RESUMO
Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.
Assuntos
Inflamassomos , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspases/metabolismo , Morte Celular , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , PiroptoseRESUMO
NLRP6 is important in host defense by inducing functional outcomes including inflammasome activation and interferon production. Here, we show that NLRP6 undergoes liquid-liquid phase separation (LLPS) upon interaction with double-stranded RNA (dsRNA) in vitro and in cells, and an intrinsically disordered poly-lysine sequence (K350-354) of NLRP6 is important for multivalent interactions, phase separation, and inflammasome activation. Nlrp6-deficient or Nlrp6K350-354A mutant mice show reduced inflammasome activation upon mouse hepatitis virus or rotavirus infection, and in steady state stimulated by intestinal microbiota, implicating NLRP6 LLPS in anti-microbial immunity. Recruitment of ASC via helical assembly solidifies NLRP6 condensates, and ASC further recruits and activates caspase-1. Lipoteichoic acid, a known NLRP6 ligand, also promotes NLRP6 LLPS, and DHX15, a helicase in NLRP6-induced interferon signaling, co-forms condensates with NLRP6 and dsRNA. Thus, LLPS of NLRP6 is a common response to ligand stimulation, which serves to direct NLRP6 to distinct functional outcomes depending on the cellular context.
Assuntos
Inflamassomos/metabolismo , Vírus de RNA/fisiologia , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Hepatócitos/virologia , Intestinos/virologia , Proteínas Intrinsicamente Desordenadas/química , Lipopolissacarídeos/metabolismo , Fígado/virologia , Camundongos , Polilisina/metabolismo , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , Receptores de Superfície Celular/química , Transdução de Sinais , Ácidos Teicoicos/metabolismoRESUMO
Enteric-associated neurons (EANs) are closely associated with immune cells and continuously monitor and modulate homeostatic intestinal functions, including motility and nutrient sensing. Bidirectional interactions between neuronal and immune cells are altered during disease processes such as neurodegeneration or irritable bowel syndrome. We investigated the effects of infection-induced inflammation on intrinsic EANs (iEANs) and the role of intestinal muscularis macrophages (MMs) in this context. Using murine models of enteric infections, we observed long-term gastrointestinal symptoms, including reduced motility and loss of excitatory iEANs, which was mediated by a Nlrp6- and Casp11-dependent mechanism, depended on infection history, and could be reversed by manipulation of the microbiota. MMs responded to luminal infection by upregulating a neuroprotective program via ß2-adrenergic receptor (ß2-AR) signaling and mediated neuronal protection through an arginase 1-polyamine axis. Our results identify a mechanism of neuronal death post-infection and point to a role for tissue-resident MMs in limiting neuronal damage.
Assuntos
Mucosa Intestinal/imunologia , Macrófagos/imunologia , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos , Animais , Arginase/metabolismo , Caspases Iniciadoras/imunologia , Caspases Iniciadoras/metabolismo , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo , Feminino , Gastroenteropatias , Microbioma Gastrointestinal , Infecções , Inflamação/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestinos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Neurônios/fisiologia , Receptores Adrenérgicos beta 2/imunologia , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Transdução de SinaisRESUMO
The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC. NLRP6 activation by LTA induced processing of caspase-11, which promoted caspase-1 activation and interleukin-1ß (IL-1ß)/IL-18 maturation in macrophages. Nlrp6-/- and Casp11-/- mice were less susceptible to L. monocytogenes infection, which was associated with reduced pathogen loads and impaired IL-18 production. Administration of IL-18 to Nlrp6-/- or Casp11-/- mice restored the susceptibility of mutant mice to L. monocytogenes infection. These results reveal a previously unrecognized innate immunity pathway triggered by cytosolic LTA that is sensed by NLRP6 and exacerbates systemic Gram-positive pathogen infection via the production of IL-18.
Assuntos
Imunidade Inata , Inflamassomos/imunologia , Lipopolissacarídeos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Receptores de Superfície Celular/imunologia , Ácidos Teicoicos/imunologia , Animais , Caspase 1/genética , Caspase 1/imunologia , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Listeriose/genética , Listeriose/patologia , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/genéticaRESUMO
The NOD-like receptor (NLR) family pyrin domain containing 6 (NLRP6) serves as a sensor for microbial dsRNA or lipoteichoic acid (LTA) in intestinal epithelial cells (IECs), and initiating multiple pathways including inflammasome pathway and type I interferon (IFN) pathway, or regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. NLRP6 can exert its function in both inflammasome-dependent and inflammasome-independent manners. However, there is no tool to distinguish the contribution of individual NLRP6-mediated pathway to the physiology and pathology in vivo. Here, we validated that Arg39 and Trp50 residues in the pyrin domain (PYD) of murine NLRP6 are required for ASC recruitment and inflammasome activation, but are not important for the RNA binding and PYD-independent NLRP6 oligomerization. We further generated the Nlrp6R39E&W50E mutant mice, which showed reduced inflammasome activation in either steady state intestine or during viral infection. However, the type I IFN production in cells or intestine tissue from Nlrp6R39E&W50E mutant mice remain normal. Interestingly, NLRP6-mediated inflammasome activation or the IFN-I production seems to play distinct roles in the defense responses against different types of RNA viruses. Our work generated a useful tool to study the inflammasome-dependent role of NLRP6 in vivo, which might help to understand the complexity of multiple pathways mediated by NLRP6 in response to the complicated and dynamic environmental cues in the intestine.
Assuntos
Inflamassomos , NF-kappa B , Camundongos , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Intestinos , Proteínas Quinases Ativadas por Mitógeno , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismoRESUMO
The gut microbiota regulate susceptibility to multiple human diseases. The Nlrp6-ASC inflammasome is widely regarded as a hallmark host innate immune axis that shapes the gut microbiota composition. This notion stems from studies reporting dysbiosis in mice lacking these inflammasome components when compared with non-littermate wild-type animals. Here, we describe microbial analyses in inflammasome-deficient mice while minimizing non-genetic confounders using littermate-controlled Nlrp6-deficient mice and ex-germ-free littermate-controlled ASC-deficient mice that were all allowed to shape their gut microbiota naturally after birth. Careful microbial phylogenetic analyses of these cohorts failed to reveal regulation of the gut microbiota composition by the Nlrp6- and ASC-dependent inflammasomes. Our results obtained in two geographically separated animal facilities dismiss a generalizable impact of Nlrp6- and ASC-dependent inflammasomes on the composition of the commensal gut microbiota and highlight the necessity for littermate-controlled experimental design in assessing the influence of host immunity on gut microbial ecology.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Bactérias/genética , Colite/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Inflamassomos/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD , Células Cultivadas , Colite/induzido quimicamente , Colite/microbiologia , Disbiose/microbiologia , Feminino , Patrimônio Genético , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , RNA Ribossômico 16S/análise , Receptores de Superfície Celular/genética , Dodecilsulfato de SódioRESUMO
While NLRP3 contributes to kidney fibrosis, the function of most NOD-like receptors (NLRs) in chronic kidney disease (CKD) remains unexplored. To identify further NLR members involved in the pathogenesis of CKD, we searched for NLR genes expressed by normal kidneys and differentially expressed in human CKD transcriptomics databases. For NLRP6, lower kidney expression correlated with decreasing glomerular filtration rate. The role and molecular mechanisms of Nlrp6 in kidney fibrosis were explored in wild-type and Nlrp6-deficient mice and cell cultures. Data mining of single-cell transcriptomics databases identified proximal tubular cells as the main site of Nlrp6 expression in normal human kidneys and tubular cell Nlrp6 was lost in CKD. We confirmed kidney Nlrp6 downregulation following murine unilateral ureteral obstruction. Nlrp6-deficient mice had higher kidney p38 MAPK activation and more severe kidney inflammation and fibrosis. Similar results were obtained in adenine-induced kidney fibrosis. Mechanistically, profibrotic cytokines transforming growth factor beta 1 (TGF-ß1) and TWEAK decreased Nlrp6 expression in cultured tubular cells, and Nlrp6 downregulation resulted in increased TGF-ß1 and CTGF expression through p38 MAPK activation, as well as in downregulation of the antifibrotic factor Klotho, suggesting that loss of Nlrp6 promotes maladaptive tubular cell responses. The pattern of gene expression following Nlrp6 targeting in cultured proximal tubular cells was consistent with maladaptive transitions for proximal tubular cells described in single-cell transcriptomics datasets. In conclusion, endogenous constitutive Nlrp6 dampens sterile kidney inflammation and fibrosis. Loss of Nlrp6 expression by tubular cells may contribute to CKD progression.
Assuntos
Fibrose , Insuficiência Renal Crônica , Animais , Humanos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Camundongos , Rim/patologia , Rim/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Modelos Animais de Doenças , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Obstrução Ureteral/patologia , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Receptores de Superfície Celular , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
Innate inflammation is crucial for ischemic stroke development. NLRP6, a nucleotide-binding and oligomerization domain-like receptors (NLRs) family member, regulates innate inflammation. Whether NLRP6 regulates neurological damage and neuroinflammation during ischemic stroke remains unclear. We report that NLRP6 is abundantly expressed in microglia and significantly upregulated in the ischemic brain. The brain injury severity was alleviated in NLRP6-deficient mice after ischemic stroke, as evidenced by reduced cerebral infarct volume, decreased neurological deficit scores, improved histopathological morphological changes, ameliorated neuronal denaturation, and relief of sensorimotor dysfunction. In the co-culture OGD/R model, NLRP6 deficiency prevented neuronal death and attenuated microglial cell injury. NLRP6 deficiency blocked several NLRs inflammasomes' activation and abrogated inflammasome-related cytokine production by decreasing the expression of the common effector pro-caspase-1. NLRP6 deficiency reduced pro-caspase-1's protein level by inducing proteasomal degradation. These findings confirm the neuroprotective role of NLRP6 deficiency in ischemic stroke and its underlying regulation mechanism in neuroinflammation and provide a potential therapeutic target for ischemic stroke.
Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Animais , Camundongos , Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismoRESUMO
NLRP6 plays a crucial role in maintaining intestinal homeostasis by regulating the interaction between the intestinal mucosa and the microbiota. However, the impact of NLRP6 deficiency on intestinal damage following hematopoietic stem cell transplantation (HSCT) remains poorly understood. In this study, we established a syngeneic HSCT mouse model using C57BL/6 mice as donors and NLRP6-/- or C57BL/6 mice as recipients. Our findings revealed that NLRP6 deficiency had minimal influence on peripheral blood cell counts and splenic immune cell proportions in transplanted mice. However, it exacerbated pathological changes in the small intestine on day 14 post-transplantation, accompanied by increased proportions of macrophages, dendritic cells, and neutrophils. Furthermore, the NLRP6 deficiency resulted in elevated expression of MPO and CD11b, while reducing the levels mature caspase-1 and mature IL-1ß in the intestine. Moreover, the NLRP6 deficiency disturbed the expression of apoptosis-related molecules and decreased the tight junction protein occludin. Notably, recipient mice with NLRP6 deficiency exhibited lower mRNA expression levels of antimicrobial genes, such as Reg3γ and Pla2g2a. The short-term increase in inflammatory cell infiltration caused by NLRP6 deficiency was associated with intestinal damage, increased apoptosis, reduced expression of antimicrobial peptides, and impaired intestinal repair. Taken together, our findings demonstrate that the loss of NLRP6 exacerbates post-transplantation intestinal damage in recipient mice.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Transplante Isogênico , Apoptose , Intestino Delgado/patologia , Intestino Delgado/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Caspase 1/deficiência , Neutrófilos/metabolismo , Neutrófilos/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Antígeno CD11b/metabolismo , Proteínas Associadas a Pancreatite/genética , Macrófagos/metabolismo , Macrófagos/patologia , Receptores de Superfície CelularRESUMO
The nervous system possesses the remarkable ability to undergo changes in order to store information; however, it is also susceptible to damage caused by invading pathogens or neurodegenerative processes. As a member of nucleotide-binding oligomerization domain-like receptor (NLR) family, the NLRP6 inflammasome serves as a cytoplasmic innate immune sensor responsible for detecting microbe-associated molecular patterns. Upon activation, NLRP6 can recruit the adapter protein apoptosis-associated speck-like protein (ASC) and the inflammatory factors caspase-1 or caspase-11. Consequently, inflammasomes are formed, facilitating the maturation and secretion of pro-inflammatory cytokines such as inflammatory factors-18 (IL-18) and inflammatory factors-1ß (IL-1ß). Precise regulation of NLRP6 is crucial for maintaining tissue homeostasis, as dysregulated inflammasome activation can contribute to the development of various diseases. Furthermore, NLRP6 may also play a role in the regulation of extraintestinal diseases. In cells of the brain, such as astrocytes and neurons, NLRP6 inflammasome are also present. Here, the assembly and subsequent activation of caspase-1 mediated by NLRP6 contribute to disease progression. This review aims to discuss the structure and function of NLRP6, explain clearly the mechanisms that induce and activate NLRP6, and explore its role within the central and peripheral nervous system.
Assuntos
Inflamassomos , Doenças do Sistema Nervoso , Humanos , Inflamassomos/metabolismo , Citocinas/metabolismo , Caspase 1/metabolismo , Apoptose , Doenças do Sistema Nervoso/genética , Caspases , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
The apicomplexan parasite Cryptosporidium infects the intestinal epithelium. While infection is widespread around the world, children in resource-poor settings suffer a disproportionate disease burden. Cryptosporidiosis is a leading cause of diarrheal disease, responsible for mortality and stunted growth in children. CD4 T cells are required to resolve this infection, but powerful innate mechanisms control the parasite prior to the onset of adaptive immunity. Here, we use the natural mouse pathogen Cryptosporidium tyzzeri to demonstrate that the inflammasome plays a critical role in initiating this early response. Mice lacking core inflammasome components, including caspase-1 and apoptosis-associated speck-like protein, show increased parasite burden and caspase 1 deletion solely in enterocytes phenocopies whole-body knockout (KO). This response was fully functional in germfree mice and sufficient to control Cryptosporidium infection. Inflammasome activation leads to the release of IL-18, and mice that lack IL-18 are more susceptible to infection. Treatment of infected caspase 1 KO mice with recombinant IL-18 is remarkably efficient in rescuing parasite control. Notably, NOD-like receptor family pyrin domain containing 6 (NLRP6) was the only NLR required for innate parasite control. Taken together, these data support a model of innate recognition of Cryptosporidium infection through an NLRP6-dependent and enterocyte-intrinsic inflammasome that leads to the release of IL-18 required for parasite control.
Assuntos
Criptosporidiose/imunologia , Enterócitos/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Caspase 1/metabolismo , Cryptosporidium/fisiologia , Enterócitos/imunologia , Interações Hospedeiro-Patógeno , CamundongosRESUMO
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disease with a high disability rate and high mortality, and pyroptosis is a type of programmed cell death in the acute phase of ICH. Neuronal Per-Arnt-Sim domain protein 4 (Npas4) is a specific transcription factor highly expressed in the nervous system, yet the role of NPAS4 in ICH-induced pyroptosis is not fully understood. NLR family Pyrin-domain-containing 6 (NLRP6), a new member of the Nod-like receptor family, aggravates pyroptosis via activating cysteine protease-1 (Caspase-1) and Caspase-11. In this study, we found that NPAS4 was upregulated in human and mouse peri-hematoma brain tissues and peaked at approximately 24 h after ICH modeling. Additionally, NPAS4 knockdown improved neurologic dysfunction and brain damage induced by ICH in mice after 24 h. Meanwhile, inhibiting NPAS4 expression reduced the levels of myeloperoxidase (MPO)-positive cells and Caspase-1/TUNEL-double-positive cells and decreased cleaved Caspase-1, cleaved Caspase-11, and N-terminal GSDMD levels. Consistently, NPAS4 overexpression reversed the above alternations after ICH in the mice. Moreover, NPAS4 could interact with the Nlrp6 promoter region (-400--391 bp and -33--24 bp) and activate the transcription of Nlrp6. Altogether, our study demonstrated that NPAS4, as a transcription factor, can exacerbate pyroptosis and transcriptionally activate NLRP6 in the acute phase of intracerebral hemorrhage in mice.
Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Camundongos , Humanos , Animais , Piroptose/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Fatores de Transcrição , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genéticaRESUMO
BACKGROUND: Inflammasomes are large protein complexes that assemble in the cytosol in response to danger such as tissue damage or infection. Following activation, inflammasomes trigger cell death and the release of biologically active forms of pro-inflammatory cytokines interleukin (IL)-1ß and IL-18. NOD-like receptor family pyrin domain containing 6 (NLRP6) inflammasome is required for IL-18 secretion by intestinal epithelial cells, macrophages, and T cells, contributing to homeostasis and self-defense against pathogenic microbes. However, the involvement of NLRP6 in type 2 lung inflammation remains elusive. METHODS: Wild-type (WT) and Nlrp6-/- mice were used. Birch pollen extract (BPE)-induced allergic lung inflammation, eosinophil recruitment, Th2-related cytokine and chemokine production, airway hyperresponsiveness, and lung histopathology, Th2 cell differentiation, GATA3, and Th2 cytokines expression, were determined. Nippostrongylus brasiliensis (Nb) infection, worm count in intestine, type 2 innate lymphoid cell (ILC2), and Th2 cells in lungs were evaluated. RESULTS: We demonstrate in Nlrp6-/- mice that a mixed Th2/Th17 immune responses prevailed following birch pollen challenge with increased eosinophils, ILC2, Th2, and Th17 cell induction and reduced IL-18 production. Nippostrongylus brasiliensis infected Nlrp6-/- mice featured enhanced early expulsion of the parasite due to enhanced type 2 immune responses compared to WT hosts. In vitro, NLRP6 repressed Th2 polarization, as shown by increased Th2 cytokines and higher expression of the transcription factor GATA3 in the absence of NLRP6. Exogenous IL-18 administration partially reduced the enhanced airways inflammation in Nlrp6-/- mice. CONCLUSIONS: In summary, our data identify NLRP6 as a negative regulator of type 2 immune responses.
Assuntos
Imunidade Inata , Pneumonia , Animais , Camundongos , Citocinas/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Linfócitos , Camundongos Knockout , Nippostrongylus , Pneumonia/metabolismo , Células Th2RESUMO
Functional dyspepsia (FD) affects up to 15% of the population and is characterised by recurring upper gastrointestinal (GI) symptoms occurring in the absence of clinically identifiable pathology. Psychological stress is a key factor associated with the onset of FD and locally acting hypothalamic-pituitary-adrenal (HPA) axis hormones have been implicated in GI motility and barrier dysfunction. Recent pre-clinical work has identified mechanistic pathways linking corticotropin-releasing hormone (CRH) with the innate epithelial immune protein NLRP6, an inflammasome that has been shown to regulate GI mucus secretion. We recruited twelve FD patients and twelve healthy individuals to examine whether dysregulation of hypothalamic-pituitary adrenal (HPA) axis hormones and altered NLRP6 pathways were evident in the duodenal mucosa. Protein expression was assessed by immunoblot and immunohistochemistry in D2 duodenal biopsies. Plasma HPA axis hormones were assayed by ELISA and enteroid and colorectal cancer cell line cultures were used to verify function. FD patients exhibited reduced duodenal CRH-receptor 2, compared to non-GI disease controls, indicating a dysregulation of duodenal HPA signalling. The loss of CRH-receptor 2 correlated with reduced NLRP6 expression and autophagy function, processes critical for maintaining goblet cell homeostasis. In accordance, duodenal goblet cell numbers and mucin exocytosis was reduced in FD patients compared to controls. In vitro studies demonstrated that CRH could reduce NLRP6 in duodenal spheroids and promote mucus secretion in the HT29-MTX-E12 cell line. In conclusion, FD patients exhibit defects in the NLRP6-autophagy axis with decreased goblet cell function that may drive symptoms of disease. These features correlated with loss of CRH receptor 2 and may be driven by dysregulation of HPA signalling in the duodenum of FD patients.
Assuntos
Dispepsia , Peptídeos e Proteínas de Sinalização Intracelular , Sistema Hipófise-Suprarrenal , Receptores de Hormônio Liberador da Corticotropina , Autofagia , Duodeno/metabolismo , Dispepsia/metabolismo , Células Caliciformes/metabolismo , Homeostase , Hormônios/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismoRESUMO
BACKGROUND: Apoptosis signal-regulating kinase 1-interacting protein 1 (AIP1) participates in inflammatory neovascularization induction. NADPH oxidase 4 (NOX4) produces reactive oxygen species (ROS), leading to an imbalance in nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) and NLR family pyrin domain containing 6 (NLRP6) expression. The mechanisms of AIP1, NOX4, ROS and inflammasomes in corneal neovascularization were studied herein. METHODS: C57BL/6 and AIP1-knockout mice were used in this study. The alkali burn procedure was performed on the right eye. Adenovirus encoding AIP1 plus green fluorescence protein (GFP) (Ad-AIP1-GFP) or GFP alone was injected into the right anterior chamber, GLX351322 was applied as a NOX4 inhibitor, and then corneal neovascularization was scored. The expression of related genes was measured by quantitative real-time polymerase chain reaction, western blotting and immunofluorescence staining. 2',7'-Dichlorofluorescin diacetate staining was used to determine the ROS levels. RESULTS: The expression of AIP1 was decreased, while that of cleaved interleukin-1ß (clv-IL-1ß) and vascular endothelial growth factor A (VEGFa) was increased after alkali burn injury. NOX4 expression was increased, the imbalance in NLRP3/NLRP6 was exacerbated, and corneal neovascularization was increased significantly in AIP1-knockout mice compared with those in C57BL/6 mice after alkali burns. These effects were reversed by AIP1 overexpression. NLRP3/NLRP6 expression was imbalanced after alkali burns. GLX351322 reversed the imbalance in NLRP3/NLRP6 by reducing the ROS levels. This treatment also reduced the expression of clv-IL-1ß and VEGFa, suppressing neovascularization. CONCLUSIONS: AIP1 and NOX4 can regulate corneal inflammation and neovascularization after alkali burn injury. Based on the pathogenesis of corneal neovascularization, these findings are expected to provide new therapeutic strategies for patients. Corneal alkali burn injury is a common type of ocular injury that is difficult to treat in the clinic. The cornea is a clear and avascular tissue. Corneal neovascularization after alkali burn injury is a serious complication; it not only seriously affects the patient's vision but also is the main reason for failed corneal transplantation. Corneal neovascularization affects approximately 1.4 million patients a year. We show for the first time that AIP1 and NOX4 can regulate corneal inflammation and neovascularization after alkali burns. The expression of AIP1 was decreased, while that of clv-IL-1ß and VEGFa was increased after alkali burns. We tried to elucidate the specific molecular mechanisms by which AIP1 regulates corneal neovascularization. NOX4 activation was due to decreased AIP1 expression in murine corneas with alkali burns. NOX4 expression was increased, the imbalance in NLRP3/NLRP6 was exacerbated, and corneal neovascularization was increased significantly in AIP1-knockout mice compared with those in C57BL/6 mice after alkali burns. These effects were reversed by AIP1 overexpression. Additionally, NLRP3/NLRP6 expression was unbalanced, with NLRP3 activation and NLRP6 suppression in the corneal alkali burn murine model. Eye drops containing GLX351322, a NOX4 inhibitor, reversed the imbalance in NLRP3/NLRP6 by reducing ROS expression. This treatment also reduced the expression of clv-IL-1ß and VEGFa, reducing neovascularization. Therefore, we provide new gene therapeutic strategies for patients. With the development of neovascularization therapy, we believe that in addition to corneal transplantation, new drug or gene therapies can achieve better results. Video Abstract.
Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Proteínas Ativadoras de ras GTPase , Álcalis/efeitos adversos , Animais , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/patologia , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Neovascularização da Córnea/induzido quimicamente , Neovascularização da Córnea/complicações , Neovascularização da Córnea/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/complicações , Queimaduras Oculares/tratamento farmacológico , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 4 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neovascularização Patológica , Espécies Reativas de Oxigênio , Receptores de Superfície Celular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismoRESUMO
Pasteurella multocida (P. multocida) can cause severe respiratory disease in cattle, resulting in high mortality and morbidity. Inflammasomes are multiprotein complexes in the cytoplasm that recognize pathogens and play an important role in the host defense against microbial infection. In this study, the mechanism of P. multocida-induced NLRP6 inflammasome activation was investigated in vitro and in vivo. Firstly, P. multocida induced severe inflammation with a large number of inflammatory cells infiltrating the lungs of WT and Nlrp6-/- mice. Nlrp6-/- mice were more susceptible to P. multocida infection and they had more bacterial burden in the lungs. Then, the recruitment of macrophages and neutrophils in the lungs was investigated and the results show that the number of immune cells was significantly decreased in Nlrp6-/- mice. Subsequently, NLRP6 was shown to regulate P. multocida-induced inflammatory cytokine secretion including IL-1ß and IL-6 both in vivo and in vitro while TNF-α secretion was not altered. Moreover, NLRP6 was found to mediate caspase-1 activation and ASC oligomerization, resulting in IL-1ß secretion. Furthermore, NLRP6 inflammasome mediated the gene expression of chemokines including CXCL1, CXCL2 and CXCR2 which drive the activation of NLRP3 inflammasomes. Finally, NLRP3 protein expression was detected to be abrogated in P. multocida-infected Nlrp6-/- macrophages, indicating the synergic effect of NLRP6 and NLRP3. Our study demonstrates that NLRP6 inflammasome plays an important role in the host against P. multocida infection and contributes to the development of immune therapeutics against P. multocida.
Assuntos
Inflamassomos , Pasteurella multocida , Receptores de Superfície Celular/metabolismo , Animais , Caspase 1 , Caspases , Interleucina-1beta/metabolismo , Interleucina-6 , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfaRESUMO
Inflammasomes are large protein complexes that trigger host defense in cells by activating inflammatory caspases for cytokine maturation and pyroptosis. NLRP6 is a sensor protein in the nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing (NLR) inflammasome family that has been shown to play multiple roles in regulating inflammation and host defenses. Despite the significance of the NLRP6 inflammasome, little is known about the molecular mechanism behind its assembly and activation. Here we present cryo-EM and crystal structures of NLRP6 pyrin domain (PYD). We show that NLRP6 PYD alone is able to self-assemble into filamentous structures accompanied by large conformational changes and can recruit the ASC adaptor using PYD-PYD interactions. Using molecular dynamics simulations, we identify the surface that the NLRP6 PYD filament uses to recruit ASC PYD. We further find that full-length NLRP6 assembles in a concentration-dependent manner into wider filaments with a PYD core surrounded by the NBD and the LRR domain. These findings provide a structural understanding of inflammasome assembly by NLRP6 and other members of the NLR family.
Assuntos
Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização ProteicaRESUMO
The NOD-like receptor family pyrin domain containing 6 (NLRP6), a member of the NOD-like receptor (NLR) family, acts as a cytosolic innate immune sensor that recognizes microbe-associated molecular patterns. In some circumstances upon activation, NLRP6 recruits the adaptor apoptosis-associated speck-like protein (ASC) and the inflammatory caspase-1 or caspase-11 to form an inflammasome, which mediates the maturation and secretion of the pro-inflammatory cytokines IL-18 and IL-1ß. In other contexts, NLRP6 can exert its function in an inflammasome-independent manner. Tight regulation of the NLRP6 inflammasome is critical in maintaining tissue homeostasis, while improper inflammasome activation may contribute to the development of multiple diseases. In intestinal epithelial cells, the NLRP6 inflammasome is suggested to play a role in regulating gut microbiome composition, goblet cell function and related susceptibility to gastrointestinal inflammatory, infectious and neoplastic diseases. Additionally, NLRP6 may regulate extra-intestinal diseases. In this review, we summarize current knowledge on the NLRP6 inflammasome and its activation and regulation patterns, as well as its effector functions contributing to disease modulation. We discuss current challenges in NLRP6 research and future prospects in harnessing its function into potential human interventions.
Assuntos
Imunidade Inata , Inflamassomos/metabolismo , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Microbioma Gastrointestinal , Humanos , Inflamassomos/genética , Enteropatias/genética , Enteropatias/imunologia , Enteropatias/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de SinaisRESUMO
Nod-like receptor pyrin domain-containing protein 6 (NLRP6) plays a key role in innate immunity, host defense and tumorigenesis. Our previous study has demonstrated the tumor suppressor role of NLRP6 in gastric cancer. In the present study, we explored the interaction protein of NLRP6 by Flag-tagged immunoprecipitation assay and liquid chromatography/mass spectrometry-based proteomics analysis. The 78 kDa glucose-regulated protein (GRP78), a heat shock protein, was identified as an interaction protein of NLRP6. The binding of NLRP6 to GRP78 was through the Pyrin domain, and the substrate binding domain (SBD) domain of GRP78 was responsible for the interaction with NLRP6. NLRP6 overexpression enhanced the polyubiquitination of GRP78 in gastric cancer cells. Overexpression of GRP78 abolished the effects of NLRP6 overexpression in gastric cancer cell proliferation, cell cycle progression, cell apoptosis, migration and Cyclin D1 expression. GRP78 knockdown reversed the effects of NLRP6 knockdown on cell proliferation and cell cycle progression. NLRP6 expression was negatively correlated with GRP78 expression in human gastric tissues. Tumorigenicity assay indicated that GRP78 mediated the functions of NLRP6 on gastric cancer cell growth in vivo. ON-013100, which could inhibit Cyclin D1 expression, was less effective in treating xenografts of gastric cancer cells with higher level of NLRP6 than in those with lower level of NLRP6. In conclusion, our study suggested that NLRP6 exerted inhibitory effects on gastric cancer cell growth by promoting the ubiquitination of GRP78.
Assuntos
Proteínas de Choque Térmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Gástricas/metabolismo , Ubiquitinação/fisiologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Chaperona BiP do Retículo Endoplasmático , Humanos , Chaperonas Moleculares/metabolismo , Neoplasias Gástricas/patologiaRESUMO
Streptococcus pneumoniae (S. pneumoniae) causes severe pulmonary diseases, leading to high morbidity and mortality. It has been reported that inflammasomes such as NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) play an important role in the host defense against S. pneumoniae infection. However, the role of NLRP6 in vivo and in vitro against S. pneumoniae remains unclear. Therefore, we investigated the role of NLRP6 in regulating the S. pneumoniae-induced inflammatory signaling pathway in vitro and the role of NLRP6 in the host defense against S. pneumoniae in vivo by using NLRP6-/- mice. The results showed that the NLRP6 inflammasome regulated the maturation and secretion of IL-1ß, but it did not affect the induction of IL-1ß transcription in S. pneumoniae-infected macrophages. Furthermore, the activation of caspase-1, caspase-11, and gasdermin D (GSDMD) as well as the oligomerization of apoptosis-associated speck-like protein (ASC) were also mediated by NLRP6 in S. pneumoniae-infected macrophages. However, the activation of NLRP6 reduced the expression of NF-κB and ERK signaling pathways in S. pneumoniae-infected macrophages. In vivo study showed that NLRP6-/- mice had a higher survival rate, lower number of bacteria, and milder inflammatory response in the lung compared with wild-type (WT) mice during S. pneumoniae infection, indicating that NLRP6 plays a negative role in the host defense against S. pneumoniae. Furthermore, increased bacterial clearance in NLRP6 deficient mice was modulated by the recruitment of macrophages and neutrophils. Our study provides a new insight on S. pneumoniae-induced activation of NLRP6 and suggests that blocking NLRP6 could be considered as a potential therapeutic strategy to treat S. pneumoniae infection.