of the dominant B.1.1 viral lineage also encode a truncated N protein, termed N∗ or Δ(1-209), that mediates genome packaging despite lacking the N-terminal RNA-binding domain and SR region. Here, we use mass photometry and negative stain electron microscopy to show that purified Δ(1-209) and viral RNA assemble into vRNPs that are remarkably similar in size and shape to those formed with full-length N protein. We show that assembly of Δ(1-209) vRNPs requires the leucine-rich helix of the central disordered region and that this helix promotes N protein oligomerization. We also find that fusion of a phosphomimetic SR region to Δ(1-209) inhibits RNA binding and vRNP assembly. Our results provide new insights into the mechanisms by which RNA binding promotes N protein self-association and vRNP assembly, and how this process is modulated by phosphorylation.
Assuntos
Proteínas do Nucleocapsídeo , SARS-CoV-2 , Humanos , COVID-19/virologia , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/ultraestrutura , RNA Viral/metabolismo , RNA Viral/ultraestrutura , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Fosforilação , Montagem de Vírus/genéticaRESUMO
Porcine deltacoronavirus (PDCoV), an enteropathogenic coronavirus, causes severe watery diarrhoea, dehydration and high mortality in piglets, which has the potential for cross-species transmission in recent years. Growth factor receptor-bound protein 2 (Grb2) is a bridging protein that can couple cell surface receptors with intracellular signal transduction events. Here, we investigated the reciprocal regulation between Grb2 and PDCoV. It is found that Grb2 regulates PDCoV infection and promotes IFN-ß production through activating Raf/MEK/ERK/STAT3 pathway signalling in PDCoV-infected swine testis cells to suppress viral replication. PDCoV N is capable of interacting with Grb2. The proline-rich motifs in the N- or C-terminal region of PDCoV N were critical for the interaction between PDCoV-N and Grb2. Except for Deltacoronavirus PDCoV N, the Alphacoronavirus PEDV N protein could interact with Grb2 and affect the regulation of PEDV replication, while the N protein of Betacoronavirus PHEV and Gammacoronavirus AIBV could not interact with Grb2. PDCoV N promotes Grb2 degradation by K48- and K63-linked ubiquitin-proteasome pathways. Overexpression of PDCoV N impaired the Grb2-mediated activated effect on the Raf/MEK/ERK/STAT3 signal pathway. Thus, our study reveals a novel mechanism of how host protein Grb2 protein regulates viral replication and how PDCoV N escaped natural immunity by interacting with Grb2.
Assuntos
Proteína Adaptadora GRB2 , Proteínas do Nucleocapsídeo , Replicação Viral , Animais , Suínos , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Doenças dos Suínos/virologia , Doenças dos Suínos/metabolismo , Deltacoronavirus/metabolismo , Deltacoronavirus/genética , Sistema de Sinalização das MAP Quinases , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Humanos , Transdução de Sinais , Linhagem Celular , Quinases raf/metabolismo , Quinases raf/genética , Células HEK293RESUMO
IMPORTANCE: As a member of the δ-coronavirus family, porcine deltacoronavirus (PDCoV) is a vital reason for diarrhea in piglets, which can contribute to high morbidity and mortality rates. Initially identified in Hong Kong in 2012, the virus has rapidly spread worldwide. During PDCoV infection, the virus employs evasion mechanisms to evade host surveillance, while the host mounts corresponding responses to impede viral replication. Our research has revealed that PDCoV infection down-regulates the expression of PGAM5 to promote virus replication. In contrast, PGAM5 degrades PDCoV N through autophagy by interacting with the cargo receptor P62 and the E3 ubiquitination ligase STUB1. Additionally, PGAM5 interacts with MyD88 and TRAF3 to activate the IFN signal pathway, resulting in the inhibition of viral replication.
Assuntos
Infecções por Coronavirus , Proteínas do Nucleocapsídeo de Coronavírus , Deltacoronavirus , Interferon Tipo I , Proteínas Mitocondriais , Fosfoproteínas Fosfatases , Proteólise , Doenças dos Suínos , Suínos , Replicação Viral , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Interferon Tipo I/imunologia , Transdução de Sinais , Suínos/virologia , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Deltacoronavirus/imunologia , Deltacoronavirus/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Mitocondriais/metabolismo , Regulação para Baixo , Evasão da Resposta Imune , Proteínas de Ligação a RNA/metabolismoRESUMO
Porcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV. This study indicated that the host protein, pre-mRNA processing factor 19 (PRPF19), could be controlled by the signal transducer as well as activator of transcription 1 (STAT1). Thus, PEDV replication could be hindered through selective autophagy. Moreover, PRPF19 was found to recruit the E3 ubiquitin ligase MARCH8 to the N protein for ubiquitination. For the purpose of degradation, the ubiquitin N protein is acknowledged by the cargo receptor NDP52 and transported to autolysosomes, thus inhibiting virus proliferation. To conclude, a unique antiviral mechanism of PRPF19-mediated virus restriction was shown. Moreover, a view of the innate immune response and protein degradation against PEDV replication was provided in this study. IMPORTANCE The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in 2010, and causes high mortality rates in newborn pigs. There are no effective and safe vaccines against the highly virulent PEDV. This virus has caused devastating economic losses in the pork industry worldwide. Studying the relationship between virus and host antiviral factors is important to develop the new antiviral strategies. This study identified the pre-mRNA processing factor 19 (PRPF19) as a novel antiviral protein in PEDV replication and revealed its viral restriction mechanisms for the first time. PRPF19 recruited the E3 ubiquitin ligase MARCH8 to the PEDV N protein for ubiquitination, and the ubiquitin N protein was acknowledged by the cargo receptor NDP52 and transported to autolysosomes for degradation. Our findings provide new insights in host antiviral factors PRPF19 that regulate the selective autophagy protein degradation pathway to inhibit PEDV replication.
Assuntos
Proteínas do Capsídeo , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Proteínas do Capsídeo/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas , Replicação Viral/genética , Proteínas Nucleares/metabolismo , AutofagiaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 in China and rapidly spread worldwide, leading to a pandemic. The threat of SARS-CoV-2 is subsiding as most people have acquired sufficient antibodies through vaccination and/or infection to prevent severe COVID-19. After the emergence of the omicron variants, the seroprevalence of antibodies against the N protein elicited by SARS-CoV-2 infection ranged from 44.4% to 80.2% in countries other than Japan. Here, we assessed the seroprevalence in Japan before and after the appearance of omicron variants. Serosurveillance of antibodies against N was conducted between December 2021 and March 2023 in Japan. In total, 7604 and 3354 residual serum or plasma samples were collected in the Tokyo metropolitan area and Sapporo, respectively. We found that the seroprevalence in representative regions of Japan increased approximately 3% to 23% after the emergence of the omicron variants. We also found higher seroprevalence among the young compared with the elderly. Our findings indicate that unlike other countries, most of the Japanese population has not been infected, raising the possibility of future SARS-CoV-2 epidemics in Japan.
Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , Japão/epidemiologia , Estudos Soroepidemiológicos , COVID-19/epidemiologia , Anticorpos Antivirais , PandemiasRESUMO
Increasing evidence shows that SARS-CoV-2 can infect kidneys and cause acute kidney injury (AKI) in critically ill COVID-19 patients. However, mechanisms through which COVID-19 induces AKI are largely unknown, and treatment remains ineffective. Here, we report that kidney-specific overexpressing SARS-CoV-2 N gene can cause AKI, including tubular necrosis and elevated levels of serum creatinine and BUN in 8-week-old diabetic db/db mice, which become worse in those with older age (16 weeks) and underlying diabetic kidney disease (DKD). Treatment with quercetin, a purified product from traditional Chinese medicine (TCM) that shows effective treatment of COVID-19 patients, can significantly inhibit SARS-CoV-2 N protein-induced AKI in diabetic mice with or without underlying DKD. Mechanistically, quercetin can block the binding of SARS-CoV-2 N protein to Smad3, thereby inhibiting Smad3 signaling and Smad3-mediated cell death via the p16-dependent G1 cell-cycle arrest mechanism in vivo and in vitro. In conclusion, SARS-CoV-2 N protein is pathogenic and can cause severe AKI in diabetic mice, particularly in those with older age and pre-existing DKD, via the Smad3-dependent G1 cell-cycle arrest mechanism. Importantly, we identify that quercetin may be an effective TCM compound capable of inhibiting COVID-19 AKI by blocking SARS-CoV-2 N-Smad3-mediated cell death pathway.
Assuntos
Injúria Renal Aguda , COVID-19 , Diabetes Mellitus Experimental , Camundongos , Animais , SARS-CoV-2 , COVID-19/complicações , Quercetina/farmacologia , Diabetes Mellitus Experimental/complicações , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Camundongos Endogâmicos , Pontos de Checagem do Ciclo CelularRESUMO
The pandemic of a new coronavirus infection that has lasted for more than 3 years, is still accompanied by frequent mutations in the S protein of SARS-CoV-2 and emergence of new virus variants causing new disease outbreak. Of all coronaviral proteins, the S and N proteins are the most immunogenic. The aim of this study was to compare the features of the humoral and T-cell immune responses to the SARS-CoV-2 S and N proteins in people with different histories of interaction with this virus. The study included 27 individuals who had COVID-19 once, 23 people who were vaccinated twice with the Sputnik V vaccine and did not have COVID-19, 22 people who had COVID-19 and were vaccinated twice with Sputnik V 6-12 months after the disease, and 25 people who had COVID-19 twice. The level of antibodies was determined by the enzyme immunoassay, and the cellular immunity was assessed by the expression of CD107a on CD8high lymphocytes after recognition of SARS-CoV-2 antigens. It was shown that the humoral immune response to the N protein was formed mainly by short-lived plasma cells synthesizing IgG antibodies of all four subclasses with a gradual switch from IgG3 to IgG1. The response to the S protein was formed by short-lived plasma cells at the beginning of the response (IgG1 and IgG3 subclasses) and then by long-lived plasma cells (IgG1 subclass). The dynamics of antibody level synthesized by the short-lived plasma cells was described by the Fisher equation, while changes in the level of antibodies synthesized by the long-lived plasma cells were described by the Erlang equation. The level of antibodies in the groups with the hybrid immunity exceeded that in the group with the post-vaccination immunity; the highest antibody content was observed in the group with the breakthrough immunity. The cellular immunity to the S and N proteins differed depending on the mode of immune response induction (vaccination or disease). Importantly, the response of heterologous CD8+ T cell to the N proteins of other coronaviruses may be involved in the immune defense against SARS-CoV-2.
Assuntos
Anticorpos Antivirais , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Imunidade Celular , Imunidade Humoral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Vacinas contra COVID-19/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Fosfoproteínas/imunologia , Linfócitos T CD8-Positivos/imunologia , IdosoRESUMO
An enhanced lateral flow assay (LFA) is presented for rapid and highly sensitive detection of acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens with gold nanoflowers (Au NFs) as signaling markers and gold enhancement to amplify the signal intensities. First, the effect of the morphology of gold nanomaterials on the sensitivity of LFA detection was investigated. The results showed that Au NFs prepared by the seed growth method showed a 5-fold higher detection sensitivity than gold nanoparticles (Au NPs) of the same particle size, which may benefit from the higher extinction coefficient and larger specific surface area of Au NFs. Under the optimized experimental conditions, the Au NFs-based LFA exhibited a detection limit (LOD) of 25 pg mL-1 for N protein using 135 nm Au NFs as the signaling probes. The signal was further amplified by using a gold enhancement strategy, and the LOD for the detection of N protein achieved was 5 pg mL-1. The established LFA also exhibited good repeatability and stability and showed applicability in the diagnosis of SARS-CoV-2 infection.
Assuntos
Antígenos Virais , Proteínas do Nucleocapsídeo de Coronavírus , Ouro , Limite de Detecção , Nanopartículas Metálicas , SARS-CoV-2 , Ouro/química , SARS-CoV-2/imunologia , Nanopartículas Metálicas/química , Humanos , Antígenos Virais/análise , Antígenos Virais/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/análise , Fosfoproteínas/imunologia , Fosfoproteínas/análise , Fosfoproteínas/química , COVID-19/diagnóstico , COVID-19/virologia , Imunoensaio/métodos , Teste Sorológico para COVID-19/métodosRESUMO
The COVID-19 pandemic caused by SARS-CoV-2 highlighted the importance of reliable detection methods for disease control and surveillance. Optimizing detection antibodies by rational screening antigens would improve the sensitivity and specificity of antibody-based detection methods such as colloidal gold immunochromatography. In this study, we screened three peptide antigens with conserved sequences in the N protein of SARS-CoV-2 using bioinformatical and structural biological analyses. Antibodies that specifically recognize these peptides were prepared. The epitope of the peptide that had the highest binding affinity with its antibody was located on the surface of the N protein, which was favorable for antibody binding. Using the optimal antibody that can recognize this epitope, we developed colloidal gold immunochromatography, which can detect the N protein at 10 pg/mL. Importantly, this antibody could effectively recognize both the natural peptide antigen and mutated peptide antigen in the N protein, showing the feasibility of being applied in the large-scale population testing of SARS-CoV-2. Our study provides a platform with reference significance for the rational screening of detection antibodies with high sensitivity, specificity, and reliability for SARS-CoV-2 and other pathogens.
Assuntos
Anticorpos Antivirais , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Epitopos , SARS-CoV-2 , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Humanos , Epitopos/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/química , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Sensibilidade e Especificidade , Fosfoproteínas/imunologia , Fosfoproteínas/química , Coloide de Ouro/química , Teste Sorológico para COVID-19/métodos , Antígenos Virais/imunologiaRESUMO
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 is responsible for compaction of the â¼30-kb RNA genome in the â¼90-nm virion. Previous studies suggest that each virion contains 35 to 40 viral ribonucleoprotein (vRNP) complexes, or ribonucleosomes, arrayed along the genome. There is, however, little mechanistic understanding of the vRNP complex. Here, we show that N protein, when combined in vitro with short fragments of the viral genome, forms 15-nm particles similar to the vRNP structures observed within virions. These vRNPs depend on regions of N protein that promote protein-RNA and protein-protein interactions. Phosphorylation of N protein in its disordered serine/arginine region weakens these interactions to generate less compact vRNPs. We propose that unmodified N protein binds structurally diverse regions in genomic RNA to form compact vRNPs within the nucleocapsid, while phosphorylation alters vRNP structure to support other N protein functions in viral transcription.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Fosforilação , RNA Viral/metabolismo , COVID-19/genética , Proteínas do Nucleocapsídeo/metabolismo , Ribonucleoproteínas/metabolismo , GenômicaRESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses to global swine industry. As an intracellular obligate pathogen, PRRSV exploits host cellular machinery to establish infection. The endocytic sorting complex required for transport (ESCRT) system has been shown to participate in different life cycle stages of multiple viruses. In the present study, a systematic small interference RNA screening assay identified that certain ESCRT components contributed to PRRSV infection. Among them, tumor susceptibility gene 101 (TSG101) was demonstrated to be important for PRRSV infection by knockdown and overexpression assays. TSG101 was further revealed to be involved in virion formation rather than viral attachment, internalization, RNA replication and nucleocapsid (N) protein translation within the first round of PRRSV life cycle. In detail, TSG101 was determined to specially interact with PRRSV N protein and take effect on its subcellular localization along with the early secretory pathway. Taken together, these results provide evidence that TSG101 is a proviral cellular factor for PRRSV assembly, which will be a promising target to interfere with the viral infection. IMPORTANCE PRRSV infection results in a serious swine disease affecting pig farming in the world. However, efficient prevention and control of PRRSV is hindered by its complicated infection process. Until now, our understanding of PRRSV assembly during infection is especially limited. Here, we identified that TSG101, an ESCRT-I subunit, facilitated virion formation of PRRSV via interaction with the viral N protein along with the early secretory pathway. Our work actually expands the knowledge of PRRSV infection and provides a novel therapeutic target for prevention and control of the virus.
Assuntos
Proteínas de Ligação a DNA , Complexos Endossomais de Distribuição Requeridos para Transporte , Nucleocapsídeo , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Via Secretória , Fatores de Transcrição , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Nucleocapsídeo/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , RNA/metabolismo , Via Secretória/fisiologia , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vírion/metabolismo , Replicação ViralRESUMO
Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. This study shows that heterogeneous nuclear ribonucleoprotein K (hnRNP K), the host protein determined by the transcription factor KLF15, inhibits the replication of PEDV by degrading the nucleocapsid (N) protein of PEDV in accordance with selective autophagy. hnRNP K was found to be capable of recruiting the E3 ubiquitin ligase, MARCH8, aiming to ubiquitinate N protein. Then, it was found that the ubiquitinated N protein could be delivered into autolysosomes for degradation by the cargo receptor NDP52, thereby inhibiting PEDV proliferation. Moreover, based on the enhanced MyD88 expression, we found that hnRNP K activated the interferon 1 (IFN-1) signaling pathway. Overall, the data obtained revealed a new mechanism of hnRNP K-mediated virus restriction wherein hnRNP K suppressed PEDV replication by degradation of viral N protein using the autophagic degradation pathway and by induction of IFN-1 production based on upregulation of MyD88 expression. IMPORTANCE The spread of the highly virulent PEDV in many countries is still leading to several epidemic and endemic outbreaks. To elucidate effective antiviral mechanisms, it is important to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. In the work, we detected hnRNP K as a new host restriction factor which can hinder PEDV replication through degrading the nucleocapsid protein based on E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. In addition, via the upregulation of MyD88 expression, hnRNP K could also activate the interferon (IFN) signaling pathway. This study describes a previously unknown antiviral function of hnRNP K and offers a new vision toward host antiviral factors that regulate innate immune response as well as a protein degradation pathway against PEDV infection.
Assuntos
Infecções por Coronavirus , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Interferon Tipo I , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Animais , Antivirais , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Interferons , Fator 88 de Diferenciação Mieloide , Proteínas do Nucleocapsídeo/fisiologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases , Células Vero , Interferon Tipo I/imunologiaRESUMO
Porcine epidemic diarrhea virus (PEDV) is the globally distributed alphacoronavirus that can cause lethal watery diarrhea in piglets, causing substantial economic damage. However, the current commercial vaccines cannot effectively the existing diseases. Thus, it is of great necessity to identify the host antiviral factors and the mechanism by which the host immune system responds against PEDV infection required to be explored. The current work demonstrated that the host protein, the far upstream element-binding protein 3 (FUBP3), could be controlled by the transcription factor TCFL5, which could suppress PEDV replication through targeting and degrading the nucleocapsid (N) protein of the virus based on selective autophagy. For the ubiquitination of the N protein, FUBP3 was found to recruit the E3 ubiquitin ligase MARCH8/MARCHF8, which was then identified, transported to, and degraded in autolysosomes via NDP52/CALCOCO2 (cargo receptors), resulting in impaired viral proliferation. Additionally, FUBP3 was found to positively regulate type-I interferon (IFN-I) signaling and activate the IFN-I signaling pathway by interacting and increasing the expression of tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3). Collectively, this study showed a novel mechanism of FUBP3-mediated virus restriction, where FUBP3 was found to degrade the viral N protein and induce IFN-I production, aiming to hinder the replication of PEDV. IMPORTANCE PEDV refers to the alphacoronavirus that is found globally and has re-emerged recently, causing severe financial losses. In PEDV infection, the host activates various host restriction factors to maintain innate antiviral responses to suppress virus replication. Here, FUBP3 was detected as a new host restriction factor. FUBP3 was found to suppress PEDV replication via the degradation of the PEDV-encoded nucleocapsid (N) protein via E3 ubiquitin ligase MARCH8 as well as the cargo receptor NDP52/CALCOCO2. Additionally, FUBP3 upregulated the IFN-I signaling pathway by interacting with and increasing tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) expression. This study further demonstrated that another layer of complexity could be added to the selective autophagy and innate immune response against PEDV infection are complicated.