Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(12): e17372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709214

RESUMO

The NC10 phylum links anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophic pathway. Although numerous amplicon-based studies revealed the distribution of this phylum, comprehensive genomic insights and niche characterization in deep-sea environments were still largely unknown. In this study, we extensively surveyed the NC10 bacteria across diverse deep-sea environments, including waters, sediments, cold seeps, biofilms, rocky substrates, and subseafloor aquifers. We then reconstructed and analysed 38 metagenome-assembled genomes (MAGs), and revealed the extensive distribution of NC10 bacteria and their intense selective pressure in these harsh environments. Isotopic analyses combined with gene expression profiling confirmed that active nitrite-dependent anaerobic methane oxidation (n-DAMO) occurs within deep-sea sediments. In addition, the identification of the Wood-Ljungdahl (WL) and 3-hydroxypropionate/4-hydroxybutyrat (3HB/4HP) pathways in these MAGs suggests their capability for carbon fixation as chemoautotrophs in these deep-sea environments. Indeed, we found that for their survival in the oligotrophic deep-sea biosphere, NC10 bacteria encode two branches of the WL pathway, utilizing acetyl-CoA from the carbonyl branch for citric acid cycle-based energy production and methane from the methyl branch for n-DAMO. The observed low ratios of non-synonymous substitutions to synonymous substitutions (pN/pS) in n-DAMO-related genes across these habitats suggest a pronounced purifying selection that is critical for the survival of NC10 bacteria in oligotrophic deep-sea environments. These findings not only advance our understanding of the evolutionary adaptations of NC10 bacteria but also underscore the intricate coupling between the carbon and nitrogen cycles within deep-sea ecosystems, driven by this bacterial phylum.


Assuntos
Desnitrificação , Sedimentos Geológicos , Metano , Metano/metabolismo , Sedimentos Geológicos/microbiologia , Desnitrificação/genética , Água do Mar/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Metagenoma , Filogenia , Nitritos/metabolismo , Oxirredução
2.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30291120

RESUMO

"Candidatus Methanoperedens nitroreducens" is an archaeon that couples the anaerobic oxidation of methane to nitrate reduction. In natural and man-made ecosystems, this archaeon is often found at oxic-anoxic interfaces where nitrate, the product of aerobic nitrification, cooccurs with methane produced by methanogens. As such, populations of "Ca Methanoperedens nitroreducens" could be prone to regular oxygen exposure. Here, we investigated the effect of 5% (vol/vol) oxygen exposure in batch activity assays on a "Ca Methanoperedens nitroreducens" culture, enriched from an Italian paddy field. Metagenome sequencing of the DNA extracted from the enrichment culture revealed that 83% of 16S rRNA gene reads were assigned to a novel strain, "Candidatus Methanoperedens nitroreducens Verserenetto." RNA was extracted, and metatranscriptome sequencing upon oxygen exposure revealed that the active community changed, most notably in the appearance of aerobic methanotrophs. The gene expression of "Ca Methanoperedens nitroreducens" revealed that the key genes encoding enzymes of the methane oxidation and nitrate reduction pathways were downregulated. In contrast to this, we identified upregulation of glutaredoxin, thioredoxin family/like proteins, rubrerythrins, peroxiredoxins, peroxidase, alkyl hydroperoxidase, type A flavoproteins, FeS cluster assembly protein, and cysteine desulfurases, indicating the genomic potential of "Ca Methanoperedens nitroreducens Verserenetto" to counteract the oxidative damage and adapt in environments where they might be exposed to regular oxygen intrusion.IMPORTANCE "Candidatus Methanoperedens nitroreducens" is an anaerobic archaeon which couples the reduction of nitrate to the oxidation of methane. This microorganism is present in a wide range of aquatic environments and man-made ecosystems, such as paddy fields and wastewater treatment systems. In such environments, these archaea may experience regular oxygen exposure. However, "Ca Methanoperedens nitroreducens" is able to thrive under such conditions and could be applied for the simultaneous removal of dissolved methane and nitrogenous pollutants in oxygen-limited systems. To understand what machinery "Ca Methanoperedens nitroreducens" possesses to counteract the oxidative stress and survive, we characterized the response to oxygen exposure using a multi-omics approach.


Assuntos
Anaerobiose/fisiologia , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Methanosarcinales/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Anaerobiose/genética , Proteínas Arqueais/genética , Reatores Biológicos , Hidrolases de Éster Carboxílico/metabolismo , DNA Arqueal/isolamento & purificação , Ecossistema , Flavoproteínas/metabolismo , Glutarredoxinas/metabolismo , Hemeritrina/metabolismo , Metagenoma , Metano/metabolismo , Methanosarcinales/classificação , Methanosarcinales/genética , Nitratos/metabolismo , Oxirredução , Estresse Oxidativo/genética , Peroxidase/metabolismo , Peroxirredoxinas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Rubredoxinas/metabolismo , Análise de Sequência , Tiorredoxinas/metabolismo , Regulação para Cima , Águas Residuárias/microbiologia , Purificação da Água
3.
Appl Microbiol Biotechnol ; 101(18): 7075-7084, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28779290

RESUMO

Paddy fields are a significant source of methane and contribute up to 20% of total methane emissions from wetland ecosystems. These inundated, anoxic soils featuring abundant nitrogen compounds and methane are an ideal niche for nitrate-dependent anaerobic methanotrophs. After 2 years of enrichment with a continuous supply of methane and nitrate as the sole electron donor and acceptor, a stable enrichment dominated by 'Candidatus Methanoperedens nitroreducens' archaea and 'Candidatus Methylomirabilis oxyfera' NC10 phylum bacteria was achieved. In this community, the methanotrophic archaea supplied the NC10 phylum bacteria with the necessary nitrite through nitrate reduction coupled to methane oxidation. The results of qPCR quantification of 16S ribosomal RNA (rRNA) gene copies, analysis of metagenomic 16S rRNA reads, and fluorescence in situ hybridization (FISH) correlated well and showed that after 2 years, 'Candidatus Methanoperedens nitroreducens' had the highest abundance of (2.2 ± 0.4 × 108) 16S rRNA copies per milliliter and constituted approximately 22% of the total microbial community. Phylogenetic analysis showed that the 16S rRNA genes of the dominant microorganisms clustered with previously described 'Candidatus Methanoperedens nitroreducens ANME2D' (96% identity) and 'Candidatus Methylomirabilis oxyfera' (99% identity) strains. The pooled metagenomic sequences resulted in a high-quality draft genome assembly of 'Candidatus Methanoperedens nitroreducens Vercelli' that contained all key functional genes for the reverse methanogenesis pathway and nitrate reduction. The diagnostic mcrA gene was 96% similar to 'Candidatus Methanoperedens nitroreducens ANME2D' (WP_048089615.1) at the protein level. The 'Candidatus Methylomirabilis oxyfera' draft genome contained the marker genes pmoCAB, mdh, and nirS and putative NO dismutase genes. Whole-reactor anaerobic activity measurements with methane and nitrate revealed an average methane oxidation rate of 0.012 mmol/h/L, with cell-specific methane oxidation rates up to 0.57 fmol/cell/day for 'Candidatus Methanoperedens nitroreducens'. In summary, this study describes the first enrichment and draft genome of methanotrophic archaea from paddy field soil, where these organisms can contribute significantly to the mitigation of methane emissions.


Assuntos
Archaea/isolamento & purificação , Genoma Arqueal/genética , Metano/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Anaerobiose , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Reatores Biológicos , Anotação de Sequência Molecular , Oxirredução , Filogenia , Análise de Sequência de DNA , Solo , Áreas Alagadas
4.
J Appl Microbiol ; 120(6): 1552-60, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26932395

RESUMO

AIMS: To better explore the distribution and diversity of Candidatus Methylomirabilis oxyfera (M. oxyfera)-like bacteria of NC10 phylum in soil environments. METHODS AND RESULTS: The vertical distribution and diversity of NC10 phylum bacteria were investigated in an agricultural field (surface layer, 0-10 cm; subsurface layer, 20-30 cm; deep layers, 50-60 and 90-100 cm) by using Illumina-based 16S rRNA (V3-V4 region) gene sequencing of soil DNA samples and quantitative PCR assays. It was found that the NC10-related reads accounted for 0·8-4·5% of the 16S rRNA pool in each examined core sample, with greater percentage being observed in deep soils than in surface soils and subsurface soils. The recovered NC10-related reads showed 85·1-96·9% identity to the 16S rRNA gene of M. oxyfera. A high diversity of NC10 phylum bacteria was observed in the examined soil cores. A total of 115 operational taxonomic units (OTU) were detected based on 3% sequence divergence in the recovered 16S rRNA genes. Phylogenetic analysis showed that four distinct groups of NC10 phylum bacteria (groups A, B, C and D) were present in the examined soil cores, with group B members being the dominant bacteria. The group A members, which are identified as the dominant bacteria responsible for anaerobic methane oxidation (AMO) coupled to nitrite reduction, can mainly be detected at 50-60 cm. Quantitative PCR further confirmed the presence of NC10 phylum bacteria, ranging from 3·8 × 10(6) to 9·3 × 10(6) copies g(-1) soil. CONCLUSIONS: The results showed the presence of diverse NC10 phylum bacteria in agricultural soils by using Illumina-based 16S rRNA gene sequencing and qPCR assays. SIGNIFICANCE AND IMPACT OF THE STUDY: The greatest level of diversity of NC10 phylum bacteria was reported to date in this study, which improved our understanding of the distribution of NC10 phylum bacterial communities in soil environments.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Anaerobiose , Bactérias/classificação , Bactérias/genética , China , DNA Bacteriano/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química
5.
Appl Microbiol Biotechnol ; 100(11): 5099-108, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27020287

RESUMO

Anaerobic oxidation of methane (AOM) coupled to nitrite reduction (AOM-NIR) is ecologically significant for mitigating the methane-induced greenhouse effect. The microbes responsible for this reaction, NC10 bacteria, have been widely detected in diverse ecosystems. However, some defects were discovered in the commonly used NC10-specific primers, 202F and qP1F. In the present work, the primers were redesigned and improved to overcome the defects found in the previous primers. A new nested PCR method was developed using the improved primers to amplify 16S ribosomal RNA (rRNA) genes from NC10 bacteria. In the new nested PCR method, the qP1mF/1492R and 1051F/qP2R primer sets were used in the first and second rounds, respectively. The PCR products were sequenced, and more operational taxonomic units (OTUs) of the NC10 phylum were obtained using the new primers compared to the previous primers. The sensitivity of the new nested PCR was tested by the serial dilution method, and the limit of detection was approximately 10(3) copies g(-1) dry sed. for the environmental samples compared to approximately 10(5) copies g(-1) dry sed. by the previous method. Finally, the improved primer, qP1mF, was used in quantitative PCR (qPCR) to determine the abundance of NC10 bacteria, and the results agreed well with the activity of AOM-NIR measured by isotope tracer experiments. The improved primers are able to amplify NC10 16S rRNA genes more efficiently than the previous primers and useful to explore the microbial community of the NC10 phylum in different systems.


Assuntos
Bactérias/classificação , Bactérias/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/isolamento & purificação , Clonagem Molecular , Primers do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Nitritos/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA
6.
Front Microbiol ; 12: 766527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925275

RESUMO

Methylomirabilis bacteria perform anaerobic methane oxidation coupled to nitrite reduction via an intra-aerobic pathway, producing carbon dioxide and dinitrogen gas. These diderm bacteria possess an unusual polygonal cell shape with sharp ridges that run along the cell body. Previously, a putative surface protein layer (S-layer) was observed as the outermost cell layer of these bacteria. We hypothesized that this S-layer is the determining factor for their polygonal cell shape. Therefore, we enriched the S-layer from M. lanthanidiphila cells and through LC-MS/MS identified a 31 kDa candidate S-layer protein, mela_00855, which had no homology to any other known protein. Antibodies were generated against a synthesized peptide derived from the mela_00855 protein sequence and used in immunogold localization to verify its identity and location. Both on thin sections of M. lanthanidiphila cells and in negative-stained enriched S-layer patches, the immunogold localization identified mela_00855 as the S-layer protein. Using electron cryo-tomography and sub-tomogram averaging of S-layer patches, we observed that the S-layer has a hexagonal symmetry. Cryo-tomography of whole cells showed that the S-layer and the outer membrane, but not the peptidoglycan layer and the cytoplasmic membrane, exhibited the polygonal shape. Moreover, the S-layer consisted of multiple rigid sheets that partially overlapped, most likely giving rise to the unique polygonal cell shape. These characteristics make the S-layer of M. lanthanidiphila a distinctive and intriguing case to study.

7.
PeerJ ; 6: e6041, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533317

RESUMO

BACKGROUND: The nitrite-dependent anaerobic methane oxidation (N-DAMO) pathway, which plays an important role in carbon and nitrogen cycling in aquatic ecosystems, is mediated by "Candidatus Methylomirabilis oxyfera" (M. oxyfera) of the NC10 phylum. M. oxyfera-like bacteria are widespread in nature, however, the presence, spatial heterogeneity and genetic diversity of M. oxyfera in the rhizosphere of aquatic plants has not been widely reported. METHOD: In order to simulate the rhizosphere microenvironment of submerged plants, Potamogeton crispus was cultivated using the rhizobox approach. Sediments from three compartments of the rhizobox: root (R), near-rhizosphere (including five sub-compartments of one mm width, N1-N5) and non-rhizosphere (>5 mm, Non), were sampled. The 16S rRNA gene library was used to investigate the diversity of M. oxyfera-like bacteria in these sediments. RESULTS: Methylomirabilis oxyfera-like bacteria were found in all three sections, with all 16S rRNA gene sequences belonging to 16 operational taxonomic units (OTUs). A maximum of six OTUs was found in the N1 sub-compartment of the near-rhizosphere compartment and a minimum of four in the root compartment (R) and N5 near-rhizosphere sub-compartment. Indices of bacterial community diversity (Shannon) and richness (Chao1) were 0.73-1.16 and 4-9, respectively. Phylogenetic analysis showed that OTU1-11 were classified into group b, while OTU12 was in a new cluster of NC10. DISCUSSION: Our results confirmed the existence of M. oxyfera-like bacteria in the rhizosphere microenvironment of the submerged plant P. crispus. Group b of M. oxyfera-like bacteria was the dominant group in this study as opposed to previous findings that both group a and b coexist in most other environments. Our results indicate that understanding the ecophysiology of M. oxyfera-like bacteria group b may help to explain their existence in the rhizosphere sediment of aquatic plant.

8.
Front Microbiol ; 8: 2127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29180985

RESUMO

Paddy fields are important ecosystems, as rice is the primary food source for about half of the world's population. Paddy fields are impacted by nitrogen fertilization and are a major anthropogenic source of methane. Microbial diversity and methane metabolism were investigated in the upper 60 cm of a paddy soil by qPCR, 16S rRNA gene amplicon sequencing and anoxic 13C-CH4 turnover with a suite of electron acceptors. The bacterial community consisted mainly of Acidobacteria, Chloroflexi, Proteobacteria, Planctomycetes, and Actinobacteria. Among archaea, Euryarchaeota and Bathyarchaeota dominated over Thaumarchaeota in the upper 30 cm of the soil. Bathyarchaeota constituted up to 45% of the total archaeal reads in the top 5 cm. In the methanogenic community, Methanosaeta were generally more abundant than the versatile Methanosarcina. The measured maximum methane production rate was 444 nmol gdwh-1, and the maximum rates of nitrate-, nitrite-, and iron-dependent anaerobic oxidation of methane (AOM) were 57 nmol, 55 nmol, and 56 nmol gdwh-1, respectively, at different depths. qPCR revealed a higher abundance of 'Candidatus Methanoperedens nitroreducens' than methanotrophic NC10 phylum bacteria at all depths, except at 60 cm. These results demonstrate that there is substantial potential for AOM in fertilized paddy fields, with 'Candidatus Methanoperedens nitroreducens' archaea as a potential important contributor.

9.
Water Res ; 99: 244-252, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27176548

RESUMO

Managing nitrogen and carbon cycles in engineered and natural ecosystems is an environmental challenge. In this manuscript, we report a process which connects these two cycles with immense ecological and engineering significance. Sediments, collected from Jordan River in Salt Lake City, Utah were used as seed to start a laboratory-scale denitrification coupled to anaerobic methane oxidation (n-DAMO) reactor fed with methane (CH4) and nitrite (NO2(-)). Methane (CH4)-dependent denitrification in sediments of a nutrient-impaired river was found to be in the range of 40 nmol kg(-1) d(-1) to 70 nmol kg(-1) d(-1). Post 19 months of operation of the lab scale reactor, the n-DAMO reactor achieved nitrite removal rate of 2.88 mmol L(-1) d(-1). Enrichment of n-DAMO prokaryotes was evident from the increase in 16S rRNA gene copy number of bacteria belonging to the NC10 phylum in the reactor, corroborating with increase in the oxidation rates of CH4 coupled with NO2(-)-N removal from 21 µM to 190 µM of CH4 d(-1). Based on stable isotope experiments by other researchers, nitric oxide dismutase (nod) functional gene was hypothesized to be responsible for splitting nitric oxide to nitrogen and oxygen and this internally generated oxygen is utilized by n-DAMO prokaryotes to oxidize methane gas. Primers targeting the unique nitric oxide dismutase (nod) gene were developed and tested on the enrichment culture for the first time. This revealed that n-DAMO organisms are closely related yet distinct from, the M. oxyfera which had been enriched in earlier studies. The results emphasize tremendous future promise to use these novel organisms for wastewater treatment purposes, especially to take advantage of the dissolved methane present in anaerobic digester effluents.


Assuntos
Desnitrificação , Metano , Anaerobiose , Ecossistema , Oxirredução , RNA Ribossômico 16S/genética
10.
Environ Sci Pollut Res Int ; 23(6): 5627-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26578374

RESUMO

Denitrification coupled to anaerobic methane oxidation is a recently discovered process performed by bacteria affiliated to the NC10 phylum. These microorganisms could play important roles in the energy-efficient way of anaerobic wastewater treatment where residual dissolved methane might be removed at the expense of nitrate or nitrite. The difficulty to enrich these microorganisms due to a slow growth rate, especially at low temperatures, limited its application in engineering field. In this study, an NC10 bacteria community was enriched from Taihu sediments by a membrane biofilm bioreactor at ambient temperature of 10-25 °C. After 13 months enrichment, the maximum denitrification rate of the enriched culture reached 0.54 mM day(-1) for nitrate and 1.06 mM day(-1) for nitrite. Anaerobic methane oxidation coupled denitrification was estimated from the (13)C-labeled CO2 ((13)CO2) production during batch incubations with (13)CH4. Furthermore, analysis of 16S rRNA genes clone library confirmed the presence of NC10 phylum bacteria and fluorescence in situ hybridization showed that NC10 bacteria dominated the reactor. All of the results indicated the NC10 bacteria community was competitive in terms of treating nitrate-contaminated water or wastewater under natural conditions.


Assuntos
Bactérias/metabolismo , Biofilmes , Reatores Biológicos , Desnitrificação , Sedimentos Geológicos , Microbiologia do Solo , Purificação da Água , Reatores Biológicos/microbiologia , Hibridização in Situ Fluorescente , Metano/metabolismo , RNA Ribossômico 16S/genética , Temperatura , Águas Residuárias
11.
Front Microbiol ; 3: 269, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905032

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo), which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process mediated by "Candidatus Methylomirabilis oxyfera." M. oxyfera is affiliated with the "NC10" phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described microorganisms. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is a process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA