Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 173(5): 1265-1279.e19, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775595

RESUMO

Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.


Assuntos
Encéfalo/metabolismo , Neurocinina B/metabolismo , Precursores de Proteínas/metabolismo , Isolamento Social , Estresse Psicológico , Taquicininas/metabolismo , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurocinina B/genética , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Taquicininas/antagonistas & inibidores , Receptores de Taquicininas/metabolismo , Taquicininas/antagonistas & inibidores , Taquicininas/genética , Regulação para Cima/efeitos dos fármacos
2.
Immunity ; 45(1): 131-44, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27421702

RESUMO

Natural killer (NK) cells and non-cytotoxic interferon-γ (IFN-γ)-producing group I innate lymphoid cells (ILC1s) produce large amounts of IFN-γ and cause activation of innate and adaptive immunity. However, how NKs and ILC1s are primed during infection remains elusive. Here we have shown that a lymphocyte subpopulation natural killer-like B (NKB) cells existed in spleen and mesenteric lymph nodes (MLNs). NKBs had unique features that differed from T and B cells, and produced interleukin-18 (IL-18) and IL-12 at an early phase of infection. NKB cells played a critical role in eradication of microbial infection via secretion of IL-18 and IL-12. Moreover, IL-18 deficiency abrogated the antibacterial effect of NKBs. Upon bacterial challenge, NKB precursors (NKBPs) rapidly differentiated to NKBs that activated NKs and ILC1s against microbial infection. Our findings suggest that NKBs might be exploited to develop effective therapies for treatment of infectious diseases.


Assuntos
Linfócitos B/imunologia , Infecções/imunologia , Células Matadoras Naturais/imunologia , Linfonodos/imunologia , Subpopulações de Linfócitos/imunologia , Baço/imunologia , Animais , Linfócitos B/microbiologia , Diferenciação Celular , Células Cultivadas , Humanos , Imunidade Inata , Infecções/terapia , Interleucina-12/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Células Matadoras Naturais/microbiologia , Ativação Linfocitária , Subpopulações de Linfócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Precursoras de Linfócitos B/imunologia
3.
Biol Reprod ; 108(6): 936-944, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37074152

RESUMO

Superovulation (SOV) treatment of cows results in unovulated follicles and inconsistent quality of the recovered embryos. It has been demonstrated that luteinizing hormone (LH) secretion is suppressed during SOV treatment of cows, which may cause insufficient follicle development and variation in the development of recovered embryos and unovulated follicles. Pulsatile gonadotropin-releasing hormone/LH secretion is controlled by the activity of kisspeptin, neurokinin B and dynorphin (KNDy) neurons in the arcuate nucleus in many mammals. As neurokinin B promotes the activity of KNDy neurons, we hypothesized that senktide, a neurokinin B receptor agonist, has the potential as a therapeutic drug to improve the ovulation rate and quality of recovered embryos in SOV-treated cows via stimulation of LH secretion. Senktide was administered intravenously (30 or 300 nmol/min) for 2 h, beginning from 72 h after the start of SOV treatment. LH secretion was examined before and after administration, and embryos were collected 7 d after estrus. Senktide administration increased LH secretion in SOV-treated cows. The ratios of code 1, code 1 and 2, and blastocyst stage embryos to recovered embryos were increased by senktide (300 nmol/min) administration. Moreover, the mRNA levels of MTCO1, COX7C, and MTATP6 were upregulated in recovered embryos of senktide (300 nmol/min)-administered animals. These results indicate that the administration of senktide to SOV-treated cows enhances LH secretion and upregulates the expression of genes involved in mitochondrial metabolism in embryos, thereby improving embryo development and embryo quality.


Assuntos
Neurocinina B , Receptores da Neurocinina-3 , Feminino , Bovinos , Animais , Receptores da Neurocinina-3/agonistas , Neurocinina B/metabolismo , Hormônio Luteinizante/farmacologia , Hormônio Luteinizante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Dinorfinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Mamíferos/metabolismo
4.
Cell Tissue Res ; 393(2): 377-391, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37278825

RESUMO

Neurokinin B (NKB), a recently discovered neuropeptide, plays a crucial role in regulating the kiss-GnRH neurons in vertebrate's brain. NKB is also characterized in gonadal tissues; however, its role in gonads is poorly understood. Therefore, in the present study, the effects of NKB on gonadal steroidogenesis and gametogenesis through in vivo and in vitro approaches using NKB antagonist MRK-08 were evaluated. The results suggest that the NKB antagonist decreases the development of advanced ovarian follicles and germ cells in the testis. In addition, MRK-08 further reduces the production of 17ß-estradiol in the ovary and testosterone in the testis under both in vivo and in vitro conditions in a dose-dependent manner. Furthermore, the in vitro MRK-08 treatment of gonadal explants attenuated the expression of steroidogenic marker proteins, i.e., StAR, 3ß-HSD, and 17ß-HSD dose-dependently. Moreover, the MAP kinase proteins, pERK1/2 & ERK1/2 and pAkt & Akt were also downregulated by MRK-08. Thus, the study suggests that NKB downregulates steroidogenesis by modulating the expressions of steroidogenic marker proteins involving ERK1/2 & pERK1/2 and Akt/pAkt signalling pathways. NKB also appears to regulate gametogenesis by regulating gonadal steroidogenesis in the catfish.


Assuntos
Peixes-Gato , Neurocinina B , Masculino , Animais , Feminino , Neurocinina B/metabolismo , Peixes-Gato/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testículo/metabolismo , Gametogênese
5.
Gynecol Endocrinol ; 39(1): 2216313, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37224872

RESUMO

BACKGROUND: Neurokinin B (NKB) belongs to the tachykinin family of proteins who's regulation is essential for proper function of the reproductive system. It has been shown that patients with functional hypothalamic amenorrhea (FHA) exhibit decreased levels of serum kisspeptin. As kisspeptin secretion is regulated by NKB signaling, it is reasonable to suspect that patients with FHA will also have abnormal NKB secretion. AIM: To assess NKB levels in patients with FHA and to determine whether NKB signaling is affected in these patients. We hypothesized that decreased NKB signaling is a factor contributing to the development of the FHA. MATERIALS AND METHODS: A total of 147 patients with FHA and 88 healthy age-matched controls were enrolled. Baseline blood samples were drawn from both groups to measure serum concentrations of NKB, luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol (E2), prolactin (PRL), thyroid-stimulating hormone (TSH), free thyroxine (fT4), cortisol, dehydroepiandrosterone sulfate (DHEA-S), testosterone (T), glucose, and insulin. RESULTS: Mean serum NKB levels were found to be decreased significantly in the FHA group when compared with the control group (628.35 ± 324.92 vs. 721.41 ± 337.57 ng/L, respectively p = 0.002). No statistical difference was observed in NKB-1 levels within the FHA group when selecting for normal and decreased body mass index. CONCLUSIONS: Patients with FHA were found to have decreased serum NKB concentrations when compared to healthy controls. Abnormal NKB secretion is likely a key factor contributing to development of FHA.


Assuntos
Amenorreia , Neurocinina B , Feminino , Humanos , Amenorreia/etiologia , Kisspeptinas , Fatores de Risco , Estradiol
6.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562976

RESUMO

G protein-coupled receptors (GPCRs) facilitate the majority of signal transductions across cell membranes in humans, with numerous diseases attributed to inactivating GPCR mutations. Many of these mutations result in misfolding during nascent receptor synthesis in the endoplasmic reticulum (ER), resulting in intracellular retention and degradation. Pharmacological chaperones (PCs) are cell-permeant small molecules that can interact with misfolded receptors in the ER and stabilise/rescue their folding to promote ER exit and trafficking to the cell membrane. The neurokinin 3 receptor (NK3R) plays a pivotal role in the hypothalamic-pituitary-gonadal reproductive axis. We sought to determine whether NK3R missense mutations result in a loss of cell surface receptor expression and, if so, whether a cell-permeant small molecule NK3R antagonist could be repurposed as a PC to restore function to these mutants. Quantitation of cell surface expression levels of seven mutant NK3Rs identified in hypogonadal patients indicated that five had severely impaired cell surface expression. A small molecule NK3R antagonist, M8, increased cell surface expression in four of these five and resulted in post-translational receptor processing in a manner analogous to the wild type. Importantly, there was a significant improvement in receptor activation in response to neurokinin B (NKB) for all four receptors following their rescue with M8. This demonstrates that M8 may have potential for therapeutic development in the treatment of hypogonadal patients harbouring NK3R mutations. The repurposing of existing small molecule GPCR modulators as PCs represents a novel and therapeutically viable option for the treatment of disorders attributed to mutations in GPCRs that cause intracellular retention.


Assuntos
Neurocinina B , Receptores da Neurocinina-3 , Membrana Celular/metabolismo , Humanos , Mutação , Neurocinina B/genética , Neurocinina B/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores da Neurocinina-3/antagonistas & inibidores , Receptores da Neurocinina-3/genética , Receptores da Neurocinina-3/metabolismo
7.
Biol Reprod ; 105(6): 1533-1544, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34643223

RESUMO

Puberty onset is a complex physiological process, which enables the capacity for reproduction through increased gonadotropin-releasing hormone and subsequently luteinizing hormone secretion. While cells that coexpress kisspeptin, neurokinin B (NKB), and dynorphin in the hypothalamic arcuate nucleus are believed to govern the timing of puberty, the degree to which kisspeptin/NKB/dynorphin (KNDy) neurons exist and are regulated by pubertal status remains to be determined in the gilt. Hypothalamic tissue from prepubertal and postpubertal, early follicular phase gilts was used to determine the expression of kisspeptin, NKB, and dynorphin within the arcuate nucleus. Fluorescent in situ hybridization revealed that the majority (>74%) of arcuate nucleus neurons that express mRNA for kisspeptin coexpressed mRNA for NKB and dynorphin. There were fewer arcuate nucleus cells that expressed mRNA for dynorphin in postpubertal gilts compared to prepubertal gilts (P < 0.05), but the number of arcuate nucleus cells expressing mRNA for kisspeptin or NKB was not different between groups. Within KNDy neurons, mRNA abundance for kisspeptin, NKB, and dynorphin of postpubertal gilts was the same as, less than, and greater than, respectively, prepubertal gilts. Immunostaining for kisspeptin did not differ between prepubertal and postpubertal gilts, but there were fewer NKB immunoreactive fibers in postpubertal gilts compared to prepubertal gilts (P < 0.05). Together, these data reveal novel information about KNDy neurons in gilts and support the idea that NKB and dynorphin play a role in puberty onset in the female pig.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurônios/fisiologia , Maturidade Sexual , Sus scrofa/fisiologia , Animais , Feminino
8.
Front Neuroendocrinol ; 48: 37-49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754629

RESUMO

Albeit essential for perpetuation of species, reproduction is an energy-demanding function that can be adjusted to body metabolic status. Reproductive maturation and function can be suppressed in conditions of energy deficit, but can be altered also in situations of persistent energy excess, e.g., morbid obesity. This metabolic-reproductive integration, of considerable pathophysiological relevance to explain different forms of perturbed puberty and sub/infertility, is implemented by the concerted action of numerous central and peripheral regulators, which impinge at different levels of the hypothalamic-pituitary-gonadal (HPG) axis, permitting a tight fit between nutritional/energy status and gonadal function. We summarize here the major physiological mechanisms whereby nutritional and metabolic cues modulate the maturation and function of the HPG axis. We will focus on recent progress on the major central neuropeptide pathways, including kisspeptins, neurokinin B and the products of POMC and NPY neurons, which convey metabolic information to GnRH neurons, as major hierarchical hub of our reproductive brain.


Assuntos
Fertilidade/fisiologia , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Puberdade/metabolismo , Reprodução/fisiologia , Maturidade Sexual/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos
9.
Gen Comp Endocrinol ; 260: 125-135, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29355534

RESUMO

Neurokinin B (NKB) plays important roles in the mammalian reproductive axis by modulating the release of gonadotropin-releasing hormone (GnRH) and gonadotropins. In the present study, the tac3 cDNA was cloned from a hermaphroditic species, the orange-spotted grouper. Sequence analysis showed that the grouper Tac3 precursor encoded two tachykinin peptides, NKB and NKB-related peptide (NKBRP). Expression analysis in different tissues revealed that tac3 mRNA was highly expressed in the brain of the orange-spotted grouper. In situ hybridization further revealed that it was localized in some hypothalamic nuclei associated with reproductive regulation. During ovarian development, an increase of tac3 expression in the hypothalamus was observed at vitellogenesis stage. Intraperitoneal administration of NKB could increase the gnrh1 and lhß mRNA levels, and enhance the serum estrogen levels, but did not significantly influence lhß expression in cultured pituitary cells, indicating that NKB does not directly exert its actions on the pituitary gland. However, it was found that NKBRP had no effect on the expression of two gnrhs and two gths in vivo and in vitro. Effects of sex steroids on tac3 expression were further investigated. During the 17-methyltestosterone-induced sex change in the orange-spotted grouper, hypothalamic tac3 expression showed no significant change. Interestingly, ovariectomy greatly stimulated tac3 expression, while the 17ß-estradiol treatment reversed this effect. In general, our data highly indicated that NKB signaling could activate the reproductive axis in the orange-spotted grouper. Our study is the first description of the NKB signaling in the hermaphroditic species.


Assuntos
Bass , Transtornos do Desenvolvimento Sexual , Neurocinina B/metabolismo , Sequência de Aminoácidos , Animais , Bass/genética , Bass/metabolismo , Clonagem Molecular , DNA Complementar/genética , Transtornos do Desenvolvimento Sexual/induzido quimicamente , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/metabolismo , Transtornos do Desenvolvimento Sexual/veterinária , Estradiol/farmacologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Metiltestosterona/farmacologia , Neurocinina B/genética , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Diferenciação Sexual/efeitos dos fármacos , Diferenciação Sexual/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
Gynecol Endocrinol ; 34(5): 437-441, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29187003

RESUMO

The effects of androgens on gonadotropin-releasing hormone (GnRH) secretion in females have not been fully established. To clarify the direct effects of androgens on hypothalamic reproductive factors, we evaluated the effects of chronic testosterone administration on hypothalamic GnRH regulatory factors in ovariectomized (OVX) female rats. Both testosterone and estradiol reduced the serum luteinizing hormone levels of OVX female rats, indicating that, as has been found for estrogen, testosterone suppresses GnRH secretion via negative feedback. Similarly, the administration of testosterone or estradiol suppressed the hypothalamic mRNA levels of kisspeptin and neurokinin B, both of which are positive regulators of GnRH, whereas it did not affect the hypothalamic mRNA levels of the kisspeptin receptor or neurokinin-3 receptor. On the contrary, the administration of testosterone, but not estradiol, suppressed the hypothalamic mRNA expression of prodynorphin, which is a negative regulator of GnRH. The administration of testosterone did not alter the rats' serum estradiol levels, indicating that testosterone's effects on hypothalamic factors might be induced by its androgenic activity. These findings suggest that as well as estrogen, androgens have negative feedback effects on GnRH in females and that the underlying mechanisms responsible for these effects are similar, but do not completely correspond, to the mechanisms underlying the effects of estrogen on GnRH.


Assuntos
Dinorfinas/metabolismo , Hipotálamo/efeitos dos fármacos , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Testosterona/farmacologia , Animais , Dinorfinas/genética , Estradiol/farmacologia , Feminino , Hipotálamo/metabolismo , Kisspeptinas/genética , Leptina/sangue , Hormônio Luteinizante/sangue , Neurocinina B/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Receptores da Neurocinina-3/genética , Receptores da Neurocinina-3/metabolismo
11.
Int J Mol Sci ; 20(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587833

RESUMO

Epidermal growth factor (EGF) is a potent regulator of cell function in many cell types. In mammals, the EGF/EGFR system played an important role in both pituitary physiology and pathology. However, it is not clear about the pituitary action of EGF in lower vertebrates. In this study, using grass carp as a model, we found that EGF could stimulate NK3R mRNA and protein expression through pituitary ErbB1 and ErbB2 coupled to MEK/ERK and PI3K/Akt/mTOR pathways. In addition, EGF could also induce pituitary somatolactin α (SLα) secretion and mRNA expression in a dose- and time-dependent manner in vivo and in vitro. The stimulatory actions of EGF on SLα mRNA expression were also mediated by PI3K/Akt/mTOR and MEK/ERK pathways coupled to ErbB1 and ErbB2 activation. Our previous study has reported that neurokinin B (NKB) could also induce SLα secretion and mRNA expression in carp pituitary cells. In the present study, interestingly, we found that EGF could significantly enhance NKB-induced SLα mRNA expression. Further studies found that NK3R antagonist SB222200 could block EGF-induced SLα mRNA expression, indicating an NK3R requirement. Furthermore, cAMP/PKA inhibitors and PLC/PKC inhibitors could both abolish EGF- and EGF+NKB-induced SLα mRNA expression, which further supported that EGF-induced SLα mRNA expression is NK3R dependent.


Assuntos
Carpas/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Proteínas de Peixes/metabolismo , Hipófise/efeitos dos fármacos , Hormônios Hipofisários/metabolismo , Receptores da Neurocinina-3/metabolismo , Animais , AMP Cíclico/metabolismo , Sinergismo Farmacológico , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Peixes/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Hipófise/metabolismo , Hormônios Hipofisários/genética , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , RNA Mensageiro/metabolismo , Receptores da Neurocinina-3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
12.
Biol Reprod ; 97(1): 81-90, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859282

RESUMO

Pulsatile gonadotropin-releasing hormone (GnRH) secretion, which is indispensable for follicular development, is suppressed in lactating dairy and beef cattle. Neurokinin B (NKB) neurons in the arcuate nucleus of the hypothalamus are considered to play an essential role in generating the pulsatile mode of GnRH/luteinizing hormone (LH) secretion. The present study aimed to clarify the role of NKB-neurokinin 3 receptor (NK3R) signaling in the pulsatile pattern of GnRH/gonadotropin secretion in postpartum lactating cattle. We examined the effects of the administration of an NK3R-selective agonist, senktide, on gonadotropin secretion in lactating cattle. The lactating cattle, at approximately 7 days postpartum, were intravenously infused with senktide (30 or 300 nmol/min) or vehicle for 24 h. The administration of 30 or 300 nmol/min senktide significantly increased LH pulse frequency compared to in the control group during 0-4 or 20-24 h after infusion, respectively. Moreover, LH and follicle-stimulating hormone levels were gradually increased by 300 nmol/min administration of senktide during the 0-4-h sampling period. Ultrasonography of the ovaries was performed to identify the first postpartum ovulation in senktide-administered lactating cattle. The interval from calving to first postpartum ovulation was significantly shorter in the 300 nmol/min senktide-administered group than in the control group. Taken together, these findings suggest that senktide infusion elicits an increase in LH pulse frequency that may stimulate follicular development and, in turn, induce the first postpartum ovulation in lactating cattle.


Assuntos
Bovinos/fisiologia , Lactação/fisiologia , Hormônio Luteinizante/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores da Neurocinina-3/agonistas , Substância P/análogos & derivados , Animais , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/metabolismo , Lactação/efeitos dos fármacos , Hormônio Luteinizante/sangue , Ovulação/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Substância P/administração & dosagem , Substância P/farmacologia
13.
Biopolymers ; 106(4): 588-97, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27271543

RESUMO

Recent research has indicated pivotal roles for neuropeptides and their cognate receptors in reproductive physiology. Kisspeptins are RF-amide neuropeptides that stimulate gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus. Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides and positively regulates pulsatile GnRH secretion. These peptides are coexpressed in kisspeptin/NKB/Dyn (KNDy) neurons of the arcuate nucleus, where they contribute to the regulation of puberty onset and other reproductive functions. In this review, the design of peptide ligands for the kisspeptin (KISS1R) and neurokinin-3 (NK3R) receptors are described. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 588-597, 2016.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores da Neurocinina-3/metabolismo , Animais , Humanos , Ligantes , Receptores de Kisspeptina-1
14.
Theriogenology ; 215: 302-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128223

RESUMO

Neurokinin B (NKB), a peptide encoded by the tachykinin 3 (TAC3), is critical for reproduction in all studied species. However, its potential roles in birds are less clear. Using the female chicken (c-) as a model, we showed that cTAC3 is composed of five exons with a full-length cDNA of 787 bp, which was predicted to generate the mature NKB peptide containing 10 amino acids. Using cell-based luciferase reporter assays, we demonstrated that cNKB could effectively and specifically activate tachykinin receptor 3 (TACR3) in HEK293 cells, suggesting its physiological function is likely achieved via activating cTACR3 signaling. Notably, cTAC3 and cTACR3 were predominantly and abundantly expressed in the hypothalamus of hens and meanwhile the mRNA expression of cTAC3 was continuously increased during development, suggesting that NKB-TACR3 may emerge as important components of the neuroendocrine reproductive axis. In support, intraperitoneal injection of cNKB could significantly promote hypothalamic cGnRH-Ι, and pituitary cFSHß and cLHß expression in female chickens. Surprisingly, cTAC3 and cTACR3 were also expressed in the pituitary gland, and cNKB treatment significantly increased cLHß and cFSHß expression in cultured primary pituitary cells, suggesting cNKB can also act directly at the pituitary level to stimulate gonadotropin synthesis. Collectively, our results reveal that cNKB functionally regulate GnRH/gonadotropin synthesis in female chickens.


Assuntos
Galinhas , Gonadotropinas , Humanos , Feminino , Animais , Galinhas/genética , Galinhas/metabolismo , Células HEK293 , Neurocinina B/genética , Neurocinina B/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo
15.
Biomedicines ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397936

RESUMO

Current research suggests that polycystic ovary syndrome (PCOS) might originate in utero and implicates the placenta in its pathogenesis. Kisspeptin (KISS1) and neurokinin B (NKB) are produced by the placenta in high amounts, and they have been implicated in several pregnancy complications associated with placental dysfunction. However, their placental expression has not been studied in PCOS. We isolated mRNA after delivery from the placentae of 31 PCOS and 37 control women with term, uncomplicated, singleton pregnancies. The expression of KISS1, NKB, and neurokinin receptors 1, 2, and 3 was analyzed with real-time polymerase chain reaction, using ß-actin as the reference gene. Maternal serum and umbilical cord levels of total testosterone, sex hormone-binding globulin (SHBG), free androgen index (FAI), androstenedione, dehydroepiandrosterone sulfate (DHEAS), Anti-Mullerian hormone (AMH), and estradiol were also assessed. NKB placental mRNA expression was higher in PCOS women versus controls in pregnancies with female offspring. NKB expression depended on fetal gender, being higher in pregnancies with male fetuses, regardless of PCOS. NKB was positively correlated with umbilical cord FAI and AMH, and KISS1 was positively correlated with cord testosterone and FAI; there was also a strong positive correlation between NKB and KISS1 expression. Women with PCOS had higher serum AMH and FAI and lower SHBG than controls. Our findings indicate that NKB might be involved in the PCOS-related placental dysfunction and warrant further investigation. Studies assessing the placental expression of NKB should take fetal gender into consideration.

16.
Gen Comp Endocrinol ; 190: 134-43, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23756151

RESUMO

Diverse external and internal environmental factors are integrated in the hypothalamus to regulate the reproductive system. This is mediated through the pulsatile secretion of GnRH into the portal system to stimulate pituitary gonadotrophin secretion, which in turn regulates gonadal function. A single subpopulation of neurones termed 'KNDy neurones' located in the hypothalamic arcuate nucleus co-localise kisspeptin (Kiss), neurokinin B (NKB) and dynorphin (Dyn) and are responsive to negative feedback effects of sex steroids. The co-ordinated secretion from KNDy neurones appears to modulate the pulsatile release of GnRH, acting as a proximate pacemaker. This review briefly describes the neuropeptidergic control of reproduction in the avian class, highlighting the status of reproductive neuropeptide signalling systems homologous to those found in mammalian genomes. Genes encoding the GnRH system are complete in the chicken with similar roles to the mammalian counterparts, whereas genes encoding Kiss signalling components appear missing in the avian lineage, indicating a differing set of hypothalamic signals controlling avian reproduction. Gene sequences encoding both NKB and Dyn signalling components are present in the chicken genome, but expression analysis and functional studies remain to be completed. The focus of this article is to describe the avian complement of neuropeptidergic reproductive hormones and provide insights into the putative mechanisms that regulate reproduction in birds. These postulations highlight differences in reproductive strategies of birds in terms of gonadal steroid feedback systems, integration of metabolic signals and seasonality. Also included are propositions of KNDy neuropeptide gene silencing and plasticity in utilisation of these neuropeptides during avian evolution.


Assuntos
Galinhas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neuropeptídeos/metabolismo , Reprodução/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo
17.
Reprod Sci ; 30(3): 802-822, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35799018

RESUMO

Highly sophisticated and synchronized interactions of various cells and hormonal signals are required to make organisms competent for reproduction. GnRH neurons act as a common pathway for multiple cues for the onset of puberty and attaining reproductive function. GnRH is not directly receptive to most of the signals required for the GnRH secretion during the various phases of the ovarian cycle. Kisspeptin neurons of the hypothalamus convey these signals required for the synchronized release of the GnRH. The steroid-sensitive anteroventral periventricular nucleus (AVPV) kisspeptin and arcuate nucleus (ARC) KNDy neurons convey steroid feedback during the reproductive cycle necessary for GnRH surge and pulse, respectively. AVPV region kisspeptin neurons also communicate with nNOS synthesizing neurons and suprachiasmatic nucleus (SCN) neurons to coordinate the process of the ovarian cycle. Neurokinin B (NKB) and dynorphin play roles in the GnRH pulse stimulation and inhibition, respectively. The loss of NKB and kisspeptin function results in the development of neuroendocrine disorders such as hypogonadotropic hypogonadism (HH) and infertility. Ca2+ signaling is essential for GnRH pulse generation, which is propagated through gap junctions between astrocytes-KNDy and KNDy-KNDy neurons. Impaired functioning of KNDy neurons could develop the characteristics associated with polycystic ovarian syndrome (PCOS) in rodents. Kisspeptin-increased synthesis led to excessive secretion of the LH associated with PCOS. This review provides the latest insights and understanding into the role of the KNDy and AVPV/POA kisspeptin neurons in GnRH secretion and PCOS.


Assuntos
Hormônio Liberador de Gonadotropina , Síndrome do Ovário Policístico , Feminino , Humanos , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Síndrome do Ovário Policístico/metabolismo
18.
Front Immunol ; 14: 1201677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671159

RESUMO

HIV-infected patients are at higher risk of developing oral mucosal infection and Epstein-Barr virus (EBV)-associated B cell malignancies. However, the potential role of oral immunity in the pathogenesis of oral lesions is unknown. Tonsils are oral-pharyngeal mucosal-associated lymphoid tissues that play an important role in oral mucosal immunity. In this study, we investigated the changes of innate and adaptive immune cells in macaque tonsils during chronic SIV infection. We found significantly higher frequencies of classical monocytes, CD3+CD56+ (NKT-like) cells, CD3+CD4+CD8+ (DP), and CD161+ CD4 T cells in tonsils from chronic infected compared to naïve animals. On the contrary, intermediate monocytes and CD3+CD4-CD8- (DN) cells were lower in chronic SIV-infected macaques. We further confirmed a recently described small B-cell subset, NKB cells, were higher during chronic infection. Furthermore, both adaptive and innate cells showed significantly higher TNF-α and cytotoxic marker CD107a, while IL-22 production was significantly reduced in innate and adaptive immune cells in chronic SIV-infected animals. A dramatic reduction of IFN-γ production by innate immune cells might indicate enhanced susceptibility to EBV infection and potential transformation of B cells in the tonsils. In summary, our observation shows that the SIV-associated immune responses are distinct in the tonsils compared to other mucosal tissues. Our data extends our understanding of the oral innate immune system during SIV infection and could aid future studies in evaluating the role of tonsillar immune cells during HIV-associated oral mucosal infections.


Assuntos
Infecções por Vírus Epstein-Barr , Infecção Persistente , Animais , Herpesvirus Humano 4 , Mucosa Bucal , Tonsila Palatina
19.
Cancers (Basel) ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980580

RESUMO

The roles played by the peptides belonging to the tachykinin (neurokinin A and B) and calcitonin/calcitonin gene-related peptide (adrenomedullin, adrenomedullin 2, amylin, and calcitonin gene-related peptide (CGRP)) peptide families in cancer development are reviewed. The structure and dynamics of the neurokinin (NK)-2, NK-3, and CGRP receptors are studied together with the intracellular signaling pathways in which they are involved. These peptides play an important role in many cancers, such as breast cancer, colorectal cancer, glioma, lung cancer, neuroblastoma, oral squamous cell carcinoma, phaeochromocytoma, leukemia, bladder cancer, endometrial cancer, Ewing sarcoma, gastric cancer, liver cancer, melanoma, osteosarcoma, ovarian cancer, pancreatic cancer, prostate cancer, renal carcinoma, and thyroid cancer. These peptides are involved in tumor cell proliferation, migration, metastasis, angiogenesis, and lymphangiogenesis. Several antitumor therapeutic strategies, including peptide receptor antagonists, are discussed. The main research lines to be developed in the future are mentioned.

20.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953135

RESUMO

Hypothalamic kisspeptin (Kiss1) neurons provide indispensable excitatory transmission to gonadotropin-releasing hormone (GnRH) neurons for the coordinated release of gonadotropins, estrous cyclicity, and ovulation. But maintaining reproductive functions is metabolically demanding so there must be a coordination with multiple homeostatic functions, and it is apparent that Kiss1 neurons play that role. There are 2 distinct populations of hypothalamic Kiss1 neurons, namely arcuate nucleus (Kiss1ARH) neurons and anteroventral periventricular and periventricular nucleus (Kiss1AVPV/PeN) neurons in rodents, both of which excite GnRH neurons via kisspeptin release but are differentially regulated by ovarian steroids. Estradiol (E2) increases the expression of kisspeptin in Kiss1AVPV/PeN neurons but decreases its expression in Kiss1ARH neurons. Also, Kiss1ARH neurons coexpress glutamate and Kiss1AVPV/PeN neurons coexpress gamma aminobutyric acid (GABA), both of which are upregulated by E2 in females. Also, Kiss1ARH neurons express critical metabolic hormone receptors, and these neurons are excited by insulin and leptin during the fed state. Moreover, Kiss1ARH neurons project to and excite the anorexigenic proopiomelanocortin neurons but inhibit the orexigenic neuropeptide Y/Agouti-related peptide neurons, highlighting their role in regulating feeding behavior. Kiss1ARH and Kiss1AVPV/PeN neurons also project to the preautonomic paraventricular nucleus (satiety) neurons and the dorsomedial nucleus (energy expenditure) neurons to differentially regulate their function via glutamate and GABA release, respectively. Therefore, this review will address not only how Kiss1 neurons govern GnRH release, but how they control other homeostatic functions through their peptidergic, glutamatergic and GABAergic synaptic connections, providing further evidence that Kiss1 neurons are the key neurons coordinating energy states with reproduction.


Assuntos
Homeostase/fisiologia , Hipotálamo/fisiologia , Kisspeptinas/fisiologia , Neurônios/fisiologia , Animais , Regulação da Temperatura Corporal , Química Encefálica , Metabolismo Energético/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/análise , Kisspeptinas/genética , Hormônio Luteinizante/metabolismo , RNA Mensageiro/análise , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA