Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biol Proced Online ; 26(1): 9, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594619

RESUMO

BACKGROUND: MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), original found in synthetic heroin, causes Parkinson's disease (PD) in human through its metabolite MPP+ by inhibiting complex I of mitochondrial respiratory chain in dopaminergic neurons. This study explored whether yeast internal NADH-quinone oxidoreductase (NDI1) has therapeutic effects in MPTP- induced PD models by functionally compensating for the impaired complex I. MPP+-treated SH-SY5Y cells and MPTP-treated mice were used as the PD cell culture and mouse models respectively. The recombinant NDI1 lentivirus was transduced into SH-SY5Y cells, or the recombinant NDI1 adeno-associated virus (rAAV5-NDI1) was injected into substantia nigra pars compacta (SNpc) of mice. RESULTS: The study in vitro showed NDI1 prevented MPP+-induced change in cell morphology and decreased cell viability, mitochondrial coupling efficiency, complex I-dependent oxygen consumption, and mitochondria-derived ATP. The study in vivo revealed that rAAV-NDI1 injection significantly improved the motor ability and exploration behavior of MPTP-induced PD mice. Accordingly, NDI1 notably improved dopaminergic neuron survival, reduced the inflammatory response, and significantly increased the dopamine content in striatum and complex I activity in substantia nigra. CONCLUSIONS: NDI1 compensates for the defective complex I in MPP+/MPTP-induced models, and vastly alleviates MPTP-induced toxic effect on dopaminergic neurons. Our study may provide a basis for gene therapy of sporadic PD with defective complex I caused by MPTP-like substance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39014863

RESUMO

There are some natural products from plants that can prevent and treat disease. Metformin, a derivative of galegine, is the basic drug to treat diabetes. Moreover, this molecule has anticancer properties that inhibit cancer cell growth and proliferation. In this study, the main interactions of galegine and metformin with various cancer-involved proteins, including mitochondrial alpha-glycerophosphate dehydrogenase, yeast NADH dehydrogenase, and transforming growth factor-ß1, were surveyed by molecular docking and molecular dynamics simulations. The results showed that each of the proteins makes complexes with the ligands via favorable non-bonded interactions, especially hydrogen bond interactions. There is greater stability for complexes containing galegine based on the root mean square deviation results. The higher structure compactness is also found in galegine receptors than in metformin receptors. Calculation of ΔGbinding, using the MM/PBSA methodology, shows that the binding energy values for metformin and galegine in interaction with each of the receptors are almost the same, and galegine has similar binding properties with metformin in interaction with the studied protein receptors. Therefore, galegine, a natural ingredient with better binding properties to cancer-involved proteins than metformin (with various side effects), can be applied as a new drug for cancer treatment.

3.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201561

RESUMO

Glaucoma, a leading cause of blindness, is a multifactorial condition that leads to progressive loss of retinal ganglion cells (RGCs) and vision. Therapeutic interventions based on reducing ocular hypertension are not always successful. Emerging features of glaucoma include mitochondrial dysfunction and oxidative stress. In the current study, NDI1-based gene therapy, which improves mitochondrial function and reduces reactive oxygen species, was delivered intraocularly via an adeno-associated viral vector (AAV). This AAV-NDI1 therapy protected RGCs from cell death in treated (1552.4 ± 994.0 RGCs/mm2) versus control eyes (1184.4 ± 978.4 RGCs/mm2, p < 0.05) in aged DBA/2J mice, a murine model of glaucoma. The photonegative responses (PhNRs) of RGCs were also improved in treated (6.4 ± 3.3 µV) versus control eyes (5.0 ± 3.1 µV, p < 0.05) in these mice. AAV-NDI1 also provided benefits in glaucomatous human lamina cribrosa (LC) cells by significantly increasing basal and maximal oxygen consumption rates and ATP production in these cells. Similarly, NDI1 therapy significantly protected H2O2-insulted primary porcine LC cells from oxidative stress. This study highlights the potential utility of NDI1 therapies and the benefits of improving mitochondrial function in the treatment of glaucoma.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Glaucoma , Estresse Oxidativo , Células Ganglionares da Retina , Animais , Dependovirus/genética , Glaucoma/terapia , Glaucoma/metabolismo , Glaucoma/patologia , Camundongos , Terapia Genética/métodos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Humanos , Vetores Genéticos/genética , Mitocôndrias/metabolismo , Camundongos Endogâmicos DBA , Espécies Reativas de Oxigênio/metabolismo , Suínos
4.
Mol Med ; 28(1): 29, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255803

RESUMO

PURPOSE: Parkinson's disease (PD) is the second most common neurodegenerative disease without cure or effective treatment. This study explores whether the yeast internal NADH-quinone oxidoreductase (NDI1) can functionally replace the defective mammalian mitochondrial complex I, which may provide a gene therapy strategy for treating sporadic PD caused by mitochondrial complex I dysfunction. METHOD: Recombinant lentivirus expressing NDI1 was transduced into SH-SY5Y cells, or recombinant adeno-associated virus type 5 expressing NDI1 was transduced into the right substantia nigra pars compacta (SNpc) of mouse. PD cell and mouse models were established by rotenone treatment. The therapeutic effects of NDI1 on rotenone-induced PD models in vitro and vivo were assessed in neurobehavior, neuropathology, and mitochondrial functions, by using the apomorphine-induced rotation test, immunohistochemistry, immunofluorescence, western blot, complex I enzyme activity determination, oxygen consumption detection, ATP content determination and ROS measurement. RESULTS: NDI1 was expressed and localized in mitochondria in SH-SY5Y cells. NDI1 resisted rotenone-induced changes in cell morphology, loss of cell viability, accumulation of α-synuclein and pS129 α-synuclein, mitochondrial ROS production and mitochondria-mediated apoptosis. The basal and maximal oxygen consumption, mitochondrial coupling efficiency, basal and oligomycin-sensitive ATP and complex I activity in cell model were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. NDI1 was efficiently expressed in dopaminergic neurons in the right SNpc without obvious adverse effects. The rotation number to the right side (NDI1-treated side) was significantly increased compared to that to the left side (untreated side) in mouse model. The number of viable dopaminergic neurons, the expression of tyrosine hydroxylase, total and maximal oxygen consumption, mitochondrial coupling efficiency and complex I enzyme activity in right substantia nigra, and the content of dopamine in right striatum were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. CONCLUSION: Yeast NDI1 can rescue the defect of oxidative phosphorylation in rotenone-induced PD cell and mouse models, and ameliorate neurobehavioral and neuropathological damages. The results may provide a basis for the yeast NDI1 gene therapy of sporadic PD caused by mitochondrial complex I dysfunction.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina , Animais , Dependovirus , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Terapia Genética , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Doenças Neurodegenerativas/terapia , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Yeast ; 32(10): 629-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26173916

RESUMO

Mitochondria of Saccharomyces cerevisiae lack the respiratory complex I, but contain three rotenone-insensitive NADH dehydrogenases distributed on both the external (Nde1 and Nde2) and internal (Ndi1) surfaces of the inner mitochondrial membrane. These enzymes catalyse the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. Due to the high resolution of the Blue Native PAGE (BN-PAGE) technique combined with digitonin solubilization, several bands with NADH dehydrogenase activity were observed on the gel. The use of specific S. cerevisiae single and double mutants of the external alternative elements (ΔNDE1, ΔNDE2, ΔNDE1/ΔNDE2) showed that the high and low molecular weight complexes contained the Ndi1. Some of the Ndi1 associations took place with complexes III and IV, suggesting the formation of respirasome-like structures. Complex II interacted with other proteins to form a high molecular weight supercomplex with a molecular mass around 600 kDa. We also found that the majority of the Ndi1 was in a dimeric form, which is in agreement with the recently reported three-dimensional structure of the protein.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , NADH Desidrogenase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Dimerização , Transporte de Elétrons , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/genética , NAD/metabolismo , NADH Desidrogenase/química , NADH Desidrogenase/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
Neurobiol Dis ; 58: 281-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23816754

RESUMO

Mitochondrial defects can have significant consequences on many aspects of neuronal physiology. In particular, deficiencies in the first enzyme complex of the mitochondrial respiratory chain (complex I) are considered to be involved in a number of human neurodegenerative diseases. The current work highlights a tight correlation between the inhibition of complex I and the state of axonal myelination of the optic nerve. Exposing the visual pathway of rats to rotenone, a complex I inhibitor, resulted in disorganization of the node of Ranvier. The structure and function of the node depend on specific cell adhesion molecules, among others, CASPR (contactin associated protein) and contactin. CASPR and contactin are both on the axonal surfaces and need to be associated to be able to anchor their myelin counterpart. Here we show that inhibition of mitochondrial complex I by rotenone in rats induces reactive oxygen species, disrupts the interaction of CASPR and contactin couple, and thus damages the organization and function of the node of Ranvier. Demyelination of the optic nerve occurs as a consequence which is accompanied by a loss of vision. The physiological impairment could be reversed by introducing an alternative NADH dehydrogenase to the mitochondria of the visual system. The restoration of the nodal structure was specifically correlated with visual recovery in the treated animal.


Assuntos
Doenças Desmielinizantes/patologia , Complexo I de Transporte de Elétrons/metabolismo , Nervo Óptico/patologia , Nós Neurofibrosos/patologia , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Contagem de Células , Contactinas/genética , Contactinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Inseticidas/farmacologia , Masculino , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nervo Óptico/efeitos dos fármacos , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Long-Evans , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Fatores de Tempo , Vias Visuais/efeitos dos fármacos , Vias Visuais/metabolismo , Vias Visuais/ultraestrutura
7.
Pharmaceutics ; 15(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839646

RESUMO

AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease. Optimisation of NDI1 (ophNdi1) substantially increased expression in vivo, protected RGCs and increased visual function, as assessed by optokinetic and photonegative response, in a rotenone-induced murine model. In addition, ophNdi1 increased cellular oxidative phosphorylation and ATP production and protected cells from rotenone insult to a significantly greater extent than wild type NDI1. Significantly, ophNdi1 treatment of complex I deficient patient-derived fibroblasts increased oxygen consumption and ATP production rates, demonstrating the potential of ophNdi1 as a candidate therapy for ocular disorders where mitochondrial deficits comprise an important feature.

8.
Biomolecules ; 9(4)2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934776

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that exhibits aberrant protein aggregation and mitochondrial dysfunction. Ndi1, the yeast mitochondrial NADH dehydrogenase (complex I) enzyme, is a single subunit, internal matrix-facing protein. Previous studies have shown that Ndi1 expression leads to improved mitochondrial function in models of complex I-mediated mitochondrial dysfunction. The trans-mitochondrial cybrid cell model of PD was created by fusing mitochondrial DNA-depleted SH-SY5Y cells with platelets from a sporadic PD patient. PD cybrid cells reproduce the mitochondrial dysfunction observed in a patient's brain and periphery and form intracellular, cybrid Lewy bodies comparable to Lewy bodies in PD brain. To improve mitochondrial function and alter the formation of protein aggregates, Ndi1 was expressed in PD cybrid cells and parent SH-SY5Y cells. We observed a dramatic increase in mitochondrial respiration, increased mitochondrial gene expression, and increased PGC-1α gene expression in PD cybrid cells expressing Ndi1. Total cellular aggregated protein content was decreased but Ndi1 expression was insufficient to prevent cybrid Lewy body formation. Ndi1 expression leads to improved mitochondrial function and biogenesis signaling, both processes that could improve neuron survival during disease. However, other aspects of PD pathology such as cybrid Lewy body formation were not reduced. Consequently, resolution of mitochondrial dysfunction alone may not be sufficient to overcome other aspects of PD-related cellular pathology.


Assuntos
Técnicas de Cocultura , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Doença de Parkinson/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Genetics ; 208(3): 1181-1194, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301906

RESUMO

Meiosis is a specific type of cell division that is essential for sexual reproduction in most eukaryotes. Mitochondria are crucial cellular organelles that play important roles in reproduction, though the detailed mechanism by which the mitochondrial respiratory chain functions during meiosis remains elusive. Here, we show that components of the respiratory chain (Complexes I-V) play essential roles in meiosis initiation during the sporulation of budding yeast, Saccharomyces cerevisiae Any functional defects in the Complex I component Ndi1p resulted in the abolishment of sporulation. Further studies revealed that respiratory deficiency resulted in the failure of premeiotic DNA replication due to insufficient IME1 expression. In addition, respiration promoted the expression of RIM101, whose product inhibits Smp1p, a negative transcriptional regulator of IME1, to promote meiosis initiation. In summary, our studies unveiled the close relationship between mitochondria and sporulation, and uncover a novel meiosis initiation pathway that is regulated by the respiratory chain.


Assuntos
Transporte de Elétrons , Meiose , Saccharomyces cerevisiae/fisiologia , Trifosfato de Adenosina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Esporos Fúngicos , Transcrição Gênica
10.
Oncol Lett ; 14(5): 6298-6306, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29113281

RESUMO

Phenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis. Cellular and mitochondrial oxygen consumption was determined using a Seahorse Bioscience Flux analyser and an Oroboros Oxygraph respirometer. Cells were transfected using electroporation and permeabilized for in situ mitochondrial functional analysis using digitonin. Standard protocols were used for immunoblotting and proteins were separated on denaturing gels. Phenformin was effective in reducing the viability of SH-SY5Y cells, causing G1 cell cycle arrest and inducing apoptosis. Bioenergetic analysis demonstrated that phenformin significantly decreased oxygen consumption in a dose- and time-dependent manner. The sensitivity of oxygen consumption in SH-SY5Y cells to phenformin was circumvented by the expression of NADH-quinone oxidoreductase 1, a ubiquinone oxidoreductase, suggesting that complex I may be a target of phenformin. As a result of this inhibition, adenosine monophosphate protein kinase is activated and acetyl-coenzyme A carboxylase is inhibited. To the best of our knowledge, the current study is the first to demonstrate the efficacy and underlying mechanism by which phenformin directly effects the survival of neuroblastoma cancer cells.

11.
Front Genet ; 6: 206, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26124772

RESUMO

Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function. The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabditis elegans with notable improvements in reproduction and whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression. We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny, and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals without affecting their respiration rate and ATP content. We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g., NDUFV1, NDUFS1, NDUFS6, NDUFS8, or GRIM-19 human orthologs) in wild type animals is significantly reduced in the Ndi1p expressing worm. All together these results open up the perspective to identify new genes involved in complex I function, assembly, or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression.

12.
Neurobiol Aging ; 34(10): 2322-30, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23601674

RESUMO

More than 130 different mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been associated with amyotrophic lateral sclerosis but the mechanism of this toxicity remains controversial. To gain insight into the importance of the zinc site in the pathogenesis of SOD1 in vivo, we generated a Drosophila model with transgenic expression of a zinc-deficient human SOD1. Expression of zinc-deficient SOD1 in Drosophila resulted in a progressive movement defect with associated mitochondrial cristae vacuolization and reductions in adenosine triphosphate (ATP) levels. Furthermore, these flies are sensitized to mitochondrial toxins, paraquat, and zinc. Importantly, we show that the zinc-deficient SOD1-induced motor defect can be ameliorated by supplementing the endogenous fly respiratory chain machinery with the single-subunit NADH-ubiquinone oxidoreductase from yeast (NADH is nicotinamide adenine dinucleotide, reduced form.). These results demonstrate that zinc-deficient SOD1 is neurotoxic in vivo and suggest that mitochondrial dysfunction plays a critical role in this toxicity. The robust behavioral, pathological, and biochemical phenotypes conferred by zinc-deficient SOD1 in Drosophila have general implications for the role of the zinc ion in familial and sporadic amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Atividade Motora/genética , Superóxido Dismutase/genética , Zinco/deficiência , Zinco/fisiologia , Trifosfato de Adenosina/deficiência , Animais , Modelos Animais de Doenças , Progressão da Doença , Drosophila , Feminino , Expressão Gênica , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/patologia , Transtornos dos Movimentos/genética , Mutação , Superóxido Dismutase/toxicidade , Vacúolos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA