Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047726

RESUMO

Urea cycle enzymes and transporters collectively convert ammonia into urea in the liver. Aberrant overexpression of carbamylphosphate synthetase 1 (CPS1) and SLC25A13 (citrin) genes has been associated with faster proliferation of tumor cells due to metabolic reprogramming that increases the activity of the CAD complex and pyrimidine biosynthesis. N-acetylglutamate (NAG), produced by NAG synthase (NAGS), is an essential activator of CPS1. Although NAGS is expressed in lung cancer derived cell lines, expression of the NAGS gene and its product was not evaluated in tumors with aberrant expression of CPS1 and citrin. We used data mining approaches to identify tumor types that exhibit aberrant overexpression of NAGS, CPS1, and citrin genes, and evaluated factors that may contribute to increased expression of the three genes and their products in tumors. Median expression of NAGS, CPS1, and citrin mRNA was higher in glioblastoma multiforme (GBM), glioma, and stomach adenocarcinoma (STAD) samples compared to the matched normal tissue. Median expression of CPS1 and citrin mRNA was higher in the lung adenocarcinoma (LUAD) sample while expression of NAGS mRNA did not differ. High NAGS expression was associated with an unfavorable outcome in patients with glioblastoma and GBM. Low NAGS expression was associated with an unfavorable outcome in patients with LUAD. Patterns of DNase hypersensitive sites and histone modifications in the upstream regulatory regions of NAGS, CPS1, and citrin genes were similar in liver tissue, lung tissue, and A549 lung adenocarcinoma cells despite different expression levels of the three genes in the liver and lung. Citrin gene copy numbers correlated with its mRNA expression in glioblastoma, GBM, LUAD, and STAD samples. There was little overlap between NAGS, CPS1, and citrin sequence variants found in patients with respective deficiencies, tumor samples, and individuals without known rare genetic diseases. The correlation between NAGS, CPS1, and citrin mRNA expression in the individual glioblastoma, GBM, LUAD, and STAD samples was very weak. These results suggest that the increased cytoplasmic supply of either carbamylphosphate, produced by CPS1, or aspartate may be sufficient to promote tumorigenesis, as well as the need for an alternative explanation of CPS1 activity in the absence of NAGS expression and NAG.


Assuntos
Adenocarcinoma de Pulmão , Aminoácido N-Acetiltransferase , Glioblastoma , Proteínas de Transporte da Membrana Mitocondrial , Humanos , Adenocarcinoma de Pulmão/genética , Aminoácido N-Acetiltransferase/genética , Arginina , Ligases , Proteínas de Transporte da Membrana Mitocondrial/genética , RNA Mensageiro , Ureia/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/genética
2.
Hum Mutat ; 42(12): 1624-1636, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510628

RESUMO

N-acetylglutamate synthase deficiency is an autosomal recessive urea cycle disorder caused either by decreased expression of the NAGS gene or defective NAGS enzyme resulting in decreased production of N-acetylglutamate (NAG), an allosteric activator of carbamylphosphate synthetase 1 (CPS1). NAGSD is the only urea cycle disorder that can be effectively treated with a single drug, N-carbamylglutamate (NCG), a stable NAG analog, which activates CPS1 to restore ureagenesis. We describe three patients with NAGSD due to four novel noncoding sequence variants in the NAGS regulatory regions. All three patients had hyperammonemia that resolved upon treatment with NCG. Sequence variants NM_153006.2:c.427-222G>A and NM_153006.2:c.427-218A>C reside in the 547 bp-long first intron of NAGS and define a novel NAGS regulatory element that binds retinoic X receptor α. Sequence variants NC_000017.10:g.42078967A>T (NM_153006.2:c.-3065A>T) and NC_000017.10:g.42078934C>T (NM_153006.2:c.-3098C>T) reside in the NAGS enhancer, within known HNF1 and predicted glucocorticoid receptor binding sites, respectively. Reporter gene assays in HepG2 and HuH-7 cells demonstrated that all four substitutions could result in reduced expression of NAGS. These findings show that analyzing noncoding regions of NAGS and other urea cycle genes can reveal molecular causes of disease and identify novel regulators of ureagenesis.


Assuntos
Aminoácido N-Acetiltransferase , Hiperamonemia , Distúrbios Congênitos do Ciclo da Ureia , Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/genética , Humanos , Hiperamonemia/genética , Íntrons , Sequências Reguladoras de Ácido Nucleico , Distúrbios Congênitos do Ciclo da Ureia/genética
3.
Dokl Biochem Biophys ; 495(1): 334-337, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33368046

RESUMO

Three-dimensional full-atom model of the enzyme complex with acetyl-CoA and substrate was constructed on the basis of the primary sequence of amino acid residues of N-acetyl glutamate synthase. Bioinformatics approaches of computer modeling were applied, including multiple sequence alignment, prediction of co-evolutionary contacts, and ab initio folding. On the basis of the results of calculations by classical molecular dynamics and combined quantum and molecular mechanics (QM/MM) methods, the structure of the active site and the reaction mechanism of N-acetylglutamate formation are described. Agreement of the structures of the enzyme-product complexes obtained in computer modeling and in the X-ray studies validates the reliability of modeling predictions.


Assuntos
Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/metabolismo , Neisseria gonorrhoeae/enzimologia , Catálise , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Modelos Moleculares , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
4.
J Inherit Metab Dis ; 42(6): 1192-1230, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30982989

RESUMO

In 2012, we published guidelines summarizing and evaluating late 2011 evidence for diagnosis and therapy of urea cycle disorders (UCDs). With 1:35 000 estimated incidence, UCDs cause hyperammonemia of neonatal (~50%) or late onset that can lead to intellectual disability or death, even while effective therapies do exist. In the 7 years that have elapsed since the first guideline was published, abundant novel information has accumulated, experience on newborn screening for some UCDs has widened, a novel hyperammonemia-causing genetic disorder has been reported, glycerol phenylbutyrate has been introduced as a treatment, and novel promising therapeutic avenues (including gene therapy) have been opened. Several factors including the impact of the first edition of these guidelines (frequently read and quoted) may have increased awareness among health professionals and patient families. However, under-recognition and delayed diagnosis of UCDs still appear widespread. It was therefore necessary to revise the original guidelines to ensure an up-to-date frame of reference for professionals and patients as well as for awareness campaigns. This was accomplished by keeping the original spirit of providing a trans-European consensus based on robust evidence (scored with GRADE methodology), involving professionals on UCDs from nine countries in preparing this consensus. We believe this revised guideline, which has been reviewed by several societies that are involved in the management of UCDs, will have a positive impact on the outcomes of patients by establishing common standards, and spreading and harmonizing good practices. It may also promote the identification of knowledge voids to be filled by future research.


Assuntos
Guias de Prática Clínica como Assunto , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Distúrbios Congênitos do Ciclo da Ureia/terapia , Adulto , Idade de Início , Criança , Consenso , Endocrinologia/organização & administração , Endocrinologia/normas , Europa (Continente)/epidemiologia , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/epidemiologia , Hiperamonemia/terapia , Recém-Nascido , Triagem Neonatal/métodos , Triagem Neonatal/normas , Pediatria/organização & administração , Pediatria/normas , Guias de Prática Clínica como Assunto/normas , Distúrbios Congênitos do Ciclo da Ureia/epidemiologia
5.
Int J Mol Sci ; 19(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364180

RESUMO

N-acetylglutamate synthase deficiency (NAGSD) is an extremely rare urea cycle disorder (UCD) with few adult cases so far described. Diagnosis of late-onset presentations is difficult and delayed treatment may increase the risk of severe hyperammonemia. We describe a 52-year-old woman with recurrent headaches who experienced an acute onset of NAGSD. As very few papers focus on headaches in UCDs, we also report a literature review of types and pathophysiologic mechanisms of UCD-related headaches. In our case, headaches had been present since puberty (3-4 days a week) and were often accompanied by nausea, vomiting, or behavioural changes. Despite three previous episodes of altered consciousness, ammonia was measured for the first time at 52 years and levels were increased. Identification of the new homozygous c.344C>T (p.Ala115Val) NAGS variant allowed the definite diagnosis of NAGSD. Bioinformatic analysis suggested that an order/disorder alteration of the mutated form could affect the arginine-binding site, resulting in poor enzyme activation and late-onset presentation. After optimized treatment for NAGSD, ammonia and amino acid levels were constantly normal and prevented other headache bouts. The manuscript underlies that headache may be the presenting symptom of UCDs and provides clues for the rapid diagnosis and treatment of late-onset NAGSD.


Assuntos
Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Idade de Início , Aminoácido N-Acetiltransferase/metabolismo , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Eletroencefalografia , Feminino , Glutamatos/uso terapêutico , Humanos , Pessoa de Meia-Idade , Avaliação de Sintomas , Resultado do Tratamento , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/patologia , Distúrbios Congênitos do Ciclo da Ureia/terapia
6.
Biochim Biophys Acta ; 1842(12 Pt A): 2510-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23643712

RESUMO

Hyperammonemia is a frequent finding in various organic acidemias. One possible mechanism involves the inhibition of the enzyme N-acetylglutamate synthase (NAGS), by short-chain acyl-CoAs which accumulate due to defective catabolism of amino acids and/or fatty acids in the cell. The aim of this study was to investigate the effect of various acyl-CoAs on the activity of NAGS in conjunction with the formation of glutamate esters. NAGS activity was measured in vitro using a sensitive enzyme assay with ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) product analysis. Propionyl-CoA and butyryl-CoA proved to be the most powerful inhibitors of N-acetylglutamate (NAG) formation. Branched-chain amino acid related CoAs (isovaleryl-CoA, 3-methylcrotonyl-CoA, isobutyryl-CoA) showed less pronounced inhibition of NAGS whereas the dicarboxylic short-chain acyl-CoAs (methylmalonyl-CoA, succinyl-CoA, glutaryl-CoA) had the least inhibitory effect. Subsequent work showed that the most powerful inhibitors also proved to be the best substrates in the formation of N-acylglutamates. Furthermore, we identified N-isovalerylglutamate, N-3-methylcrotonylglutamate and N-isobutyrylglutamate (the latter two in trace amounts), in the urines of patients with different organic acidemias. Collectively, these findings explain one of the contributing factors to secondary hyperammonemia, which lead to the reduced in vivo flux through the urea cycle in organic acidemias and result in the inadequate elimination of ammonia.


Assuntos
Acil Coenzima A/farmacologia , Aminoácido N-Acetiltransferase/antagonistas & inibidores , Aminoácido N-Acetiltransferase/metabolismo , Ácido Glutâmico/metabolismo , Acil Coenzima A/metabolismo , Ácidos Carboxílicos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Dicarboxílicos/metabolismo , Relação Dose-Resposta a Droga , Ésteres , Ácido Glutâmico/química , Humanos , Hiperamonemia/metabolismo , Cinética , Espectrometria de Massas em Tandem
7.
Int J Mol Sci ; 16(6): 13004-22, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26068232

RESUMO

N-acetylglutamate synthase (NAGS) catalyzes the production of N-acetylglutamate (NAG) from acetyl-CoA and L-glutamate. In microorganisms and plants, the enzyme functions in the arginine biosynthetic pathway, while in mammals, its major role is to produce the essential co-factor of carbamoyl phosphate synthetase 1 (CPS1) in the urea cycle. Recent work has shown that several different genes encode enzymes that can catalyze NAG formation. A bifunctional enzyme was identified in certain bacteria, which catalyzes both NAGS and N-acetylglutamate kinase (NAGK) activities, the first two steps of the arginine biosynthetic pathway. Interestingly, these bifunctional enzymes have higher sequence similarity to vertebrate NAGS than those of the classical (mono-functional) bacterial NAGS. Solving the structures for both classical bacterial NAGS and bifunctional vertebrate-like NAGS/K has advanced our insight into the regulation and catalytic mechanisms of NAGS, and the evolutionary relationship between the two NAGS groups.


Assuntos
Aminoácido N-Acetiltransferase/química , Sequência de Aminoácidos , Aminoácido N-Acetiltransferase/metabolismo , Animais , Bactérias/enzimologia , Domínio Catalítico , Humanos , Dados de Sequência Molecular
8.
Orphanet J Rare Dis ; 19(1): 168, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637895

RESUMO

BACKGROUND: The autosomal recessive disorder N-acetylglutamate synthase (NAGS) deficiency is the rarest defect of the urea cycle, with an incidence of less than one in 2,000,000 live births. Hyperammonemic crises can be avoided in individuals with NAGS deficiency by the administration of carbamylglutamate (also known as carglumic acid), which activates carbamoyl phosphatase synthetase 1 (CPS1). The aim of this case series was to introduce additional cases of NAGS deficiency to the literature as well as to assess the role of nutrition management in conjunction with carbamylglutamate therapy across new and existing cases. METHODS: We conducted retrospective chart reviews of seven cases of NAGS deficiency in the US and Canada, focusing on presentation, diagnosis, medication management, nutrition management, and outcomes. RESULTS: Five new and two previously published cases were included. Presenting symptoms were consistent with previous reports. Diagnostic confirmation via molecular testing varied in protocol across cases, with consecutive single gene tests leading to long delays in diagnosis in some cases. All patients responded well to carbamylglutamate therapy, as indicated by normalization of plasma ammonia and citrulline, as well as urine orotic acid in patients with abnormal levels at baseline. Although protein restriction was not prescribed in any cases after carbamylglutamate initiation, two patients continued to self-restrict protein intake. One patient experienced two episodes of hyperammonemia that resulted in poor long-term outcomes. Both episodes occurred after a disruption in access to carbamylglutamate, once due to insurance prior authorization requirements and language barriers and once due to seizure activity limiting the family's ability to administer carbamylglutamate. CONCLUSIONS: Follow-up of patients with NAGS deficiency should include plans for illness and for disruption of carbamylglutamate access, including nutrition management strategies such as protein restriction. Carbamylglutamate can help patients with NAGS deficiency to liberalize their diets, but the maximum safe level of protein intake to prevent hyperammonemia is not yet known. Patients using this medication should still monitor their diet closely and be prepared for any disruptions in medication access, which might require immediate dietary adjustments or medical intervention to prevent hyperammonemia.


Assuntos
Glutamatos , Hiperamonemia , Distúrbios Congênitos do Ciclo da Ureia , Humanos , Aminoácido N-Acetiltransferase/genética , Aminoácido N-Acetiltransferase/metabolismo , Hiperamonemia/tratamento farmacológico , Estudos Retrospectivos
9.
Arch Biochem Biophys ; 536(2): 101-8, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23628343

RESUMO

An increased concentration of ammonia is a non-specific laboratory sign indicating the presence of potentially toxic free ammonia that is not normally removed. This does occur in many different conditions for which hyperammonemia is a surrogate marker. Hyperammonemia can occur due to increased production or impaired detoxification of ammonia and should, if associated with clinical symptoms, be regarded as an emergency. The conditions can be classified into primary or secondary hyperammonemias depending on the underlying pathophysiology. If the urea cycle is directly affected by a defect of any of the involved enzymes or transporters, this results in primary hyperammonemia. If however the function of the urea cycle is inhibited by toxic metabolites or by substrate deficiencies, the situation is described as secondary hyperammonemia. For removal of ammonia, mammals require the action of glutamine synthetase in addition to the urea cycle, in order to ensure lowering of plasma ammonia concentrations to the normal range. Independent of its etiology, hyperammonemia may result in irreversible brain damage if not treated early and thoroughly. Thus, early recognition of a hyperammonemic state and immediate initiation of the specific management are of utmost importance. The main prognostic factors are, irrespective of the underlying cause, the duration of the hyperammonemic coma and the extent of ammonia accumulation. This paper will discuss the biochemical background of primary and secondary hyperammonemia and will give an overview of the various underlying conditions including a brief clinical outline and information on the genetic backgrounds.


Assuntos
Amônia/metabolismo , Hiperamonemia/metabolismo , Hiperamonemia/fisiopatologia , Ureia/metabolismo , Aminoácido N-Acetiltransferase/metabolismo , Animais , Glutamato-Amônia Ligase/metabolismo , Humanos , Hiperamonemia/enzimologia , Hiperamonemia/etiologia
10.
JIMD Rep ; 63(5): 420-424, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36101823

RESUMO

N-acetylglutamate synthase (NAGS) deficiency is a rare autosomal recessive disorder, which results in the inability to activate the key urea cycle enzyme, carbamoylphosphate synthetase 1 (CPS1). Patients often suffer life-threatening episodes of hyperammonaemia, both in the neonatal period and also at subsequent times of catabolic stress. Because NAGS generates the cofactor for CPS1, these two disorders are difficult to distinguish biochemically. However, there have now been numerous case reports of 3-methylglutaconic aciduria (3-MGA), a marker seen in mitochondrial disorders, occurring in CPS1 deficiency. Previously, this had not been reported in NAGS deficiency. We report a four-day-old neonate who was noted to have 3-MGA at the time of significant hyperammonaemia and lactic acidosis. Low plasma citrulline and borderline orotic aciduria were additional findings that suggested a proximal urea cycle disorder. Subsequent molecular testing identified bi-allelic pathogenic variants in NAGS. The 3-MGA was present at the time of persistent lactic acidosis, but improved with normalization of serum lactate, suggesting that it may reflect secondary mitochondrial dysfunction. NAGS deficiency should therefore also be considered in patients with hyperammonaemia and 3-MGA. Studies in larger numbers of patients are required to determine whether it could be a biomarker for severe decompensations.

11.
AMB Express ; 11(1): 168, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910273

RESUMO

In the bio-based polymer industry, putrescine is in the spotlight for use as a material. We constructed strains of Escherichia coli to assess its putrescine production capabilities through the arginine decarboxylase pathway in batch fermentation. N-Acetylglutamate (ArgA) synthase is subjected to feedback inhibition by arginine. Therefore, the 19th amino acid residue, Tyr, of argA was substituted with Cys to desensitize the feedback inhibition of arginine, resulting in improved putrescine production. The inefficient initiation codon GTG of argA was substituted with the effective ATG codon, but its replacement did not affect putrescine production. The essential genes for the putrescine production pathway, speA and speB, were cloned into the same plasmid with argAATG Y19C to form an operon. These genes were introduced under different promoters; lacIp, lacIqp, lacIq1p, and T5p. Among these, the T5 promoter demonstrated the best putrescine production. In addition, disruption of the puuA gene encoding enzyme of the first step of putrescine degradation pathway increased the putrescine production. Of note, putrescine production was not affected by the disruption of patA, which encodes putrescine aminotransferase, the initial enzyme of another putrescine utilization pathway. We also report that the strain KT160, which has a genomic mutation of YifEQ100TAG, had the greatest putrescine production. At 48 h of batch fermentation, strain KT160 grown in terrific broth with 0.01 mM IPTG produced 19.8 mM of putrescine.

12.
Biochimie ; 183: 89-99, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33309754

RESUMO

Despite biochemical and genetic testing being the golden standards for identification of proximal urea cycle disorders (UCDs), genotype-phenotype correlations are often unclear. Co-occurring partial defects affecting more than one gene have not been demonstrated so far in proximal UCDs. Here, we analyzed the mutational spectrum of 557 suspected proximal UCD individuals. We probed oligomerizing forms of NAGS, CPS1 and OTC, and evaluated the surface exposure of residues mutated in heterozygously affected individuals. BN-PAGE and gel-filtration chromatography were employed to discover protein-protein interactions within recombinant enzymes. From a total of 281 confirmed patients, only 15 were identified as "heterozygous-only" candidates (i.e. single defective allele). Within these cases, the only missense variants to potentially qualify as dominant negative triggers were CPS1 p.Gly401Arg and NAGS p.Thr181Ala and p.Tyr512Cys, as assessed by residue oligomerization capacity and surface exposure. However, all three candidates seem to participate in critical intramolecular functions, thus, unlikely to facilitate protein-protein interactions. This interpretation is further supported by BN-PAGE and gel-filtration analyses revealing no multiprotein proximal urea cycle complex formation. Collectively, genetic analysis, structural considerations and in vitro experiments point against a prominent role of dominant negative effects in human proximal UCDs.


Assuntos
Aminoácido N-Acetiltransferase , Carbamoil-Fosfato Sintase (Amônia) , Genes Dominantes , Mutação de Sentido Incorreto , Ornitina Carbamoiltransferase , Distúrbios Congênitos do Ciclo da Ureia , Substituição de Aminoácidos , Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/genética , Aminoácido N-Acetiltransferase/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Ornitina Carbamoiltransferase/química , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Domínios Proteicos , Distúrbios Congênitos do Ciclo da Ureia/enzimologia , Distúrbios Congênitos do Ciclo da Ureia/genética
13.
Orphanet J Rare Dis ; 15(1): 279, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036647

RESUMO

BACKGROUND: N-Acetylglutamate synthase (NAGS) deficiency is an extremely rare autosomal recessive metabolic disorder affecting the urea cycle, leading to episodes of hyperammonemia which can cause significant morbidity and mortality. Since its recognition in 1981, NAGS deficiency has been treated with carbamylglutamate with or without other measures (nutritional, ammonia scavengers, dialytic, etc.). We conducted a systematic literature review of NAGS deficiency to summarize current knowledge around presentation and management. METHODS: Case reports and case series were identified using the Medline database, as well as references from other articles and a general internet search. Clinical data related to presentation and management were abstracted by two reviewers. RESULTS: In total, 98 cases of NAGS deficiency from 79 families, in 48 articles or abstracts were identified. Of these, 1 was diagnosed prenatally, 57 were neonatal cases, 34 were post-neonatal, and 6 did not specify age at presentation or were asymptomatic at diagnosis. Twenty-one cases had relevant family history. We summarize triggers of hyperammonemic episodes, diagnosis, clinical signs and symptoms, and management strategies. DNA testing is the preferred method of diagnosis, although therapeutic trials to assess response of ammonia levels to carbamylglutamate may also be helpful. Management usually consists of treatment with carbamylglutamate, although the reported maintenance dose varied across case reports. Protein restriction was sometimes used in conjunction with carbamylglutamate. Supplementation with citrulline, arginine, and sodium benzoate also were reported. CONCLUSIONS: Presentation of NAGS deficiency varies by age and symptoms. In addition, both diagnosis and management have evolved over time and vary across clinics. Prompt recognition and appropriate treatment of NAGS deficiency with carbamylglutamate may improve outcomes of affected individuals. Further research is needed to assess the roles of protein restriction and supplements in the treatment of NAGS deficiency, especially during times of illness or lack of access to carbamylglutamate.


Assuntos
Hiperamonemia , Distúrbios Congênitos do Ciclo da Ureia , Aminoácido N-Acetiltransferase/genética , Amônia , Humanos , Recém-Nascido , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/terapia
14.
Arch Argent Pediatr ; 118(6): e545-e548, 2020 12.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33231058

RESUMO

Urea cycle disorders (UCD), are genetically inherited diseases that may have a poor outcome due to to profound hyperammonemia. We report the case of a baby girl diagnosed as N-acetylglutamate synthase (NAGS) deficiency. The patient was evaluated due to diminished sucking and hypotonicity. Physical examination showed hepatomegaly. Complete blood count, biochemical values and blood gas analyses were normal, acute phase reactants were negative. Further laboratory analyses showed no ketones in blood and highly elevated ammonia. Metabolic tests were inconclusive. Emergency treatment was initiated immediately and she was discharged on the 15th day of admission. NAGS deficiency was confirmed by DNA-analysis. She is now without any dietary restriction or other medication, except N-carbamylglutamate (NCG). NAGS deficiency is the only UCD which can be specifically and effectively treated by NCG. Early recognition of disease will lead to early treatment that may prohibit devastating effects of hyperammonemia.


Los trastornos del ciclo de la urea (TCU) son enfermedades hereditarias con un posible desenlace desfavorable por hiperamoniemia grave. Se informa de una bebé con deficiencia de N-acetilglutamato sintasa (NAGS), quien tenía succión débil e hipotonicidad. Al examinarla, se observó hepatomegalia. El hemograma, los análisis y la gasometría eran normales, y las proteínas de la fase aguda, negativas. En los análisis, no se observaron cetonas en sangre, pero sí concentraciones elevadas de amoníaco. Las pruebas metabólicas no fueron concluyentes. Se inició el tratamiento de emergencia inmediatamente y recibió el alta el día 15 después del ingreso. Se confirmó deficiencia de NAGS mediante análisis de ADN. La paciente no tiene restricciones alimentarias ni toma medicamentos, excepto N-carbamil glutamato (NCG). La deficiencia de NAGS es el único TCU que puede tratarse específica y eficazmente con NCG. La detección temprana permite iniciar un tratamiento temprano y evitar los efectos devastadores de la hiperamoniemia.


Assuntos
Hiperamonemia , Distúrbios Congênitos do Ciclo da Ureia , Aminoácido N-Acetiltransferase/genética , Feminino , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/terapia , Lactente , Recém-Nascido , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/terapia
15.
Mol Genet Metab Rep ; 22: 100558, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32021803

RESUMO

N-acetyl glutamate synthase (NAGS) deficiency is the rarest urea cycle defect presenting as neonatal onset life-threatening hyperammonemia. We report here a family history of severe NAGS deficiency: after the index-case with severe hyperammonemia, one patient benefited from antenatal diagnosis, and from primary care at birth, another one was diagnosed at 2-days and immediately treated with carbaglumic-acid. Finally, we report excellent tolerance to long-term carbaglumic-acid treatment, with no side effects, and healthy neurological and psychomotor development.

16.
Front Physiol ; 11: 542950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551825

RESUMO

Mitochondrial enzymes involved in energy transformation are organized into multiprotein complexes that channel the reaction intermediates for efficient ATP production. Three of the mammalian urea cycle enzymes: N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase 1 (CPS1), and ornithine transcarbamylase (OTC) reside in the mitochondria. Urea cycle is required to convert ammonia into urea and protect the brain from ammonia toxicity. Urea cycle intermediates are tightly channeled in and out of mitochondria, indicating that efficient activity of these enzymes relies upon their coordinated interaction with each other, perhaps in a cluster. This view is supported by mutations in surface residues of the urea cycle proteins that impair ureagenesis in the patients, but do not affect protein stability or catalytic activity. We find the NAGS, CPS1, and OTC proteins in liver mitochondria can associate with the inner mitochondrial membrane (IMM) and can be co-immunoprecipitated. Our in-silico analysis of vertebrate NAGS proteins, the least abundant of the urea cycle enzymes, identified a protein-protein interaction region present only in the mammalian NAGS protein-"variable segment," which mediates the interaction of NAGS with CPS1. Use of super resolution microscopy showed that NAGS, CPS1 and OTC are organized into clusters in the hepatocyte mitochondria. These results indicate that mitochondrial urea cycle proteins cluster, instead of functioning either independently or in a rigid multienzyme complex.

17.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 1): 86-95, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615976

RESUMO

Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Šresolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, ß=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.


Assuntos
Proteínas de Bactérias/química , Glutamatos/química , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Xylella/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Glutamato Sintase/química , Histidina , Ligação de Hidrogênio , Modelos Moleculares , Oligopeptídeos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
18.
Arch. argent. pediatr ; 118(6): e545-e548, dic 2020. ilus
Artigo em Inglês, Espanhol | BINACIS, LILACS | ID: biblio-1146216

RESUMO

Los trastornos del ciclo de la urea (TCU) son enfermedades hereditarias con un posible desenlace desfavorable por hiperamoniemia grave. Se informa de una bebé con deficiencia de N-acetilglutamato sintasa (NAGS), quien tenía succión débil e hipotonicidad. Al examinarla, se observó hepatomegalia. El hemograma, los análisis y la gasometría eran normales, y las proteínas de la fase aguda, negativas. En los análisis, no se observaron cetonas en sangre, pero sí concentraciones elevadas de amoníaco. Las pruebas metabólicas no fueron concluyentes. Se inició el tratamiento de emergencia inmediatamente y recibió el alta el día 15 después del ingreso. Se confirmó deficiencia de NAGS mediante análisis de ADN. La paciente no tiene restricciones alimentarias ni toma medicamentos, excepto N-carbamil glutamato (NCG). La deficiencia de NAGS es el único TCU que puede tratarse específica y eficazmente con NCG. La detección temprana permite iniciar un tratamiento temprano y evitar los efectos devastadores de la hiperamoniemia


Urea cycle disorders (UCD), are genetically inherited diseases that may have a poor outcome due to to profound hyperammonemia. We report the case of a baby girl diagnosed as N-acetylglutamate synthase (NAGS) deficiency.The patient was evaluated due to diminished sucking and hypotonicity. Physical examination showed hepatomegaly. Complete blood count, biochemical values and blood gas analyses were normal, acute phase reactants were negative. Further laboratory analyses showed no ketones in blood and highly elevated ammonia. Metabolic tests were inconclusive. Emergency treatment was initiated immediately and she was discharged on the 15th day of admission. NAGS deficiency was confirmed by DNA-analysis. She is now without any dietary restriction or other medication, except N-carbamylglutamate (NCG).NAGS deficiency is the only UCD which can be specifically and effectively treated by NCG. Early recognition of disease will lead to early treatment that may prohibit devastating effects of hyperammonemia


Assuntos
Humanos , Feminino , Recém-Nascido , Acetiltransferases/deficiência , Distúrbios Congênitos do Ciclo da Ureia , Hiperamonemia , Aminoácido N-Acetiltransferase , Erros Inatos do Metabolismo dos Aminoácidos
19.
Epilepsy Res ; 108(6): 1046-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24888247

RESUMO

Valproic acid, which is widely used to treat various types of epilepsy, may cause severe hyperammonemia. However, the mechanism responsible for this side effect is not readily apparent. Polymorphisms in the genes encoding carbamoyl-phosphate synthase 1 (CPS1) and N-acetylglutamate synthase (NAGS) were recently reported to be risk factors for the development of hyperammonemia during valproic acid-based therapy. This study aimed to examine the influence of patient characteristics, including polymorphisms in CPS1 4217C>A and NAGS -3064C>A, on the development of hyperammonemia in Japanese pediatric epilepsy patients. The study included 177 pediatric epilepsy patients. The presence of a 4217C>A polymorphism in CPS1 was determined using an allele-specific polymerase chain reaction (PCR)-based method, and the presence of a -3064C>A polymorphism in NAGS was determined using a PCR-based restriction fragment length polymorphism method. Hyperammonemia was defined as a plasma ammonia level exceeding 200 µg/dL. We observed a significant difference between the combination of valproic acid with phenytoin and the development of hyperammonemia in both univariate and multivariate analyses. With regard to the CPS1 4217C>A polymorphism, we did not observe a significant association with the development of hyperammonemia. In conclusion, CPS1 4217C>A polymorphism may not be associated with the development of hyperammonemia in Japanese population.


Assuntos
Anticonvulsivantes/efeitos adversos , Carbamoil-Fosfato Sintase (Amônia)/genética , Hiperamonemia/induzido quimicamente , Hiperamonemia/genética , Polimorfismo de Nucleotídeo Único , Ácido Valproico/efeitos adversos , Alelos , Aminoácido N-Acetiltransferase/genética , Amônia/sangue , Anticonvulsivantes/sangue , Anticonvulsivantes/uso terapêutico , Povo Asiático/genética , Biomarcadores Farmacológicos , Criança , Epilepsia/sangue , Epilepsia/tratamento farmacológico , Epilepsia/genética , Feminino , Predisposição Genética para Doença , Humanos , Hiperamonemia/sangue , Japão , Masculino , Fenitoína/efeitos adversos , Fenitoína/uso terapêutico , Fatores de Risco , Ácido Valproico/sangue , Ácido Valproico/uso terapêutico
20.
Ther Clin Risk Manag ; 7: 327-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21941437

RESUMO

N-acetylglutamate synthase (NAGS) deficiency is a rare inborn error of metabolism affecting ammonia detoxification in the urea cycle. The product of NAGS is N-acetylglutamate which is the absolutely required allosteric activator of the first urea cycle enzyme carbamoylphosphate synthetase 1. In defects of NAGS, the urea cycle function can be severely affected resulting in fatal hyperammonemia in neonatal patients or at any later stage in life. NAGS deficiency can be treated with a structural analog of N-acetylglutamate, N-carbamyl-L-glutamate, which is available for enteral use as a licensed drug. Since NAGS deficiency is an extremely rare disorder, reports on the use of N-carbamyl-L-glutamate are mainly based on single patients. According to these, the drug is very effective in treating acute hyperammonemia by avoiding the need for detoxification during the acute metabolic decompensation. Also during long-term treatment, N-carbamyl-L-glutamate is effective in maintaining normal plasma ammonia levels and avoiding the need for additional drug therapy or protein-restricted diet. Open questions remain which concern the optimal dosage in acute and long-term use of N-carbamyl-L-glutamate and potential additional disorders in which the drug might also be effective in treating acute hyperammonemia. This review focuses on the role of N-carbamyl-L-glutamate for the treatment of acute hyperammonemia due to primary NAGS deficiency but will briefly discuss the current knowledge on the role of N-carbamyl-L-glutamate for treatment of secondary NAGS deficiencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA