Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Fluoresc ; 34(2): 599-608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37329379

RESUMO

An innovative simple, sensitive, and selective method has been developed and validated for quantification of hazardous Allura red (AR, E129) dye in beverages. Allura red (AR) is a synthetic dye that is commonly used in the food industry to give foods a bright and appealing color. The method is based on microwave-assistant nitrogen-doped carbon quantum dots (N@CQDs) from a very cheap source with a high quantum yield equal to (36.60%). The mechanism of the reaction is based on an ion-pair association complex between AR and nitrogen-doped carbon quantum dots (N@CQDs) at pH 3.2. The reaction between AR and N@CQDs led to a quenching effect of the fluorescence intensity of N@CQDs at 445 nm after excitation at 350 nm. Moreover, the quantum method's linearity covered the range between 0.07 and 10.0 µg mL- 1 with a regression coefficient is 0.9992. The presented work has been validated by ICH criteria. High-resolution transmission electron microscopy (HR-TEM), X-ray photon spectroscopy (XPS), Zeta potential measurements, fluorescence, UV-VIS, and FTIR spectroscopy have all been used to fully characterize of the N@CQDs. The N@CQDs were successfully utilized in different applications (beverages) with high accuracy.


Assuntos
Compostos Azo , Corantes de Alimentos , Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Nitrogênio/química , Limite de Detecção , Bebidas
2.
J Fluoresc ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743378

RESUMO

To address an accurate detection of heavy metal ions in Baijiu production, a nitrogen-doping carbon quantum dots (N-CQDs) was prepared by hydrothermal method from citric acid and urea. The as-prepared N-CQDs had an average particle size of 2.74 nm, and a large number of functional groups (amino, carbonyl group, etc.) attached on its surface, which obtained a 9.6% of quantum yield (QY) with relatively high and stable fluorescence performance. As a fluorescent sensor, the fluorescence of N-CQDs at 380 nm excitation wavelength could be quenched quantitatively by adding Cu2+, due to the dynamic quenching of electron transfer caused by the binding of amine groups and Cu2+, which showed excellent sensitivity and selectivity to Cu2+ in the range of 0.5-5 µM with a detection limit (LOD) of 0.032 µM. In addition, the N-CQDs as well as could be applied to quantitative determine alcohol content in the range of 10-80 V/V% depending on the fluorescence enhancement. Upon the experiment, the fluorescent mechanism was studied by Molecular dynamics (MD) simulations, which demonstrated that solvent effect played an influential role on sensing alcohol content in Baijiu. Overall, the work provided a theoretically guide for the design of fluorescence sensors to monitor heavy metal ion in liquid drinks and sense alcohol content.

3.
J Fluoresc ; 34(2): 571-578, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37314534

RESUMO

Green and economical self-doped nitrogen-containing fluorescent carbon quantum dots (N-CQDs) were synthesized using a one-pot hydrothermal treatment method. The optical and structural properties of the N-CQDs were investigated in detail by UV-vis and fluorescence spectroscopy, X-ray diffraction (XRD) techniques, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) spectroscopy, and elemental analysis illustrate the surface function and composition of N-CQDs. N-CQDs emit a broad fluorescence between365 Ì´ 465 nm and fluoresce most strongly at the excitation wavelength of 415 nm. Meanwhile, Cr (VI) could significantly burst the fluorescence intensity of N-CQDs. N-CQDs showed an excellent sensitivity and selectivity to Cr (VI), which exhibited good linearity in the range of 0 Ì´ 40 µmol/L with a detection limit of 0.16 µmol/L. In addition, the mechanism of Fluorescence quenching of N-CQDs by Cr (VI) was investigated. This work well provides a research idea for the preparation of green carbon quantum dots from biomass and their use for the detection of metal ions.

4.
Environ Res ; 247: 118301, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272291

RESUMO

Limited utilization of photogenerated charge carriers in titanium dioxide under visible light have hinder its application development. To address this challenge, a novel N-doped carbon quantum dots (N-CQDs) and oxygen vacancies (OVs) synergistically decorated on TiO2 (P25) was synthesized through a facile one-step hydrothermal method. Under visible light irradiation, the first order reaction rate constants of formaldehyde (HCHO) photocatalytic oxidation by OVs-TiO2 and N-CQDs/OVs-TiO2 was significantly higher than that of pristine P25, with 10.1 and 16.7 folds increase, respectively. Characterization results confirmed the generation of OVs on the surface of N-CQDs/TiO2 composite. The optical and electrochemical experiments suggested the electron capture center effect of OVs and the properties of N-CQDs in unique up-converted photoluminescence, efficient charge separation, as well as significant adsorption in visible light region. In addition, the work function also clarified that photoelectrons could transfer from N-CQDs to OVs-TiO2. Furthermore, different relative humidity and electron paramagnetic resonance (EPR) experiments demonstrated that the hydroxyl radical (•OH) was the dominant reactive radical in HCHO photodegradation. The •O2- could also enhance the photodegradation efficiency of HCHO. This work provides an in-depth understanding on the complementary roles of N-CQDs and OVs and is helpful for designing metallic oxide photocatalysts for volatile organic compounds removal.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Gases , Oxigênio , Pontos Quânticos/química , Luz , Formaldeído , Catálise
5.
Luminescence ; 39(6): e4801, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38855811

RESUMO

Atopic dermatitis (AD) is a persistent, inflammatory skin condition that impacts approximately 15 to 20% of children and 1 to 3% of adults globally. Common skin manifestations include papules, papulovesicular, and brown or red patches with swelling, crusting, and flaking. Therefore, the drug abrocitinib (ABR) was approved by the US FDA as an oral treatment for atopic dermatitis. The present study outlines the development of innovative, thermostable, and pH-stable organic solvent-free nitrogen-doped carbon dots (N@CQDs) synthesized through a one-step method for evaluating ABR with a notable quantum yield of 33.84% to minimize the use of organic solvents. Their cost-effectiveness, eco-friendly characteristics, and outstanding photocatalytic properties have established them as a promising alternative to conventional luminescent techniques like fluorescent dyes and luminous derivatization technique. The reaction of ABR with N@CQDs led to a significant decrease in the luminescent response of the produced green and stable carbon quantum dots at 513 nm. The detection range was determined to be 1.0-150.0 ng mL-1, with a lower limit of quantitation (LOQ) equal to 0.52 ng mL-1 based on the linear graph. The green method effectively used for analysis of ABR in pharmaceutical tablets and pharmacokinetic study with high sensitivity.


Assuntos
Carbono , Nitrogênio , Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Nitrogênio/química , Humanos , Pirimidinas/química , Pirimidinas/sangue , Pirimidinas/síntese química , Fluorometria , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Solventes/química , Estrutura Molecular
6.
J Fluoresc ; 33(3): 1101-1110, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36576682

RESUMO

The neuro-stimulant anti-narcoleptic drug as modafinil (MOD) is used to treatment neurological conditions caused by COVID-19. MOD was used to treatment narcolepsy, shift-work sleep disorder, and obstructive sleep apnea-related sleepiness. So, an innovative, quick, economical, selective, and ecologically friendly procedure was carried out. A highly sensitive N@CQDs technique was created from green Eruca sativa leaves in about 4 min using microwave synthesis at 700 w. The quantum yield of the synthesized N@CQDs was found to be 41.39%. By increasing the concentration of MOD, the quantum dots' fluorescence intensity was gradually quenched. After being excited at 445 nm, the fluorescence reading was recorded at 515 nm. The linear range was found to be in the range 50 - 700 ng mL-1 with lower limit of quantitation (LOQ) equal to 45.00 ng mL-1. The current method was fully validated and bio analytically according to (US-FDA and ICH) guidelines. Full characterization of the N@CQDs has been conducted by high resolution transmission electron microscope (HRTEM), Zeta potential measurement, fluorescence, UV-VIS, and FTIR spectroscopy. Various experimental variables including pH, QDs concentration and the reaction time were optimized. The proposed study is simply implemented for the therapeutic drug monitoring system (TDMS) and various clinical laboratories for further pharmacokinetic research.


Assuntos
COVID-19 , Pontos Quânticos , Humanos , Pontos Quânticos/química , Modafinila , Carbono/química , Nitrogênio/química , Micro-Ondas , Corantes Fluorescentes/química
7.
Luminescence ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088021

RESUMO

Vanillin is a flavouring agent that is prohibited for use in infant food products with ages lower than 6 months. Excessive vanillin usage could lead to eating disorders, nausea, headache, and vomiting. Therefore, it is essential to control the contents of vanillin in food samples, especially in infant formula. Here, we developed a highly sensitive nanosensor for vanillin based on using green synthesized highly fluorescent (QY = 29.5%) N-doped carbon quantum dots (N-CQDs) as a turn-off fluorescent nanoprobe. The N-doped CQDs synthesis was adopted using citrus bulb squeeze extract and the commonly used fertilizer, urea, as substrates. After mixing with vanillin, the fluorescence of the N-CQDs was largely quenched in a vanillin concentration-dependent manner. The sensing conditions were optimized by quality-by-design using a two-level full factorial design (22 FFD). The N-doped CQDs could detect vanillin in the range 0.1-12.0 µg/ml with a limit of detection of 0.013 µg/ml. Next, a smartphone imaging-based assay combined with a UV chamber was adopted and applied for vanillin determination. This simple detection technique showed sensitivity similar to that of the conventional fluorimetric method. Both conventional and smartphone-based methods were successfully applied for the determination of vanillin in infant milk formula and biscuits and could detect real vanillin concentrations in the analyzed samples with high % recoveries (94.5% to 105.5%). At last, the biocompatibility of the newly synthesized N-CQDs was tested, and it was found to be an excellent candidate for cancer cell imaging.

8.
J Fluoresc ; 30(6): 1281-1285, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32809113

RESUMO

The fluorescent properties of nitrogen doped carbon quantum dots (NCQDs) prepared through microwave assisted green method has been used as label free fluorescent probe for selective and sensitive detection of malachite green (MG) in water. The optical responses revealed that the NCQDs are highly stable and have good fluorescent quantum yield. The NCQDs were used to detect the Malchite Green in Mili Q water. Reduction in the fluorescence response was monitored in the range 17.12-128.43 µM of MG dissolved in Mili Q water. Linear response was observed in the range, 10-80 µM. The calculated value of limit of detection is 5.16 µM and the sensitivity is (0.03536 ± 0.00001) µM-1. The future application of this work is that it can be employed to detect MG in the tap water and other natural sources of water.


Assuntos
Carbono/química , Corantes Fluorescentes/química , Nitrogênio/química , Pontos Quânticos/química , Corantes de Rosanilina/análise , Corantes de Rosanilina/química , Água/química , Limite de Detecção , Micro-Ondas , Espectrometria de Fluorescência
9.
Mikrochim Acta ; 187(9): 536, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870369

RESUMO

Amine group-containing isoreticular metal-organic framework (IRMOF-3) particles are utilized for the first time as a trinitrotoluene (TNT) sensing material. IRMOF-3 particles are synthesized using zinc nitrate as a metal precursor and 2-amino-1,4-benzenedicarboxylic acid as a linker. The nitrogen-doped carbon quantum dots (NCQDs) are synthesized from citric acid and ethylenediamine as carbon and nitrogen precursor, respectively. The NCQDs are conjugated with IRMOF-3 particles as IRMOF-3/NCQDs. The TEM micrograph revealed the average size of IRMOF-3 particles to be 363.66 nm. The photoluminescence emission intensity of IRMOF-3 particles at λem 430 nm is highly increased in the presence of NCQDs (λex 330 nm). Both the as-synthesized IRMOF-3 and IRMOF-3/NCQD particles are explored for TNT detection to compare the effect of NCQDs on the IRMOF-3 particle surface. Lower limit of detection (7.5 × 10-8 M) and higher Stern-Volmer constant (4.46 × 106 M-1) are achieved by IRMOF-3/NCQD particles. The association constant also increased from 5.3 × 104 to 2.78 × 106 M-1 after the conjugation of IRMOF-3 particles with NCQDs. Moreover, enhanced selectivity for TNT over trinitrophenol is achieved using the IRMOF-3/NCQD particles. Graphical Abstract.

10.
J Fluoresc ; 27(5): 1597-1605, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28401410

RESUMO

In this paper, a rapid, simple and highly sensitive method with dual-readout (colorimetric and fluorometric) based on the nanometal surface energy transfer (NSET) between nitrogen-doped carbon quantum dots (NCQDs) and gold nanoparticles (AuNPs) for detection of biothiols is described. Highly luminescent NCQDs were prepared via a simple one-step hydrothermal method by applying sucrose and glycine as carbon and nitrogen sources. The results showed the obtained NCQDs had an average particle diameter of 5 nm and highly luminescent. The maximum emission wavelength was 438 nm with an excitation wavelength of 360 nm. In this system, NCQDs and AuNPs were respectively treated as energy donors and energy acceptors, which enable the nanometal surface energy transfer (NSET) from the NCQDs to the AuNPs, quenching the fluorescence. However, biothiols was used as a competitor in the NSET by the strongly Au-S bonding to release NCQDs from the Au surface, which subsequently produces fluorescent signal recovery and the red-to-purple color change quickly. This probe showed rapid response, high selectivity and sensitivity for biothiols with dual colorimetric and fluorescent turn-on signal changes. The low detection limit was calculated as 20 nM by using L-cysteine acted as target melocules. The method was also successfully applied to the determination of biothiols in human serum samples, and the results were satisfying.


Assuntos
Técnicas Biossensoriais/métodos , Carbono/química , Ouro/química , Nanopartículas Metálicas/química , Nitrogênio/química , Pontos Quânticos/química , Compostos de Sulfidrila/sangue , Transferência de Energia , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Espectrometria de Fluorescência
11.
Carbohydr Polym ; 343: 122477, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174100

RESUMO

A simple, selective, and affordable dual fluorescence-colorimetric indicator for hydrogen sulfide was developed based on a complex of copper nanoparticles and N-doped carbon quantum dots (CuNPs/NCQDs). Real-time and visual freshness tracking of fish was done using a colorimetric indicator by incorporating CuNPs/NCQDs into agar hydrogel (AH-CuNPs/NCQDs). The fluorescence response of the CuNPs/NCQDs solution is quenched upon exposure to H2S. The field-emission scanning electron microscopy image of the AH-CuNPs/NCQDs film revealed a unified structure. The prepared indicator exhibited a good and irreversible response to H2S, with a LOD of 91.36 and a LOQ of 276.86 µM, based on the localized surface plasmon resonance (LSPR) mechanism. The X-ray photoelectron spectrometer and Fourier transform infrared spectrometer results confirmed the formation of a CuS bond in the colorimetric indicator exposed to fish spoilage. The prepared indicator demonstrated good stability and remained unaffected by pH or other volatile compounds. Notably, there was a strong correlation between ΔΕ and fish freshness parameters (pH, TV-BN, and TVC). Light green, pale yellow, and dark yellow colors, respectively, indicated freshness, semi-freshness, and spoilage of fish during storage in the refrigerator. Overall, the prepared indicator can be effectively used for detecting spoilage in meat products as a highly sensitive freshness indicator.


Assuntos
Ágar , Colorimetria , Cobre , Peixes , Hidrogéis , Sulfeto de Hidrogênio , Pontos Quânticos , Pontos Quânticos/química , Animais , Colorimetria/métodos , Cobre/química , Hidrogéis/química , Ágar/química , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Nanopartículas Metálicas/química , Carbono/química , Alimentos Marinhos/análise , Limite de Detecção
12.
Int J Biol Macromol ; 278(Pt 4): 134965, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179084

RESUMO

The major objective of this research revolves around the integration of polypyrrole (PPy) and various concentrations of nitrogen-doped carbon quantum dots (N-CQDs) into a polyacrylamide (PAm)-grafted hydroxyethyl cellulose (gHEC) to produce gHEC@PPy@N-CQDs bionanocomposites that possess environmentally sustainable properties. The intercalation and uniform distribution of N-CQDs inside the gHEC@PPy matrix have been demonstrated through the analysis of data obtained from X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The samples underwent analysis using thermogravimetric analysis (TGA and DTG) as well as scanning and transmission electron microscopy. The improved dispersion of PPy and 4 % N-CQDs inside the matrix led to enhanced electrical characteristics of the graphene-hybridized metal bionanocomposite. The peculiar optical and photoluminescence emission observed in the gHEC@PPy@N-CQDs bionanocomposites can be attributed to the surface groups of N-CQDs and the transition between CN and CN. This hypothesis suggests that these factors play a significant role in determining the observed optical properties. The main goal is to identify distinctive and captivating applications for these bionanocomposites across several domains, including electronics, optical and light-emitting devices with a broad spectrum of colors, and bioimaging applications.


Assuntos
Carbono , Celulose , Nanocompostos , Nitrogênio , Polímeros , Pirróis , Pontos Quânticos , Celulose/química , Celulose/análogos & derivados , Pontos Quânticos/química , Pirróis/química , Nitrogênio/química , Polímeros/química , Nanocompostos/química , Carbono/química , Resinas Acrílicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Luminescência , Difração de Raios X
13.
ACS Appl Mater Interfaces ; 16(13): 16601-16611, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502203

RESUMO

Carbon Quantum dots (CQDs) are widely studied because of their good optical and electronic characteristics and because they can easily generate photocarriers. Nitrogen-doped CQDs (NCQDs) may exhibit improved hydrophilic, optical, and electron-transfer properties, which are conducive to photocatalytic hydrogen evolution. In this paper, NCQD-modified ZnS catalysts were successfully prepared. Under the irradiation of the full spectrum, the H2 evolution rate of the optimal catalyst 0.25 wt % NCQDs/ZnS achieves 5.70 mmol g-1 h-1, which is 11.88, 43.84, and 5.14 times the values of ZnS (0.48 mmol g-1 h-1), NCQDs (0.13 mmol g-1 h-1), and CQDs/ZnS (1.11 mmol g-1 h-1), respectively. Furthermore, it shows good stability, indicating that the modification of NCQDs prevents the photocorrosion and oxidation of ZnS. The enhanced performance is due to NCQD loading, which promotes the separation of photogenerated carriers, optimizes the structures, and increases the specific surface area. This work highlights the fact that NCQD-modified ZnS may afford a new strategy to synthesize ZnS-based photocatalysts with enhanced H2 production performance.

14.
Appl Spectrosc ; 78(3): 329-339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38166449

RESUMO

Terbium- and nitrogen-doped carbon quantum dots (Tb,N@CQDs) were greenly created employing microwave synthesis from plum juice with terbium nitrate. The synthesis of Tb,N@CQDs was fast (7 min) with a high quantum yield (35.44%). Tb,N@CQDs were fully characterized using transmission electron microscopy, Zeta potential analysis, fluorescence, and ultraviolet spectroscopy. Omadacycline (OMC) is a broad-spectrum tetracycline that has been recently approved by the United States Food and Drug Act (FDA) in October 2018. OMC is the first oral aminomethylcycline class antibiotic drug that was authorized for the treatment of acute skin structure infections and community-acquired pneumonia. Tb,N@CQDs exhibited emission at 440 nm after excitation at 360 nm, where their fluorescence intensity showed a reduction upon addition of OMC. The experimental parameters were further studied and optimized. The linear range was between 40 and 60 parts per billion (ppb), with (limit of quantitation) equal to 34.78 ppb. The proposed approach was validated for bioanalytical purposes using FDA guidelines and proved to be straightforward, cheap, highly sensitive, and very selective, which can be used in clinical studies. The developed approach proved to be green using some current assessment metrics and was applied successfully for the determination of OMC in human plasma, milk, and pharmaceutical formulations as well as pharmacokinetic study.


Assuntos
Pontos Quânticos , Humanos , Pontos Quânticos/química , Térbio/química , Tetraciclinas , Carbono/química , Nitrogênio
15.
BMC Chem ; 17(1): 83, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468925

RESUMO

Prucalopride (PCP) is a medication used for the management of constipation via regulating bowel motions. PCP is widely used all over the world. So, novel, rapid, and highly sensitive carbon dots N-CQDs were obtained from Eruca Sativa juice via microwave approach in 4 min. The luminescence power of N-CQDs was declined by the increasing prucalopride concentration at emission 518 nm with linearity ranged from 3.00 to 200.00 ng mL-1. The luminescent antecedent was utilized for the test of PCP in human plasma with the rate of recovery extending from 95.06 to 98.40%. The new technique is an eco-friendly analytical method that can be easily applied in clinical laboratories. This assay is also simple, sensitive, and applied to therapeutic laboratories and subsequent pharmacokinetic studies in several clinical laboratories. Furthermore, the N-CQDs nano-sensor was able to distinguish the target drug from interferents commonly found in human plasma, indicating its high specificity and selectivity for PCP detection.

16.
Environ Pollut ; 325: 121424, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906054

RESUMO

In the present work, we constructed a serials of novel shaddock peel-derived N-doped carbon quantum dots (NCQDs) coupled with BiOBr composites. The result showed that the as-synthesized BiOBr (BOB) was composed of ultrathin square nanosheets and flower-like structure, and NCQDs were uniformly dispersed on the surface of BiOBr. Furthermore, the BOB@NCQDs-5 with optimal NCQDs content displayed the top-flight photodegradation efficiency with ca. 99% of removal rate within 20 min under visible light and possessed excellent recyclability and photostability after 5 cycles. The reason was attributed to relatively large BET surface area, the narrow energy gap, inhibited recombination of charge carriers and excellent photoelectrochemical performances. Meanwhile, the improved photodegradation mechanism and possible reaction pathways were also elucidated in detail. On this basis, the study opens a novel perspective to obtain a highly efficient photocatalyst for practical environment remediation.


Assuntos
Pontos Quânticos , Fotólise , Carbono , Catálise , Luz
17.
Water Res ; 229: 119460, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493700

RESUMO

Bifunctional photocatalytic nanofiltration (PNF) membrane is increasingly concerned in practical micro-polluted water purification, but there are still several bottlenecks that inhibit its practicality. In this context, the feasibility of a novel metal-free and visible light-responsive surface-anchored PNF membrane for simultaneously removing target antibiotics in real sewage effluent in a continuous dynamic process was explored. The results showed that the optimal PNF-4 membrane was expectedly consisted of an inside tight sub-nanopore structured separation layer and an outside thinner, smoother, super hydrophilic mesoporous degradation layer, respectively. Consequently, the activated PNF-4 membrane could synergistically reduce trimethoprim and sulfamethoxazole concentrations to below two orders of magnitude, accompanying with almost constant high water permeability, suggesting that the hydrophilic modification of the mesoporous degradation layer basically offsets its inherent hydraulic resistance. Also, after repeating the fouling-physical rinsing process three times lasted for 78 h, only sporadic adherent contaminants remained onto the top surface, together with the minimal total and irreversible fouling ratios (as low as 7.2% and 1.2%, respectively), strongly demonstrated that PNF-4 membrane displayed good self-cleaning performance. Undoubtedly, this will significantly reduce its potential cleaning frequency and maintenance cost in long-term operation. Meanwhile, the acute and chronic biotoxicities of its permeate to Virbrio qinghaiensis sp. -67 were also reduced sharply to 2.22% and 0.45%, respectively. All of these evidences suggest that the dual functions of PNF-4 membrane are synergetic in an uninterrupted permeating process. It will provide useful insights for continuously enhancing the practicality and effectiveness of PNF membrane in actual micro-polluted water purification scenarios.


Assuntos
Antibacterianos , Purificação da Água , Esgotos , Luz , Sulfametoxazol , Trimetoprima , Membranas Artificiais , Purificação da Água/métodos
18.
Sci Total Environ ; 885: 163773, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146826

RESUMO

With the development of the petrochemical industry, a large amount of naphthenic acids in petrochemical wastewater was accumulated in the environment, causing serious environmental pollution. Most of the commonly used methods for the determination of naphthenic acids have the characteristics of high energy consumption, complicated pretreatment, long detection cycle, and the need to send samples to analytical laboratories. Therefore, it is essential to develop an efficient and low-cost field analytical method for rapidly naphthenic acids quantify. In this study, nitrogen-rich carbon quantum dots (N-CQDs) based on natural deep eutectic solvents (NADESs) was successfully synthesized by a one-step solvothermal method. The fluorescence property of carbon quantum dots was used to achieve the quantitative detection of naphthenic acids in wastewater. The prepared N-CQDs showed excellent fluorescence and stability, showed a good response to naphthenic acids and a linear relationship in the concentration range of naphthenic acids from 0.03 to 0.09 mol‧L-1. The effect of common interferents in petrochemical wastewater on the detection of naphthenic acids by N-CQDs was investigated. The results showed that N-CQDs had good specificity for the detection of naphthenic acids. N-CQDs was applied to the naphthenic acids wastewater, and the concentration of naphthenic acids in the wastewater was successfully calculated according to the fitting equation.

19.
J Colloid Interface Sci ; 610: 518-526, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863551

RESUMO

Owing to the exorbitant CO2 activation energy and unsatisfactory photogenerated charge separation efficiency, CO2 photoconversion still faces enormous challenges. In this study, a directional electron transfer channel has been established by decorating N-doped carbon quantum dots (N-CQDs) on the surface of Bi4MoO9 nanoparticles to ensure that more active electrons can participate in the CO2 reduction. The conduction band of Bi4MoO9 nanoparticles is calculated to be -1.55 eV versus the normal hydrogen electrode (NHE), pH = 7, which is negative enough to attain the photocatalytic CO2 reduction potential of -0.53 eV versus NHE, pH = 7. CO2 adsorption curves and in situ Fourier transform infrared spectra reveal that N-CQDs facilitate surface CO2 adsorption and activation, as well as CO desorption. In addition, steady-state photoluminescence and photoelectrochemical tests prove that the charge separation efficiency can be greatly enhanced by constructing N-CQDs/Bi4MoO9 composites. In the presence of pure water, N-CQDs/Bi4MoO9-2 composite achieved a CO yield of 16.22 µmol g-1 after 5 h Xe light illumination, which was 3.24 times higher than that of pure Bi4MoO9 (4.98 µmol g-1). This study offers a distinctive approach to the optimization of Bi4MoO9 photocatalysts and their application in energy conversion.

20.
Sci Total Environ ; 811: 152389, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34923018

RESUMO

Trace Co2+, when present in large quantities, is harmful to the environment and therefore cannot be ignored. Inductively coupled plasma mass spectrometry (ICP-MS) is a standard method used to detect metal ions, however, detecting trace Co2+ under high saline conditions can be challenging. Similarly, existing Co2+ treatment methods are prone to secondary pollution and have high energy consumption. Therefore, it is necessary to find an efficient and non-polluting method for Co2+ detection and treatment. This study successfully synthesized nitrogen-rich carbon quantum dots (N-CQDs) based on natural deep eutectic solvents (NADES) using a one-step solvothermal method. The prepared N-CQDs exhibited excellent fluorescence and high salt tolerance. The simultaneous detection and treatment of trace Co2+ in water under high salinity conditions were achieved for the first time. The response of the N-CQDs to Co2+ under saline condition was linear in the range of 5-250 µM with a limit of detection (LOD) of 1.2269 µM. Feasibility of practical application was assessed by quantitative detection of Co2+ in real water samples. Furthermore, the N-CQDs can treat Co2+, and the removal rate was 99.98%.


Assuntos
Pontos Quânticos , Carbono , Solventes Eutéticos Profundos , Nitrogênio , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA