Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Small ; 20(13): e2306863, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963848

RESUMO

The construction of stable copper nanoclusters (Cu-NCs) with near-infrared (NIR) emission that can be used for catalysis is highly desired, yet remains a challenge. Herein, an atomically precise bimetallic Cu/Pd NC with a molecular formula of Cu16Pd1L10(PPh3)2(Pz)6 (Pz = 3,5-(CF3)2Pyrazolate, L = 4-CH3OPhC≡C-), abbreviated as Cu16Pd1, is synthesized. Single-crystal X-ray crystallographic analysis of Cu16Pd1 reveals a Cu10Pd1 kernel with pseudo-gyroelongated square bipyramid confirmation surrounded by other 6 Cu(I) ions and protected ligands. Interestingly, it exhibits strong NIR emission with the highest photoluminescence quantum yield (PLQY) among all the Cu NCs/Cu alloys (λem > 800 nm) in the solid-state, and also displays NIR emission in solution. Experimental results and theoretical calculations suggest that the impressive NIR emission is attributed to abundant supramolecular interactions in the solid-state, including intramolecular metal-metal and intermolecular interactions. Of note, the bimetallic Cu16Pd1 can catalyze the reduction of 4-nitrophenol. This work provides a novel method for synthesizing Cu/Pd NCs and reminds that the less studied Cu/Pd NC can serve as outstanding luminescent material, which is seldom noticed in atomically precise nanoclusters.

2.
Bioorg Chem ; 150: 107551, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971094

RESUMO

Cancer is the most severe health problem facing most people today. Photodynamic therapy (PDT) for tumors has attracted attention because of its non-invasive nature, negligible adverse reactions, and high spatiotemporal selectivity. Developing biocompatible photosensitizers that can target, guide, and efficiently kill cancer cells is desirable in PDT. Here, two amphiphilic organic compounds, PS-I and PSS-II, were synthesized based on the D-π-A structure with a positive charge. The two AIEgens exhibited near-infrared emission, large Stokes shift, high 1O2 and O2-∙ generation efficiency, good biocompatibility, and photostability. They were co-incubated with cancer cells and eventually accumulated to lysosomes by cell imaging experiments. In vitro and in vivo experiments demonstrated that PS-I and PSS-II could effectively kill cancer cells and sufficiently inhibit tumor growth under light irradiation. PS-I had a higher fluorescence quantum yield in the aggregated state, which made it better for bio-imaging in imaging-guided photodynamic therapy. In contrast, PSS-II with a longer conjugated structure had more ROS generation to kill tumor cells under illumination, and the tumor growth inhibition of mice reached 71.95% during the treatment. No observable injury or undesirable outcomes were detected in the vital organs of the mice within the treatment group, suggesting that PSS-II/PS-I had a promising future in efficient imaging-guided PDT for cancer.


Assuntos
Raios Infravermelhos , Lisossomos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Humanos , Animais , Camundongos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Desenho de Fármacos , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/diagnóstico por imagem , Sobrevivência Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Feminino
3.
Bioorg Chem ; 143: 107020, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176374

RESUMO

Abnormally high levels of copper in tumors stimulate malignant proliferation and migration of cancer cells, which proposes a formidable challenge for the thorough therapy of malignant tumors. In this work, we developed a reliable, mitochondria-targeted near-infrared aggregation-induced emission fluorescent probe, TTQ-Th, whose thiourea moiety specifically could recognize mitochondria even both upon loss of mitochondrial membrane potential or in fixated cells, and can capture copper overexpressed by tumor cells, leading to severe copper deficiency. In parallel, TTQ-Th can generate sufficient reactive oxygen species (ROS) upon photoexcitation, while copper deficiency inhibits expression of related copper-based enzymes, resulting in a decline in ATP production. Such energy deficiency, combined with reduced MMP and elevated oxidative stress can lead to critical cell oncosis. Both in vitro and intracellular experiments can illustrate that the elevated ROS has remarkable damage to tumor cells and contributes to the elimination of the primary tumor, while copper deficiency further hinder tumor cell migration and induces G0/G1 cell cycle arrest in a dose-dependent manner, which is an efficacious strategy for the treatment of malignant tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cobre/farmacologia , Cobre/metabolismo , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico
4.
Angew Chem Int Ed Engl ; 63(10): e202317060, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38127576

RESUMO

Near-infrared (NIR) emitters are of great interest for applications in bioimaging and modern technology. Yet the design of such materials with decent characteristics is challenging due to intrinsic limitations. In a recent article, Murai and Yamaguchi report the synthesis of NIR emitters with appreciable fluorescence quantum yields reaching 0.02 at 878 nm in CH2 Cl2 solution. The low band gaps were achieved by a new design strategy exploiting antiaromaticity relief. This concept was realized for compounds consisting of an antiaromatic azepine central ring fused to thiophene moieties. In these systems, thiophene unfolds its dual nature. On the one hand, it contributes to the high antiaromaticity of azepine; on the other hand, it exerts a stabilizing effect on azepine through the formation of a quinoid structure, which reduces its antiaromaticity and shifts the absorption and emission maxima into the NIR region.

5.
Angew Chem Int Ed Engl ; 63(29): e202404853, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695271

RESUMO

Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM-TTM diradicaloid, which exhibits high diradical character, a striking sky-blue color and near-infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in "just the right positions", allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In-depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials.

6.
J Nanobiotechnology ; 21(1): 118, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005641

RESUMO

Glyco-quantum dots (glyco-QDs) have attracted significant interest in bioimaging applications, notably in cancer imaging, because they effectively combine the glycocluster effect with the exceptional optical properties of QDs. The key challenge now lies in how to eliminate the high heavy metal toxicity originating from traditional toxic Cd-based QDs for in vivo bioimaging. Herein, we report an eco-friendly pathway to prepare nontoxic Cd-free glyco-QDs in water by the "direct" reaction of thiol-ending monosaccharides with metal salts precursors. The formation of glyco-CuInS2 QDs could be explained by a nucleation-growth mechanism following the LaMer model. As-prepared four glyco-CuInS2 QDs were water-soluble, monodispersed, spherical in shape and exhibited size range of 3.0-4.0 nm. They exhibited well-separated dual emission in the visible region (500-590 nm) and near-infrared range (~ 827 nm), which may be attributable to visible excitonic emission and near-infrared surface defect emission. Meanwhile, the cell imaging displayed the reversibly distinct dual-color (green and red) fluorescence in tumor cells (HeLa, A549, MKN-45) and excellent membrane-targeting properties of glyco-CuInS2 QDs based on their good biorecognition ability. Importantly, these QDs succeed in penetrating uniformly into the interior (the necrotic zone) of 3D multicellular tumor spheroids (MCTS) due to their high negative charge (zeta potential values ranging from - 23.9 to - 30.1 mV), which overcame the problem of poor penetration depth of existing QDs in in vitro spheroid models. So, confocal analysis confirmed their excellent ability to penetrate and label tumors. Thus, the successful application in in vivo bioimaging of these glyco-QDs verified that this design strategy is an effective, low cost and simple procedure for developing green nanoparticles as cheap and promising fluorescent bioprobes.


Assuntos
Nanopartículas , Pontos Quânticos , Humanos , Diagnóstico por Imagem , Células HeLa , Água
7.
Luminescence ; 38(12): 2086-2094, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37740529

RESUMO

Light-mediated therapies such as photodynamic therapy (PDT) are considered emerging cancer treatment strategies. However, there are still lots of defect with common photosensitizers (PSs), such as short emission wavelength, weak photostability, poor cell permeability, and low PDT efficiency. Therefore, it is very important to develop high-performance PSs. Recently, luminogens with aggregation-induced emission (AIE) characteristics and red/near-infrared (NIR) emissive have been reported as promising PSs for image-guided cancer therapy, due to them being able to prevent autofluorescence in physiological environments, their enhanced fluorescence in the aggregated state, and generation of reactive oxygen species (ROS). Herein, we developed PSs named TBTCPM and MTBTCPM with donor-acceptor (D-A) structures, strong red/NIR, excellent targeting specificities to good cell permeability, and high photostability. Interestingly, both of them can efficiently generate ROS under white light irradiation and possess excellent killing effect on cancer cells. This study, thus, not only demonstrates applications in cell image-guided PDT cancer therapy performances but also provides strategy for construction of AIEgens with long emission wavelengths.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio , Neoplasias/tratamento farmacológico , Luz
8.
Molecules ; 28(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770954

RESUMO

Fluorescent organic dyes that absorb and emit in the near-infrared (NIR, 700-1000 nm) and shortwave infrared (SWIR, 1000-1700 nm) regions have the potential to produce noninvasive high-contrast biological images and videos. BODIPY dyes are well known for their high quantum yields in the visible energy region. To tune these chromophores to the NIR region, fused nitrogen-based heterocyclic indolizine donors were added to a BODIPY scaffold. The indolizine BODIPY dyes were synthesized via microwave-assisted Knoevenagel condensation with indolizine aldehydes. The non-protonated dyes showed NIR absorption and emission at longer wavelengths than an aniline benchmark. Protonation of the dyes produced a dramatic 0.35 eV bathochromic shift (230 nm shift from 797 nm to 1027 nm) to give a SWIR absorption and emission (λmaxemis = 1061 nm). Deprotonation demonstrates that material emission is reversibly switchable between the NIR and SWIR.

9.
Angew Chem Int Ed Engl ; 62(49): e202311445, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37699858

RESUMO

We here disclose that the incorporation of thiophene rings into a seven-membered 8π azepine in a fused fashion produces a useful antiaromatic core for near-infrared (NIR) dyes. In contrast to dibenzazepine derivatives with bent structures, dithieno-fused derivatives with electron-accepting groups adopt flat conformations in the ground state. The dithieno-fused derivatives exhibited broad absorption spectra that cover the visible region as well as sharp emission bands in the NIR region, which are considerably red-shifted relative to those of the dibenzo-fused congeners. Theoretical study revealed two contradictory effects of the less-aromatic thiophene-fused structure, i.e., the enhancement of the antiaromaticity of the adjacent azepine ring and the relief of the antiaromaticity through the contribution of a quinoidal resonance form. The combination of the dithienoazepine core with cationic electron-accepting groups produced a NIR fluorescent dye with an emission at 878 nm in solution.

10.
Angew Chem Int Ed Engl ; 62(16): e202300815, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36825300

RESUMO

The exploration of deactivation mechanisms for near-infrared(NIR)-emissive organic molecules has been a key issue in chemistry, materials science and molecular biology. In this study, based on transient absorption spectroscopy and transient grating photoluminescence spectroscopy, we demonstrate that the aggregated PtII complex 4H (efficient NIR emitter) exhibits collective out-of-plane motions with a frequency of 32 cm-1 (0.96 THz) in the excited states. Importantly, similar THz characteristics were also observed in analogous PtII complexes with prominent NIR emission efficiency. The conservation of THz motions enables excited-state deactivation to proceed along low-frequency vibrational coordinates, contributing to the suppression of nonradiative decay and remarkable NIR emission. These novel results highlight the significance of excited-state vibrations in nonradiative processes, which serve as a benchmark for improving device performance.

11.
Angew Chem Int Ed Engl ; 62(33): e202307689, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37376775

RESUMO

A phosphor emitting both white light and broad near-infrared (NIR) radiation can simultaneously provide visual inspection and early signs of rotting of food products. The broad NIR emission is absorbed by the vibrational overtones of water molecules present in food items, providing the non-invasive image contrast to assess the food freshness. Here we design a phosphor, namely, Cr3+ -Bi3+ -codoped Cs2 Ag0.6 Na0.4 InCl6 , that simultaneously emit warm white light and broad NIR (1000 nm) radiation with quantum yield 27 %. This dual emitter is designed by combining the features of s2 -electron (Bi3+ ) and d3 -electron (Cr3+ ) doping in a weak crystal field of the halide perovskite host. 6 s 2 → 6 s 1 6 p 1 ${6{s}^{2}\to 6{s}^{1}6{p}^{1}}$ excitation of Bi3+ , using a commercial 370 nm ultraviolet light-emitting-diodes (UV-LED), yields both the emissions. A fraction of the excited Bi3+ dopants emit the warm white light, and the other fraction transfers its energy non-radiatively to Cr3+ . Then the Cr3+ de-excites emitting broad NIR emission. Temperature dependent (6.4-300 K) photoluminescence in combination with Tanabe-Sugano diagram show that the Cr3+ experiences a weak crystal field ( D q / B ${{D}_{q}/B}$ =2.2), yielding the 4 T 2 → 4 A 2 ${{{\rm \ }}^{4}{{\rm T}}_{2}\to {{\rm \ }}^{4}{{\rm A}}_{2}}$ NIR emission. As a proof of concept, we fabricated a panel containing 122 phosphor-converted LEDs, demonstrating its capability to inspect food products.

12.
Chemistry ; 28(53): e202201372, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35773183

RESUMO

N,O-bidentate BF2 complexes with five- and six-membered core rings have been thoroughly investigated. However, the development of seven-membered N,O-boron complexes is still an area to be explored. We have developed BF3 ⋅ OEt2 -induced self-condensation and coordination reactions based on a single starting material, which had been elucidated by experiment and calculation. This parent asymmetric core-expanded borondifluoride-(Z)-1,3-di(1H-pyrrol-2-yl)but-2-en-1-one (BOPYO) showed reactivity with a wide range of aldehydes, thus providing a series of conjugation BOPYOs. Moreover, a BOPYO derivative with a dimethylamino group was developed as a new NIR dye that responds to acid with favorable photophysical properties based on intramolecular charge transfer effect.

13.
Nanotechnology ; 34(5)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278289

RESUMO

The aryl diazonium salt chemistry offers enhancement of near-infrared (NIR) emission of single-walled carbon nanotubes (SWCNTs), although, the attachment of functional molecules which could bring hybrid properties through the process is underdeveloped. In this work, we utilize aryl diazonium salt of fluorescein to createsp3defects on (6,5) SWCNTs. We study the influence of pH on the grafting process identifying that pH 5-6 is necessary for a successful reaction. The fluorescein-modified (6,5) SWCNTs (F-(6,5) SWCNTs) exhibit red-shiftedE11* emission in the NIR region attributed to luminescentsp3defects, but also visible (Vis) fluorescence at 515 nm from surface-attached fluorescein molecules. The fluorescence in both Vis and NIR regions of F-(6,5) SWCNTs exhibit strong pH-dependency associated with the dissociation of fluorescein molecules with an indication of photoinduced-electron transfer quenching the Vis emission of fluorescein dianion. The F-(6,5) SWCNTs could potentially be used for dual-channel medical imaging as indicated by our preliminary experiments. We hope that our research will encourage new, bold modifications of SWCNTs with functional molecules introducing new, unique hybrid properties.

14.
Molecules ; 27(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745035

RESUMO

Near-infrared (NIR) fluorescence materials have exhibited formidable power in the field of biomedicine, benefiting from their merits of low autofluorescence background, reduced photon scattering, and deeper penetration depth. Fluorophores possessing planar conformation may confront the shortcomings of aggregation-caused quenching effects at the aggregate level. Fortunately, the concept of aggregation-induced emission (AIE) thoroughly reverses this dilemma. AIE bioconjugates referring to the combination of luminogens showing an AIE nature with biomolecules possessing specific functionalities are generated via the covalent conjugation between AIEgens and functional biological species, covering carbohydrates, peptides, proteins, DNA, and so on. This perfect integration breeds unique superiorities containing high brightness, good water solubility, versatile functionalities, and prominent biosafety. In this review, we summarize the recent progresses of NIR-emissive AIE bioconjugates focusing on their design principles and biomedical applications. Furthermore, a brief prospect of the challenges and opportunities of AIE bioconjugates for a wide range of biomedical applications is presented.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Corantes Fluorescentes/química , Imagem Óptica/métodos , Fótons
15.
Angew Chem Int Ed Engl ; 61(1): e202113718, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734464

RESUMO

A molecular design to high-performance red and near-infrared (NIR) organic light-emitting diodes (OLEDs) emitters remains demanding. Herein a series of dinuclear platinum(II) complexes featuring strong intramolecular Pt⋅⋅⋅Pt and π-π interactions has been developed by using N-deprotonated α-carboline as a bridging ligand. The complexes in doped thin films exhibit efficient red to NIR emission from short-lived (τ=0.9-2.1 µs) triplet metal-metal-to-ligand charge transfer (3 MMLCT) excited states. Red OLEDs demonstrate high maximum external quantum efficiencies (EQEs) of up to 23.3 % among the best PtII -complex-doped devices. The maximum EQE of 15.0 % and radiance of 285 W sr-1 m-2 for NIR OLEDs (λEL =725 nm) are unprecedented for devices based on discrete molecular emitters. Both red and NIR devices show very small efficiency roll-off at high brightness. Appealing operational lifetimes have also been revealed for the devices. This work sheds light on the potential of intramolecular metallophilicity for long-wavelength molecular emitters and electroluminescence.

16.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576899

RESUMO

Organic fluorophores have found broad application as emitters in luminescent solar concentrators (LSCs) for silicon photovoltaics. In particular, the preparation of organic conjugated systems with intense light-harvesting ability, emissions in the deep-red and NIR regions, and large Stokes shift values represent a very challenging undertaking. Here, we report a simple and easy way to prepare three symmetrical donor-acceptor-donor (DAD) organic-emitting materials based on a thienopyrazine core. The central core in the three dyes was modified with the introduction of aromatic substituents, aiming to affect their optical properties. The fluorophores were characterized by spectroscopic studies. In all cases, visible-NIR emissions with large Stokes shifts were found, highlighting these molecules as promising materials for the application in LSCs.

17.
Angew Chem Int Ed Engl ; 60(11): 5959-5964, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33314503

RESUMO

Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl-protected gold nanocluster [Au28 (C4 B10 H11 )12 (tht)8 ]3+ (Au28 , tht=tetrahydrothiophene) possessing an open-shell electronic structure with 13 free electrons, which was isolated by a facile self-reduction method with 9-HC≡C-closo-1,2-C2 B10 H11 as the two-in-one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller-sized nanocluster [Au23 (C4 B10 H11 )9 (tht)6 ]2+ (Au23 ) bearing 12 valence electrons and crystal-field-like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI-MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis-NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields.

18.
Chemistry ; 26(72): 17416-17427, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33259139

RESUMO

A series of electronic push-pull, pull-pull, and push fluorophores has been prepared from a benzoselenadiazole core so that their spectroscopic, electrochemical, spectro-electrochemical, and spectro-electrofluorescence properties could be examined. The emission wavelengths and fluorescence quantum yields (Φfl ) of the N,N-dimethyl fluorophores were contingent on the solvent polarity and they ranged from 615 to 850 nm in aprotic solvents. The positive solvatochromism and the quenched Φfl in polar solvents were consistent with an intramolecular charge-transfer state (ICT). Meanwhile, a locally excited state (LE) was assigned in nonpolar solvents from the blue-shifted emission and high Φfl . The N,N-dimethylamine fluorophores examined could be both electrochemically oxidized and reduced, whereas the symmetric dinitro pull-pull derivative could be only reversibly reduced. Courtesy of their electrochemical reversibility, the fluorophores could reversibly change color from yellow to blue with an applied potential in addition to switching off their emission. The absorption of the electrochemically generated intermediates of the N,N-dimethyl derivatives spanned 500 nm over the visible and the NIR regions. The colors could be switched for upwards of two hours with applied potential, illustrating their potential use as electroactive materials in electrochromic devices.

19.
Chemistry ; 26(68): 16080-16088, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32721057

RESUMO

The search for long-lived red and NIR fluorescent dyes is challenging and hitherto scarcely reported. Herein, the viability of aza-BODIPY skeleton as a promising system for achieving thermal activated delayed fluorescent (TADF) probes emitting in this target region is demonstrated for the first time. The synthetic versatility of this scaffold allows the design of energy and charge transfer cassettes modulating the stereoelectronic properties of the energy donors, the spacer moieties and the linkage positions. Delayed emission from these architectures is recorded in the red spectral region (695-735 nm) with lifetimes longer than 100 µs in aerated solutions at room temperature. The computational-aided photophysical study under mild and hard irradiation regimes disclose the interplay between molecular structure and photonic performance to develop long-lived fluorescence red emitters through thermally activated reverse intersystem crossing. The efficient and long-lasting NIR emission of the newly synthesized aza-BODIPY systems provides a basis to develop advanced optical materials with exciting and appealing photonic response.

20.
Luminescence ; 35(7): 1056-1067, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32342654

RESUMO

A series of Er3+ -doped GdPO4 phosphors was synthesized using a conventional solid-state reaction. The monazite structure (space group P121 /n1 ) of the obtained materials was confirmed using X-ray diffraction and Fourier transform infrared spectroscopy. Their optical spectra (excitation, emission, absorption, decay curves) were measured at room temperature in the visible and near-infrared (NIR) regions. The UV-visible-NIR optical absorption spectrum of GdPO4 :7% Er3+ was analyzed based on Judd-Ofelt (J-O) theory and the J-O intensity parameter (Ω2 , Ω4 , Ω6 ) was calculated. J-O intensity parameters were used to evaluate spontaneous emission properties such as branching ratios, transition probabilities, and radiative lifetime. The calculated quantum efficiency of the 1.5 µm emission (4 I13/2 -4 I15/2 ) was calculated to be 89%. This result proved that GdPO4 :Er3+ is suitable for use in optical amplifiers and is a potential host for laser applications. The most interesting transitions, located at about 540 nm, and 1.0 and 1.5 µm were investigated as a function of doping level and of temperature, to assess the conditions needed for the highest emission performance and to explore the range of application, in particular in the fields of lighting, thermal sensing, and of phosphors for bio-imaging.


Assuntos
Vidro , Luminescência , Luz , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA