Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(19): e202303862, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165004

RESUMO

Novel rhodium-catalyzed [3+3] annulations of diazoenals and α-amino ketones has been disclosed here. The reactivity of diazoenals has been switched from carbenoid to vinylogous NH-insertion by altering acyclic to cyclic α-amino ketones. In this direction, we report an efficient strategy to synthesize 1,2-dihydropyridines (DHPs) and fused 1,4-oxazines. Mechanistic investigation revealed that the formyl group is necessary for carbenoid [3+3] annulation and the cyclohexyl group is the dictating factor for vinylogous NH- insertion. The synthetic utility of 1,2-dihydropyridines was demonstrated by synthesizing piperidine, pyrido[1,2-a]indole, and 2-pyridone scaffolds. Further, structural diversification of fused 1,4-oxazines resulted in the short synthesis of hexahydroquinolin-2(1H)-ones, hexahydro quinolines and tetrahydroquinolinones via ring opening rearrangement and a new oxidative deformylation, respectively.

2.
Carbohydr Res ; 542: 109175, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865797

RESUMO

Hypervalent iodine reagents have undergone significant development and widespread application in the functionalization of carbohydrates. This is primarily attributed to their exceptional properties, including mildness, ease of handling, high selectivity, environmental friendliness, and stability. This review aims to emphasize the utilization of hypervalent iodine compounds in the functionalization of carbohydrates. The present article covers various aspects, including glycal functionalization, C-H or N-H insertion reactions, O-arylations, C-2 deoxy-2-iodo glycoconjugates, iminosugars, and C3-oxo-glycals, achieved through the use of hypervalent iodine reagents/catalysts. Additionally, it explores hypervalent iodine-mediated bioactive 1,3,5-trioxocane synthesis followed by rare sugars synthesis.


Assuntos
Carboidratos , Iodo , Iodo/química , Carboidratos/química
3.
Chemistry ; 19(31): 10128-31, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23788414

RESUMO

And, to round off … A series of Ir(III) 5-membered metallacycles with an Ir-CH2 bond, react with aq. NH2OH with formation of hydride 6-membered iridacyclic complexes, which contain an Ir-NH=CH- imine functionality (see scheme).

4.
ACS Appl Mater Interfaces ; 11(23): 20796-20803, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31090395

RESUMO

Aqueous rechargeable zinc batteries (ARZBs) are desirable for energy storage devices owing to their low cost and abundance of the Zn anode, but their further development is limited by a dearth of ideal cathode materials that can simultaneously possess high capacity and stability. Herein, we employ a layered structure of ammonium vanadium bronze (NH4)0.5V2O5 as the cathode material for ARZBs. The large interlayer distance supported by the NH4+ insertion not only facilitates the Zn2+-ion intercalation/deintercalation but also improves the electrochemical stability in ARZBs. As a result, the layered structural (NH4)0.5V2O5 cathode delivers a high capacity up to 418.4 mA h g-1 at a current density of 0.1 A g-1. A reversible capacity of 248.8 mA h g-1 is still retained after 2000 cycles and a capacity retention of 91.4% was maintained at 5 A g-1. Furthermore, in comparison with previously reported Zn-ion batteries, the Zn/(NH4)0.5V2O5 battery achieves a prominent high energy density of 418.4 W h kg-1 while delivering a high power density of 100 W kg-1. The results would enlighten and push the ammonium vanadium compounds to a brand new stage for the application of aqueous batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA