RESUMO
Neutral electrochemical nitrate (NO3-) reduction to ammonia involves sluggish and complex kinetics, so developing efficient electrocatalysts at low potential remains challenging. Here, we report a domain-confined etching strategy to construct RuxMoy nanoalloys on porous nitrogen-doped carbon by optimizing the Ru-to-Mo ratio, achieving efficient neutral NH3 electrosynthesis. Combining in situ spectroscopy and theoretical simulations demonstrated a rational synergic effect between Ru and Mo in nanoalloys that reinforces *H adsorption and lowers the energy barrier of NO3- hydrodeoxygenation for NH3 production. The resultant Ru5Mo5-NC surpasses 92.8% for NH3 selectivity at the potential range from -0.25 to -0.45 V vs RHE under neutral electrolyte, particularly achieving a high NH3 selectivity of 98.3% and a corresponding yield rate of 1.3 mg h-1 mgcat-1 at -0.4 V vs RHE. This work provides a synergic strategy that sheds light on a new avenue for developing efficient multicomponent heterogeneous catalysts.
RESUMO
N2O is a dominant atmosphere pollutant, causing ozone depletion and global warming. Currently, electrochemical reduction of N2O has gained increasing attention to remove N2O, but its product is worthless N2. Here, we propose a direct eight-electron (8e) pathway to electrochemically convert N2O into NH3. As a proof of concept, using density functional theory calculation, an Fe2 double-atom catalyst (DAC) anchored by N-doped porous graphene (Fe2@NG) was screened out to be the most active and selective catalyst for N2O electroreduction toward NH3 via the novel 8e pathway, which benefits from the unique bent N2O adsorption configuration. Guided by theoretical prediction, Fe2@NG DAC was fabricated experimentally, and it can achieve a high N2O-to-NH3 Faradaic efficiency of 77.8% with a large NH3 yield rate of 2.9 mg h-1 cm-2 at -0.6 V vs RHE in a neutral electrolyte. Our study offers a feasible strategy to synthesize NH3 from pollutant N2O with simultaneous N2O removal.
RESUMO
Chemisorption on organometallic-based adsorbents is crucial for the controlled separation and purification of targeted systems. Herein, oriented 1D NH2-CuBDC·H2O metal-organic frameworks (MOFs) featuring accessible CuII sites are successfully fabricated by bottom-up interfacial polymerization. The prepared MOFs, as deliberately self-assembled secondary particles, exhibit a visually detectable coordination-responsive characteristic induced by the nucleophilic substitution and competitive coordination of guest molecules. As a versatile phase-change chemosorbent, the MOFs exhibit unprecedented NH3 capture (18.83 mmol g-1 at 298 K) and bioethanol dehydration performance (enriching ethanol from 99% to 99.99% within 10 min by direct adsorption separation of liquid mixtures of ethanol and water). Furthermore, the raw materials for preparing the 1D MOFs are inexpensive and readily available, and the facile regeneration with water washing at room temperature effectively minimizes the energy consumption and cost of recycling, enabling it to be the most valuable adsorbent for the removal and separation of target substances.
RESUMO
Electrochemical reduction of NO to NH3 (NORR) offers a prospective method for efficient NH3 electrosynthesis. Herein, we first design single-atom Pd-alloyed Cu (Pd1Cu) as an efficient and robust NORR catalyst at industrial-level current densities (>0.2 A cm-2). Operando spectroscopic characterizations and theoretical computations unveil that Pd1 strongly electronically couples its adjacent two Cu atoms (Pd1Cu2) to enhance the NO activation while promoting the NO-to-NH3 protonation energetics and suppressing the competitive hydrogen evolution. Consequently, the flow cell assembled with Pd1Cu exhibits an unprecedented NH3 yield rate of 1341.3 µmol h-1 cm-2 and NH3-Faradaic efficiency of 85.5% at an industrial-level current density of 210.3 mA cm-2, together with an excellent long-term durability for 200 h of electrolysis, representing one of the highest NORR performances on record.
RESUMO
Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.
RESUMO
Ammonia (NH3) synthesis via the nitrate reduction reaction (NO3RR) offers a competitive strategy for nitrogen cycling and carbon neutrality; however, this is hindered by the poor NO3RR performance under high current density. Herein, it is shown that boron-doped Ti3C2Tx MXene nanosheets can highly efficiently catalyze the conversion of NO3RR-to-NH3 at ambient conditions, showing a maximal NH3 Faradic efficiency of 91% with a peak yield rate of 26.2 mgh-1 mgcat. -1, and robust durability over ten consecutive cycles, all of them are comparable to the best-reported results and exceed those of pristine Ti3C2Tx MXene. More importantly, when tested in a flow cell, the designed catalyst delivers a current density of â1000 mA cm-2 at a low potential of â1.18 V versus the reversible hydrogen electrode and maintains a high NH3 selectivity over a wide current density range. Besides, a Zn-nitrate battery with the catalyst as the cathode is assembled, which achieves a power density of 5.24 mW cm-2 and a yield rate of 1.15 mgh-1 mgcat. -1. Theoretical simulations further demonstrate that the boron dopants can optimize the adsorption and activation of NO3RR intermediates, and reduce the potential-determining step barrier, thus leading to an enhanced NH3 selectivity.
RESUMO
Photocatalytic ammonia synthesis technology is one of the important methods to achieve green ammonia synthesis. Herein, two samples of Cu ion-doped W18 O49 with different morphologies, ultra-thin nanowires (Cu-W18 O49 -x UTNW) and sea urchin-like microspheres (Cu-W18 O49 -x SUMS), are synthesized by a simple solvothermal method. Subsequently, Cu2 O-W18 O49 -x UTNW/SUMS is synthesized by in situ reduction, where the NH3 production rate of Cu2 O-W18 O49 -30 UTNW is 252.4 µmol g-1 h-1 without sacrificial reagents, which is 11.8 times higher than that of the pristine W18 O49 UTNW. The Cu2 O-W18 O49 -30 UTNW sample is rich in oxygen vacancies, which promotes the chemisorption and activation of N2 molecules and makes the N≡N bond easier to dissociate by proton coupling. In addition, the in situ reduction-generated Cu2 O nanoparticles exhibit ideal S-scheme heterojunctions with W18 O49 UTNW, which enhances the internal electric field strength and improves the separation and transfer efficiency of the photogenerated carriers. Therefore, this study provides a new idea for the design of efficient nitrogen fixation photocatalysis.
RESUMO
Perovskite photodetectors with polarization-sensitive properties have gained significant attention due to their potential applications in fields such as imaging and remote sensing. Most perovskite photodetectors concentrate on iodine (I) or bromine (Br)-based materials, primarily due to their straightforward fabrication techniques. The utilization of chloride (Cl)-based perovskites with wider bandgaps, such as CH3NH3PbCl3, is relatively limited. In this work, polarized perovskite photodetectors are prepared by a patterned spatially confined method with polarization sensitivity and excellent optoelectronic properties. The patterned perovskite photodetectors (PP-PDs) not only exhibit outstanding photoelectric conversion performance but also demonstrate polarization sensitivity. PP-PDs showcase remarkable performance, including on/off ratios of 3.4 × 104, an extremely low dark current of 1.56 × 10-11 A, and a rapid response time of microseconds. The responsivity and detectivity of PP-PDs reach 10.6 A W-1 and 3 × 1012 Jones, respectively, positioning them as among the highest-performing MAPbCl3-based photodetectors reported to date. Furthermore, polarization layered imaging sensing is achieved using stepwise scanning of the device. This work provides innovative ideas for realizing high-performance polarized perovskite photodetectors.
RESUMO
PURPOSE: To systematically investigate kinetic metrics and metabolic trapping of [13N]NH3 in organs. METHODS: Eleven participants performed total-body [13N]NH3 dynamic positron emission tomography (PET). Regions of interest were drawn in organs to obtain time-to-activity curves (TACs), which were fitted with an irreversible two-tissue compartment model (2TC) to investigate constant rates K1, k2 and k3, and to calculate Ki. Additionally, one-tissue compartment model using full data (1TCfull) and the first four minutes of data (1TC4min) were fitted to TAC data. K1 and k2 were compared among different models to assess [13N]NH3 trapping in organs. RESULTS: Kinetic rates of [13N]NH3 varied significantly among organs. The mean K1 ranged from 0.049 mL/cm3/min in the muscle to 2.936 mL/cm3/min in the kidney. The k2 and k3 were lowest in the liver (0.001 min- 1) and in the pituitary (0.009 min- 1), while highest in the kidney (0.587 min- 1) and in the liver (0.800 min- 1), respectively. The Ki was largest in the myocardium (0.601 ± 0.259 mL/cm3/min) while smallest in the bone marrow (0.028 ± 0.022 mL/cm3/min). Three groups of organs with similar kinetic characteristics were revealed: (1) the thyroid, the lung, the spleen, the pancreas, and the kidney; (2) the liver and the muscle; and (3) the cortex, the white matter, the cerebellum, the pituitary, the parotid, the submandibular gland, the myocardium, the bone, and the bone marrow. Obvious k3 was identified in multiple organs, and significant changes of K1 in multiple organs and k2 in most organs were found between 2TC and 1TCfull, but both K1 and k2 were comparable between 2TC and 1TC4min. CONCLUSION: The kinetic rates of [13N]NH3 differed among organs with some have obvious 13N-anmmonia trapping. The normal distribution of kinetic metrics of 13N-anmmonia in organs can serve as a reference for its potential use in tumor imaging.
RESUMO
The low temperature activity of Fe-loaded zeolites as selective catalytic reduction of NOx by NH3 (NH3 -SCR) catalysts is a critical drawback for practical application. Here, we found unexpected improvement of low temperature activity by our proposed post-synthetic treatment. An Al-rich zeolite beta (Si/Al=5) is employed as the catalyst support, and the parent sample is dealuminated for higher hydrothermal stability, followed by the liquid-mediated stabilization treatment and impregnation. It is found that stabilized samples feature excellent low temperature activity and high N2 selectivity even for a long-term operation, along with the ability to maintain high NOx conversion after aging. The improved SCR activity should be attributed to abundant acid sites in Al-rich framework and better stabilization of monomeric iron species after the stabilization treatment. Furthermore, the low yield of side product N2 O is probably due to the absence of the generation of NH4 NO3 during NH3 -SCR catalyzed by Fe-loaded zeolites.
RESUMO
Activation of molecular nitrogen by silicon-substituted cyclo[18]carbon and its ability to produce the C17Si-(NH2)2 derivative, as the precursor of NH3, has been recently reported. This specific acquisition has piqued an interest to investigate the possibility of NH3 formation with further addition of H2 molecules in the gaseous reaction media. The current investigations reported in this article show that two moles of molecular H2 generate two molecules of NH3 and a C17Si-H2 byproduct from its precursor. The catalyst gets restored by an inâ situ reaction between some unreacted C17Si-N2 and the byproduct in the media. This reaction also produces the next C17Si-(NH)2 adduct, which restarts the catalytic cycle for NH3 production again.
RESUMO
Cu-exchanged chabazite (Cu-CHA) is widely used for ammonia assisted selective catalytic reduction of nitrogen oxides (NH3-SCR). The Cu+ ions are at low temperatures solvated by NH3 forming mobile [Cu(NH3)2]+ complexes. The dynamic behaviour of the complexes is critical as O2 adsorption requires a pair of complexes to form a [Cu2(NH3)4O2]2+ peroxo-species over which NO couples with NH3. Here we introduce a first principles-based kinetic Monte Carlo approach to explore the effect of the Al-distribution on the reaction kinetics of NH3-SCR over Cu-CHA. The method allows us to scrutinize the interplay between the pairing of [Cu(NH3)2]+ complexes and the reaction landscape for the NH3-SCR reaction over the peroxo-complex. The Al-distribution affects the stability of the [Cu(NH3)2]+ pairs as well as the kinetic parameters of the SCR-reaction. The turn-over frequency is determined by the stability of the [Cu(NH3)2]+ pairs and the relative strength of NO and NH3 adsorption once a pair is present. The results establish the hierarchy of effects that influences the performance of Cu-CHA over NH3-SCR and provide a computational basis for further development of the Cu-CHA material.
RESUMO
Nitrogen oxides (NOx) should be purified according to environmental regulations, being restricted increasingly year by year. A wide variety of denitration technologies, such as selective catalytic reduction (SCR) of NOx to nitrogen (N2) and NOx storage reduction (NSR) to N2 by injecting reducing agents like ammonia (NH3), has so far been developed practically. Sophisticated catalytic approaches are perhaps mandatory for the sustainability in energy including complete purification of NOx. As one of the solutions to overcome problems for environment and resource simultaneously, this concept article focuses on the utilization of reactive nitrogen (Nr) compounds, mainly NOx, for encouraging an opening to consider nitrogen circular economy. For the recycling of NOx via NH3, a challenging but rational catalytic technology can be proposed by an alternate switching the inlet gas between NOx containing oxidative gas and H2 containing reductive one without an operation to change the reaction temperature. Considering the reactivity of NOx higher than that of N2, this kind of NOx to NH3 (NTA) process is promising for synthesizing NH3, being valuable not only as fertilizer but also as fuel in near future.
RESUMO
Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.
RESUMO
Flexible perovskite solar cells (f-PSCs) have achieved significant success. However, high-quality tin dioxide (SnO2) electron transport layers (ETLs) fabricated via chemical bath deposition (CBD) have not been achieved on flexible PEN/ITO substrates. This limitation is primarily due to the corrosion of the poor-quality ITO layer by the strongly acidic CBD solution. Here, we analyzed the reasons for the poor corrosion resistance of ITO films on PEN substrate from multiple perspectives, such as element composition, microstructure, and crystallinity. Then, we proposed a modified CBD method for SnO2films suitable for flexible PEN/ITO substrates. We employed SnCl2·2H2O as the tin source and regulated the pH of the CBD solution by NH3·H2O, which effectively avoided the corrosion of the ITO layer by the CBD solution and achieved high-quality SnO2films on the ITO layers. Compared to the commercial SnO2dispersion, the SnO2films prepared by this method have smaller grains and higher transmittance. As a result, we achieved an unprecedented power conversion efficiency (PCE) of 20.71% for f-PSCs fabricated on PEN/ITO substrates with SnO2ETLs by CBD method. This breakthrough facilitates the development of high-performance f-PSCs by a low-cost and large-scale chemical bath deposition of high-quality ETLs on flexible substrates.
RESUMO
Performance and the stability of the perovskite-based photovoltaic devices are directly linked to existing trap-states or defect profiles at the surface and/or in the bulk of perovskite layers. Hence identification of stemming the defects during perovskite formation is crucial for achieving superior and long-lasting performances. Here, we present the effect of 1-Pentanethiol incorporation into the one-step deposition of perovskite layers. A feasible glove box-free route results in high-quality CH3NH3PbI3layers under highly humid conditions (RH > 50%) but at low temperatures (T< 18 °C). 1-Pentanethiol addition into the washing solvent leads to the refinement of I/Pb stoichiometry, elimination of the iodide deficiencies, and reduction of the trap-state densities. Consequently, a precise amount 1-Pentanethiol addition enhances photovoltaic performances, resulting in a 54% PCE improvement for CH3NH3PbI3-based inverted solar cells.
RESUMO
The byproduct formation in environmental catalysis is strongly influenced by the chemical state and coordination of catalysts. Herein, two Pd/CeO2 catalysts (PdCe-350 and PdCe-800) with varying oxygen vacancies (Ov) and coordination numbers (CN) of Pd were prepared to investigate the mechanism of N2O and NH3 formation during NO reduction by CO. PdCe-350 exhibits a higher density of Ov and Pd sites with higher CN, leading to an enhanced metal-support interaction by electron transformation from the support to Pd. Consequently, PdCe-350 displayed increased levels of byproduct formation. In situ spectroscopies under dry and wet conditions revealed that at low temperatures, the N2O formation strongly correlated with the Ov density through the decomposition of chelating nitro species on PdCe-350. Conversely, at high temperatures, it was linked to the reactivity of Pd species, primarily facilitated by monodentate nitrates on PdCe-800. In terms of NH3 formation, its occurrence was closely associated with the activation of H2O and C3H6, since a water-gas shift or hydrocarbon reforming could provide hydrogen. Both bridging and monodentate nitrates showed activity in NH3 formation, while hyponitrites were identified as key intermediates for both catalysts. The insights provide a fundamental understanding of the intricate relationship among the local coordination of Pd, surface Ov, and byproduct distribution.
Assuntos
Oxigênio , Água , Oxirredução , Análise Espectral , Nitratos/química , CatáliseRESUMO
Water is ubiquitous in various heterogeneous catalytic reactions, where it can be easily adsorbed, chemically dissociated, and diffused on catalyst surfaces, inevitably influencing the catalytic process. However, the specific role of water in these reactions remains unclear. In this study, we innovatively propose that H2O-driven surface lattice oxygen activation in γ-MnO2 significantly enhances low-temperature NH3-SCR. The proton from water dissociation activates the surface lattice oxygen in γ-MnO2, giving rise to a doubling of catalytic activity (achieving 90% NO conversion at 100 °C) and remarkable stability. Comprehensive in situ characterizations and calculations reveal that spontaneous proton diffusion to the surface lattice oxygen reduces the orbital overlap between the protonated oxygen atom and its neighboring Mn atom. Consequently, the Mn-O bond is weakened and the surface lattice oxygen is effectively activated to provide excess oxygen vacancies available for converting O2 into O2-. Therefore, the redox property of Mn-H is improved, leading to enhanced NH3 oxidation-dehydrogenation and NO oxidation processes, which are crucial for low-temperature NH3-SCR. This work provides a deeper understanding and fresh perspectives on the water promotion mechanism in low-temperature NOx elimination.
RESUMO
Ammonia (NH3) slip from diesel vehicle aftertreatment systems and internal combustion engines fueled by NH3 or NH3/H2 poses serious environmental problems. Ag-based catalysts are widely used for the selective catalytic oxidation of NH3 to N2 (NH3-SCO), and their performance is greatly dependent on the state of Ag, which is influenced by the anchoring sites on the support. Despite efforts to identify the direct anchoring sites of metal atoms on TiO2, conflicting views persist. Here, we compared the correlation between Ag dispersion and the content of hydroxyl (OH) groups or defects on TiO2 and conducted density functional theory (DFT) calculations, and the results confirmed that the surface OH groups of TiO2 serve as the direct anchoring sites for Ag. By modulating the OH group content through thermal induction, the optimal OH group content on TiO2-800 resulted in more metallic Ag nanoparticles (Ag0 NPs) in larger sizes, leading to the development of an excellent NH3-SCO catalyst. Moreover, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), kinetic studies, and DFT calculations suggested that more Ag0 NPs in larger sizes on 10Ag/TiO2-800 were conducive to O2 activation and NH3 dissociation. Our findings provide new insights for designing efficient NH3-SCO catalysts, and OH groups as direct anchoring sites could be extended to other metals and supports for the rational design of catalysts.
RESUMO
Metal-free carbon-based catalysts are attracting much attention in the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). However, the mechanism of the NH3-SCR reaction on carbon-based catalysts is still controversial, which severely limits the development of carbon-based SCR catalysts. Herein, we successfully reconstructed carbon-based catalysts through oxidation treatment with nitric acid, thereby enhancing their low-temperature activity in NH3-SCR. Combining experimental results and density functional theory (DFT) calculations, we proposed a previously unreported NH3-SCR reaction mechanism over carbon-based catalysts. We demonstrated that C-OH and C-O-C groups not only effectively activate NH3 but also remarkedly promote the decomposition of intermediate NH2NO. This study enhances the understanding of the NH3-SCR mechanism on carbon-based catalysts and paves the way to develop low-temperature metal-free SCR catalysts.