RESUMO
BACKGROUND: Recent improvements in sequencing technologies enabled detailed profiling of genomic features. These technologies mostly rely on short reads which are merged and compared to reference genome for variant identification. These operations should be done with computers due to the size and complexity of the data. The need for analysis software resulted in many programs for mapping, variant calling and annotation steps. Currently, most programs are either expensive enterprise software with proprietary code which makes access and verification very difficult or open-access programs that are mostly based on command-line operations without user interfaces and extensive documentation. Moreover, a high level of disagreement is observed among popular mapping and variant calling algorithms in multiple studies, which makes relying on a single algorithm unreliable. User-friendly open-source software tools that offer comparative analysis are an important need considering the growth of sequencing technologies. RESULTS: Here, we propose Comparative Sequencing Analysis Platform (COSAP), an open-source platform that provides popular sequencing algorithms for SNV, indel, structural variant calling, copy number variation, microsatellite instability and fusion analysis and their annotations. COSAP is packed with a fully functional user-friendly web interface and a backend server which allows full independent deployment for both individual and institutional scales. COSAP is developed as a workflow management system and designed to enhance cooperation among scientists with different backgrounds. It is publicly available at https://cosap.bio and https://github.com/MBaysanLab/cosap/ . The source code of the frontend and backend services can be found at https://github.com/MBaysanLab/cosap-webapi/ and https://github.com/MBaysanLab/cosap_frontend/ respectively. All services are packed as Docker containers as well. Pipelines that combine algorithms can be customized and new algorithms can be added with minimal coding through modular structure. CONCLUSIONS: COSAP simplifies and speeds up the process of DNA sequencing analyses providing commonly used algorithms for SNV, indel, structural variant calling, copy number variation, microsatellite instability and fusion analysis as well as their annotations. COSAP is packed with a fully functional user-friendly web interface and a backend server which allows full independent deployment for both individual and institutional scales. Standardized implementations of popular algorithms in a modular platform make comparisons much easier to assess the impact of alternative pipelines which is crucial in establishing reproducibility of sequencing analyses.
Assuntos
Variações do Número de Cópias de DNA , Instabilidade de Microssatélites , Humanos , Reprodutibilidade dos Testes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , SoftwareRESUMO
Background: Gastric cancer has been ranked the third leading cause of cancer death worldwide. Its detection at the early stage is difficult because patients mostly experience vague and non-specific symptoms in the early stages. Methods: The RNA-seq datasets of both gastric cancer and normal samples were considered and processed. The obtained differentially expressed genes were then subjected to functional enrichment analysis and pathway analysis. An implicit atomistic molecular dynamics simulation was executed on the selected protein receptor for 50 ns. The electrostatics, surface potential, radius of gyration, and macromolecular energy frustration landscape were computed. Results: We obtained a large number of DEGs; most of them were down-regulated, while few were up-regulated. A DAVID analysis showed that most of the genes were prominent in the KEGG and Reactome pathways. The most prominent GAD disease classes were cancer, metabolic, chemdependency, and infection. After an implicit atomistic molecular dynamics simulation, we observed that DLC1 is electrostatically optimized, stable, and has a reliable energy frustration landscape, with only a few maximum energy frustrations in the loop regions. It has a good functional and binding affinity mechanism. Conclusions: Our study revealed that DLC1 could be used as a potential druggable target for specific subsets of gastric cancer.
Assuntos
Neoplasias Gástricas , Humanos , RNA-Seq , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Perfilação da Expressão Gênica , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Supressoras de Tumor/genéticaRESUMO
The focus of the current review is multi-fold and compares the diversity and abundance of fungi on the ocular surface by the conventional culture-based method with the more sensitive, high throughput, culture-independent NGS method. The aim is to highlight the existence of a core ocular mycobiome and explore the transition of the ocular fungal microbiota from the normal eye to the diseased eye. PubMed, Google Scholar and Medline were used to search for publications and reviews related to cultivable fungi and the mycobiome of the normal and diseased eye. The conventional cultivable approach and the NGS approach confirm that the eye has its own mycobiome and several confounding factors (age, gender, ethnicity etc.) influence the mycobiome. Further, dysbiosis in the mycobiome appears to be associated with ocular diseases and thus impacts the health of the human eye. Considering that the mycobiome of the eye is influenced by several confounding factors and also varies with respect to the disease status of the eye there is a need to extensively explore the mycobiome under different physiological conditions, different ethnicities, geographical regions etc. Such studies would unravel the diversity and abundance of the mycobiomes and contribute to our understanding of ocular health. Research focused on ocular mycobiomes may eventually help to build a targeted and individualized treatment.
Assuntos
Micobioma , Olho , Fungos , HumanosRESUMO
The diagnostic and prognostic value of miRNAs in cutaneous melanoma (CM) has been broadly studied and supported by advanced bioinformatics tools. From early studies using miRNA arrays with several limitations, to the recent NGS-derived miRNA expression profiles, an accurate diagnostic panel of a comprehensive pre-specified set of miRNAs that could aid timely identification of specific cancer stages is still elusive, mainly because of the heterogeneity of the approaches and the samples. Herein, we summarize the existing studies that report several miRNAs as important diagnostic and prognostic biomarkers in CM. Using publicly available NGS data, we analyzed the correlation of specific miRNA expression profiles with the expression signatures of known gene targets. Combining network analytics with machine learning, we developed specific non-linear classification models that could successfully predict CM recurrence and metastasis, based on two newly identified miRNA signatures. Subsequent unbiased analyses and independent test sets (i.e., a dataset not used for training, as a validation cohort) using our prediction models resulted in 73.85% and 82.09% accuracy in predicting CM recurrence and metastasis, respectively. Overall, our approach combines detailed analysis of miRNA profiles with heuristic optimization and machine learning, which facilitates dimensionality reduction and optimization of the prediction models. Our approach provides an improved prediction strategy that could serve as an auxiliary tool towards precision treatment.
Assuntos
Melanoma/genética , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizado de Máquina , Melanoma/patologia , Metástase Neoplásica/genética , Estadiamento de Neoplasias , Prognóstico , Recidiva , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma/genética , Melanoma Maligno CutâneoRESUMO
Smokeless tobacco (ST) consumption keeps human oral health at high risk which is one of the major reasons for oral tumorigenesis. The chemical constituents of the ST products have been well discussed; however, the inhabitant microbial diversity of the ST products is less explored especially from south Asian regions. Therefore, the present investigation discusses the bacteriome-based analysis of indigenous tobacco products. The study relies on 16S amplicon-based bacteriome analysis of Indian smokeless tobacco (ST) products using a metagenomic approach. A total of 59,15,143 high-quality reads were assigned to 34 phyla, 82 classes, 176 orders, 256 families, 356 genera, and 154 species using the SILVA database. Of the phyla (> 1%), Firmicutes dominate among the Indian smokeless tobacco followed by Proteobacteria, Bacteroidetes, and Actinobacteria (> 1%). Whereas, at the genera level (> 1%), Lysinibacillus, Dickeya, Terribacillus, and Bacillus dominate. The comparative analysis between the loose tobacco (LT) and commercial tobacco (CT) groups showed no significant difference at the phyla level, however, only three genera (Bacillus, Aerococcus, and Halomonas) were identified as significantly different between the groups. It indicates that CT and LT tobacco share similar bacterial diversity and poses equal health risks to human oral health. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt 2.0) based analysis uncovered several genes involved in nitrate/nitrite reduction, biofilm formation, and pro-inflammation that find roles in oral pathogenesis including oral cancer. The strong correlation analysis of these genes with several pathogenic bacteria suggests that tobacco products pose a high bacterial-derived risk to human health. The study paves the way to understand the bacterial diversity of Indian smokeless tobacco products and their putative functions with respect to human oral health. The study grabs attention to the bacterial diversity of the smokeless tobacco products from a country where tobacco consumers are rampantly prevalent however oral health is of least concern.
Assuntos
Lobelia , Tabaco sem Fumaça , Humanos , Tabaco sem Fumaça/microbiologia , Nicotiana , Filogenia , Bactérias/genéticaRESUMO
PURPOSE: The aim of this study was to increase knowledge of genes associated with anorexia nervosa (AN) and their diagnostic offer, using a next generation sequencing (NGS) panel for the identification of genetic variants. The rationale underlying this test is that we first analyze the genes associated with syndromic forms of AN, then genes that were found to carry rare variants in AN patients who had undergone segregation analysis, and finally candidate genes intervening in the same molecular pathways or identified by GWAS or in mouse models. METHODS: We developed an NGS gene panel and used it to screen 68 Italian AN patients (63 females, 5 males). The panel included 162 genes. Family segregation study was conducted on available relatives of probands who reported significant genetic variants. RESULTS: In our analysis, we found potentially deleterious variants in 2 genes (PDE11A and SLC25A13) associated with syndromic forms of anorexia and predicted deleterious variants in the following 12 genes: CD36, CACNA1C, DRD4, EPHX2, ESR1, GRIN2A, GRIN3B, LRP2, NPY4R, PTGS2, PTPN22 and SGPP2. Furthermore, by Sanger sequencing of the promoter region of NNAT, we confirmed the involvement of this gene in the pathogenesis of AN. Family segregation studies further strengthened the possible causative role of CACNA1C, DRD4, GRIN2A, PTGS2, SGPP2, SLC25A13 and NNAT genes in AN etiology. CONCLUSION: The major finding of our study is the confirmation of the involvement of the NNAT gene in the pathogenesis of AN; furthermore, this study suggests that NGS-based testing can play an important role in the diagnostic evaluation of AN, excluding syndromic forms and increasing knowledge of the genetic etiology of AN. LEVEL OF EVIDENCE: Level I, experimental study.
Assuntos
Anorexia Nervosa , Sequenciamento de Nucleotídeos em Larga Escala , 3',5'-GMP Cíclico Fosfodiesterases/genética , Animais , Anorexia Nervosa/diagnóstico , Anorexia Nervosa/genética , Ciclo-Oxigenase 2/genética , Feminino , Humanos , Masculino , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação , Proteína Tirosina Fosfatase não Receptora Tipo 22/genéticaRESUMO
BACKGROUND: The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization. RESULTS: We developed a dedicated bioinformatics pipeline for the purpose of building a cell-specific catalogue of unannotated lncRNAs. The pipeline performs ab initio transcript identification, pseudoalignment and uses new methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data. We next applied it on MSCs, and our pipeline was able to highlight novel lncRNAs with high cell specificity. Furthermore, with original and efficient approaches for functional prediction, we demonstrated that each candidate represents one specific state of MSCs biology. CONCLUSIONS: We showed that our approach can be employed to harness lncRNAs as cell markers. More specifically, our results suggest different candidates as potential actors in MSCs biology and propose promising directions for future experimental investigations.
Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Sequência de Bases , Biologia Computacional , RNA Longo não Codificante/genética , Análise de Sequência de RNARESUMO
One of the pivotal steps in aptamer selection is the amplification of target-specific oligonucleotides by thermophilic DNA polymerases; it can be a challenging task if nucleic acids possessing modified nucleotides are to be amplified. Hence, the identification of compatible DNA polymerase and modified nucleotide pairs is necessary for effective selection of aptamers with unnatural nucleotides. We present an in-depth study of using 5-indolyl-AA-dUTP (TAdUTP) to generate oligonucleotide libraries for aptamer selection. We found that, among the eight studied DNA polymerases, only Vent(exo-) and KOD XL are capable of adapting TAdUTP, and that replacing dTTP did not have a significant effect on the productivity of KOD XL. We demonstrated that water-in-oil emulsion PCR is suitable for the generation of aptamer libraries of modified nucleotides. Finally, high-throughput sequence analysis showed that neither the error rate nor the PCR bias was significantly affected by using TAdUTP. In summary, we propose that KOD XL and TAdUTP could be effectively used for aptamer selection without distorting the sequence space of random oligonucleotide libraries.
Assuntos
Aptâmeros de Nucleotídeos/análise , DNA Polimerase Dirigida por DNA/metabolismo , Técnica de Seleção de Aptâmeros , Temperatura , Aptâmeros de Nucleotídeos/genética , DNA Polimerase Dirigida por DNA/química , Biblioteca Gênica , Conformação de Ácido Nucleico , Reação em Cadeia da PolimeraseRESUMO
Kabuki syndrome (KS) is characterized by typical facial features and patients are also affected by multiple congenital anomalies, of which congenital heart anomalies (CHAs) are present in 28.0 to 80.0%. In approximately 75.0% of patients, the genetic causes of KS are caused by mutation in the KMT2D gene. Although KS is a well-characterized syndrome, reaching the diagnosis in neonates is still challenging. Namely, newborns usually display mild facial features; therefore the diagnosis is mainly based on congenital malformations. In our case, a newborn was referred for next generation sequencing (NGS) testing due to the prenatally observed CHA. After birth, a ventricular septal defect (VSD), vesicoureteral reflux, muscular hypotonia, cleft palate, mild microcephaly, and some dysmorphic features, were noted. The NGS analysis was performed on the proband's genomic DNA using the TruSight One Sequencing Panel, which enriches exons of 4813 genes with clinical relevance to the disease. After variant calling, NGS data analysis was predominantly focused on rare variants in genes involved in VSD, microcephaly, and muscular hypotonia; features observed predominantly in our proband. With the aforementioned protocol, we were able to determine the previously unreported de novo frameshift deletion in the KMT2D gene resulting in translation termination. Although our proband is a typical representative of KS, his diagnosis was reached only after NGS analysis. Our proband thus represents the importance of genotypephenotype driven NGS analysis in diagnosis of patients with congenital anomalies.
RESUMO
BACKGROUND: As a result of its simplicity and high efficiency, the CRISPR-Cas system has been widely used as a genome editing tool. Recently, CRISPR base editors, which consist of deactivated Cas9 (dCas9) or Cas9 nickase (nCas9) linked with a cytidine or a guanine deaminase, have been developed. Base editing tools will be very useful for gene correction because they can produce highly specific DNA substitutions without the introduction of any donor DNA, but dedicated web-based tools to facilitate the use of such tools have not yet been developed. RESULTS: We present two web tools for base editors, named BE-Designer and BE-Analyzer. BE-Designer provides all possible base editor target sequences in a given input DNA sequence with useful information including potential off-target sites. BE-Analyzer, a tool for assessing base editing outcomes from next generation sequencing (NGS) data, provides information about mutations in a table and interactive graphs. Furthermore, because the tool runs client-side, large amounts of targeted deep sequencing data (< 1 GB) do not need to be uploaded to a server, substantially reducing running time and increasing data security. BE-Designer and BE-Analyzer can be freely accessed at http://www.rgenome.net/be-designer/ and http://www.rgenome.net/be-analyzer /, respectively. CONCLUSION: We develop two useful web tools to design target sequence (BE-Designer) and to analyze NGS data from experimental results (BE-Analyzer) for CRISPR base editors.
Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Internet/instrumentação , HumanosRESUMO
Objectives: Klinefelter syndrome (KS) is one of the most common sex-chromosome disorders as it affects up to 1 in every 600-1000 newborn males. Men with KS carry one extra X chromosome and they usually present a 47,XXY karyotype, but less frequent variants have also been reported in literature. KS typical symptoms include tall stature, gynecomastia, broad hips, hypogonadism and absent spermatogenesis. The syndrome is also related to a wide range of cognitive deficits, among which language-based learning disabilities and verbal cognition impairment are frequently diagnosed. The present study was carried out to investigate the role of mitochondrial subunits in KS, since the molecular mechanisms underlying KS pathogenesis are not fully understood. Methods: The study was performed by the next generation sequencing analysis and qRT-PCR assay. Results: We were able to identify a significant down-expression of mitochondrial encoded NADH: ubiquinone oxidoreductase core subunit 6 (MT-ND6) in men with KS. Conclusion: It is known that defects of the mtDNA encoding mitochondrial subunits are responsible for the malfunction of Complex I, which will eventually lead to the Complex I deficiency, the most common respiratory chain defect in human disorders. Since it has been shown that decreased Complex I protein levels could induce apoptosis, wehypothesizethat the above-mentioned MT-ND6 down-expression contributes to the wide range of phenotypes observed in men with KS.
Assuntos
DNA Mitocondrial/metabolismo , Perfilação da Expressão Gênica , Síndrome de Klinefelter/genética , Mitocôndrias/genética , NADH Desidrogenase/metabolismo , Adulto , Estudos de Casos e Controles , Regulação para Baixo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , Fenótipo , Transcriptoma , Adulto JovemRESUMO
BACKGROUND: Quantification and identification of microbial genomes based on next-generation sequencing data is a challenging problem in metagenomics. Although current methods have mostly focused on analyzing bacteria whose genomes have been sequenced, such analyses are, however, complicated by the presence of unknown bacteria or bacteria whose genomes have not been sequence. RESULTS: We propose a method for detecting unknown bacteria in environmental samples. Our approach is unique in its utilization of short reads only from 16S rRNA genes, not from entire genomes. We show that short reads from 16S rRNA genes retain sufficient information for detecting unknown bacteria in oral microbial communities. CONCLUSION: In our experimentation with bacterial genomes from the Human Oral Microbiome Database, we found that this method made accurate and robust predictions at different read coverages and percentages of unknown bacteria. Advantages of this approach include not only a reduction in experimental and computational costs but also a potentially high accuracy across environmental samples due to the strong conservation of the 16S rRNA gene.
Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Microbiota/genética , RNA Ribossômico 16S/genética , Algoritmos , Marcadores Genéticos , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma , Análise de Sequência de DNA/métodosRESUMO
BACKGROUND: Next generation sequencing (NGS) technology allows laboratories to investigate virome composition in clinical and environmental samples in a culture-independent way. There is a need for bioinformatic tools capable of parallel processing of virome sequencing data by exactly identical methods: this is especially important in studies of multifactorial diseases, or in parallel comparison of laboratory protocols. RESULTS: We have developed a web-based application allowing direct upload of sequences from multiple virome samples using custom parameters. The samples are then processed in parallel using an identical protocol, and can be easily reanalyzed. The pipeline performs de-novo assembly, taxonomic classification of viruses as well as sample analyses based on user-defined grouping categories. Tables of virus abundance are produced from cross-validation by remapping the sequencing reads to a union of all observed reference viruses. In addition, read sets and reports are created after processing unmapped reads against known human and bacterial ribosome references. Secured interactive results are dynamically plotted with population and diversity charts, clustered heatmaps and a sortable and searchable abundance table. CONCLUSIONS: The Vipie web application is a unique tool for multi-sample metagenomic analysis of viral data, producing searchable hits tables, interactive population maps, alpha diversity measures and clustered heatmaps that are grouped in applicable custom sample categories. Known references such as human genome and bacterial ribosomal genes are optionally removed from unmapped ('dark matter') reads. Secured results are accessible and shareable on modern browsers. Vipie is a freely available web-based tool whose code is open source.
Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Software , Vírus/genética , Variação Genética , Humanos , Microbiota/genéticaRESUMO
The characterization of unusual telomere sequence sheds light on patterns of telomere evolution, maintenance and function. Plant species from the closely related genera Cestrum, Vestia and Sessea (family Solanaceae) lack known plant telomeric sequences. Here we characterize the telomere of Cestrum elegans, work that was a challenge because of its large genome size and few chromosomes (1C 9.76 pg; n = 8). We developed an approach that combines BAL31 digestion, which digests DNA from the ends and chromosome breaks, with next-generation sequencing (NGS), to generate data analysed in RepeatExplorer, designed for de novo repeats identification and quantification. We identify an unique repeat motif (TTTTTTAGGG)n in C. elegans, occurring in ca. 30 400 copies per haploid genome, averaging ca. 1900 copies per telomere, and synthesized by telomerase. We demonstrate that the motif is synthesized by telomerase. The occurrence of an unusual eukaryote (TTTTTTAGGG)n telomeric motif in C. elegans represents a switch in motif from the 'typical' angiosperm telomere (TTTAGGG)n . That switch may have happened with the divergence of Cestrum, Sessea and Vestia. The shift in motif when it arose would have had profound effects on telomere activity. Thus our finding provides a unique handle to study how telomerase and telomeres responded to genetic change, studies that will shed more light on telomere function.
Assuntos
Cestrum/genética , Cromossomos de Plantas/genética , Telômero/química , Telômero/genéticaRESUMO
The virus obtained from a swab sample ID: S66 in Hiroshima was reported to have a single T-base insertion in the ORF8 coding region. However, no T insertion was observed when we determined the genomic sequence using another method. We then extracted RNA from the S66 swab sample and sequenced the insertion site using the Sanger method. The resulting waveform was disrupted beyond the insertion site, suggesting the presence of a mixed population of viruses with different sequences. Through plasmid cloning of RT-PCR amplification fragments and virus cloning by limiting dilution, along with TIDE analysis to determine the ratio of components from the Sanger sequencing waveform, it was confirmed that the sample contained a mixture of viruses with varying numbers of T-base insertions. The virus with one T insertion (T1+) was predominant in 70-75 % of the genomes, and genomes with T0, T2+, T3+, T4+, and T5+ were also detected. No T-base insertion mutations were observed in the ORF8 region in three other SARS-CoV-2 samples. In the S66 sample, a C27911T point mutation near the insertion site in the ORF8 region resulted in a sequence of seven or more consecutive T bases, which was the cause of the T-base insertion. When the cloned S66 virus (T1+) was passaged in cultured cells, there was a tendency for viruses with more insertion bases to become dominant with successive generations, suggesting that the T-base insertion was due to polymerase stuttering. The insertion of T bases resulted in synthesis of deletion mutants of the ORF8 protein, but no significant change was observed in the proliferation of the viruses in cultured cells. A search of the GenBank database using NCBI BLAST for viruses similar to S66 with T-base insertion mutations revealed hundreds of viruses widely distributed on the molecular phylogenetic tree. These base insertion viruses were thought to have occasionally arisen during the virus infection process. This study suggests one mechanism of insertion mutations in SARS-CoV-2, and it is important to consider the emergence of future mutant strains.
RESUMO
Background: Oncogenic fusions of neurotrophic receptor tyrosine kinase NTRK1, NTRK2, or NTRK3 genes have been found in different types of solid tumors. The treatment of patients with TRK fusion cancer with a first-generation TRK inhibitor (such as larotrectinib or entrectinib) is associated with high response rates (>75%), regardless of tumor histology and presence of metastases. Due to the efficacy of TRK inhibitor therapy of larotrectinib and entrectinib, it is clinically important to identify patients accurately and efficiently with TRK fusion cancer. In this retrospective study, we provide unique data on the incidence of oncogenic NTRK gene fusions in patients with brain metastases (BM) and gliomas. Methods: 140 samples fixed and paraffin-embedded tissue (FFPE) of adult patients (59 of gliomas [17 of WHO grade II, 20 of WHO grade III and 22 glioblastomas] and 81 of brain metastasis (BM) of different primary tumors) are analyzed. Identification of NTRK gene fusions is performed using next-generation sequencing (NGS) technology using Focus RNA assay kit (Thermo Fisher Scientific). Results: We identified an ETV6 (5)::NTRK3 (15) fusion event using targeted next-generation sequencing (NGS) in one of 59 glioma patient with oligodendroglioma-grade II, IDH-mutated and 1p19q co-deleted at incidence of 1.69%. Five additional patients harboring TMPRSS (2)::ERG (4) were identified in pancreatic carcinoma brain metastasis (BM), prostatic carcinoma BM, endometrium BM and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted. A FGFR3 (17)::TACC3 (11) fusion was identified in one carcinoma breast BM. Aberrant splicing to produce EGFR exons 2-7 skipping mRNA, and MET exon 14 skipping mRNA were identified in glioblastoma and pancreas carcinoma BM, respectively. Conclusions: This study provides data on the incidence of NTRK gene fusions in brain tumors, which could strongly support the relevance of innovative clinical trials with specific targeted therapies (larotrectinib, entrectinib) in this population of patients. FGFR3 (17)::TACC3 (11) rearrangement was detected in breast carcinoma BM with the possibility of using some specific targeted therapies and TMPRSS (2)::ERG (4) rearrangements occur in a subset of patients with, prostatic carcinoma BM, endometrium BM, and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted, where there are yet no approved ERG-directed therapies.
RESUMO
Isogenic H/N/KRAS-less mouse embryonic fibroblast (MEF) cell lines have been developed to assist in cell-based assays of RAS inhibitors. The quality control assessment of a panel of these isogenic MEFs is described here, with a focus on ensuring the proper insertion of the desired mutant RAS transgene, a determination of gene copy number, and an investigation of potential off-target mutations which could lead to phenotypes which are undesired in downstream experiments. Using this suite of quality control tools, a MEF cell line can be readily validated, and researchers can be assured of the rationale for an observed phenotype.
Assuntos
Fibroblastos , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Fenótipo , Linhagem Celular , Mutação , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.
RESUMO
The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.
RESUMO
SMARCA4-deficient undifferentiated uterine sarcoma (SDUS) is a highly invasive single-gene malignant tumor caused by mutations in the SMARCA4 gene. SDUS has a poor prognosis, with no established treatment strategy at present. Further, there is a lack of relevant research on the role of the immune microenvironment in SDUS worldwide. Here, we report a case of SDUS that was diagnosed and analysed using morphological, immunohistochemical, and molecular detection techniques, along with the analysis of the immune microenvironment. By immunohistochemistry, the tumor cells showed retained INI-1 expression, focal CD10 expression, and loss of BRG1, CK-pan, synaptophysin, desmin, and ER expression. Further, some of the immune cells expressing CD3 and CD8 had infiltrated into the SDUS, but no PD-L1 expression was detected. The multiple immunofluorescent staining results showed that a proportion of the immune cells and SDUS cells expressed CD8/CD68/PD-1/PD-L1. Therefore, our report will help in the diagnostic awareness of SDUS.