Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
RNA Biol ; 11(10): 1226-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25584639

RESUMO

The double-stranded RNA-binding domain (dsRBD) is a small protein domain found in eukaryotic, prokaryotic and viral proteins, whose central property is to bind to double-stranded RNA (dsRNA). Aside from this major function, recent examples of dsRBDs involved in the regulation of the sub-cellular localization of proteins, suggest that the participation of dsRBDs in nucleocytoplasmic trafficking is likely to represent a widespread auxiliary function of this type of RNA-binding domain. Overall, dsRBDs from proteins involved in many different biological processes have been reported to be implicated in nuclear import and export, as well as cytoplasmic, nuclear and nucleolar retention. Interestingly, the function of dsRBDs in nucleocytoplasmic trafficking is often regulated by their dsRNA-binding capacity, which can either enhance or impair the transport from one compartment to another. Here, we present and discuss the emerging function of dsRBDs in nucleocytoplasmic transport.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Núcleo Celular/genética , Citoplasma/genética , Humanos , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética
2.
JACC Basic Transl Sci ; 7(4): 366-380, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35540100

RESUMO

GRK5's catalytic activity in regulating basal and stressed cardiac function has not been studied. Herein, we studied knock-in mice in which GRK5 was mutated to render it catalytically inactive (K215R). At baseline, GRK5-K215R mice showed a marked decline in cardiac function with increased apoptosis and fibrosis. In vitro, restriction of GRK5 inside the nucleus of cardiomyocytes resulted in enhanced cell death along with higher p53 levels. Moreover, in fibroblasts, we demonstrated that K215R mutation promoted the transition into myofibroblast phenotype. This study provides novel insight into the biological actions of GRK5, that are essential for its future targeting.

3.
Acta Pharm Sin B ; 12(4): 1871-1884, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847493

RESUMO

Metabolic and epigenetic reprogramming play important roles in cancer therapeutic resistance. However, their interplays are poorly understood. We report here that elevated TIGAR (TP53-induced glycolysis and apoptosis regulator), an antioxidant and glucose metabolic regulator and a target of oncogenic histone methyltransferase NSD2 (nuclear receptor binding SET domain protein 2), is mainly localized in the nucleus of therapeutic resistant tumor cells where it stimulates NSD2 expression and elevates global H3K36me2 mark. Mechanistically, TIGAR directly interacts with the antioxidant master regulator NRF2 and facilitates chromatin recruitment of NRF2, H3K4me3 methylase MLL1 and elongating Pol-II to stimulate the expression of both new (NSD2) and established (NQO1/2, PRDX1 and GSTM4) targets of NRF2, independent of its enzymatic activity. Nuclear TIGAR confers cancer cell resistance to chemotherapy and hormonal therapy in vitro and in tumors through effective maintenance of redox homeostasis. In addition, nuclear accumulation of TIGAR is positively associated with NSD2 expression in clinical tumors and strongly correlated with poor survival. These findings define a nuclear TIGAR-mediated epigenetic autoregulatory loop in redox rebalance for tumor therapeutic resistance.

4.
Gene X ; 1: 100006, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32550543

RESUMO

Lem2 family proteins, i.e. the LAP2-Emerin-MAN1 (LEM) domain-containing nuclear envelope proteins, are well-conserved from yeasts to humans, both of which belong to the Opisthokonta supergroup. However, whether their homologs are present in other eukaryotic phylogenies remains unclear. In this study, we identified two Lem2 homolog proteins, which we named as Lem2 and MicLem2, in a ciliate Tetrahymena thermophila belonging to the SAR supergroup. Lem2 was localized to the nuclear envelope of the macronucleus (MAC) and micronucleus (MIC), while MicLem2 was exclusively localized to the nuclear envelope of the MIC. Immunoelectron microscopy revealed that Lem2 in T. thermophila was localized to both the inner and outer nuclear envelopes of the MAC and MIC, while MicLem2 was mostly localized to the nuclear pores of the MIC. Molecular domain analysis using GFP-fused protein showed that the N-terminal and luminal domains, including the transmembrane segments, are responsible for nuclear envelope localization. During sexual reproduction, enrichment of Lem2 occurred in the nuclear envelopes of the MAC and MIC to be degraded, while MicLem2 was enriched in the nuclear envelope of the MIC that escaped degradation. These findings suggest the unique characteristics of Tetrahymena Lem2 proteins. Our findings provide insight into the evolutionary divergence of nuclear envelope proteins.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30480076

RESUMO

Background & Aims: The tumor-suppressor sterile α motif- and Src-homology 3-domain containing 1 (SASH1) has clinical relevance in colorectal carcinoma and is associated specifically with metachronous metastasis. We sought to identify the molecular mechanisms linking decreased SASH1 expression with distant metastasis formation. Methods: SASH1-deficient, SASH1-depleted, or SASH1-overexpressing HCT116 colon cancer cells were generated by the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9-method, RNA interference, and transient plasmid transfection, respectively. Epithelial-mesenchymal transition (EMT) was analyzed by quantitative reverse-transcription polymerase chain reaction, immunoblotting, immunofluorescence microscopy, migration/invasion assays, and 3-dimensional cell culture. Yeast 2-hybrid assays and co-immunoprecipitation/mass-spectrometry showed V-Crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) as a novel interaction partner of SASH1, further confirmed by domain mapping, site-directed mutagenesis, co-immunoprecipitation, and dynamic mass redistribution assays. CRKL-deficient cells were generated in parental or SASH1-deficient cells. Metastatic capacity was analyzed with an orthotopic mouse model. Expression and significance of SASH1 and CRKL for survival and response to chemotherapy was assessed in patient samples from our department and The Cancer Genome Atlas data set. Results: SASH1 expression is down-regulated during cytokine-induced EMT in cell lines from colorectal, pancreatic, or hepatocellular cancer, mediated by the putative SASH1 promoter. Deficiency or knock-down of SASH1 induces EMT, leading to an aggressive, invasive phenotype with increased chemoresistance. SASH1 counteracts EMT through interaction with the oncoprotein CRKL, inhibiting CRKL-mediated activation of SRC kinase, which is crucially required for EMT. SASH1-deficient cells form significantly more metastases in vivo, depending entirely on CRKL. Patient tumor samples show significantly decreased SASH1 and increased CRKL expression, associated with significantly decreased overall survival. Patients with increased CRKL expression show significantly worse response to adjuvant chemotherapy. Conclusions: We propose SASH1 as an inhibitor of CRKL-mediated SRC signaling, introducing a potentially druggable mechanism counteracting chemoresistance and metastasis formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Sistemas CRISPR-Cas/genética , Células HCT116 , Células HEK293 , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Proteínas Nucleares/química , Fenótipo , Ligação Proteica , Transdução de Sinais , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/deficiência , Domínios de Homologia de src
6.
Biochem Biophys Rep ; 8: 23-28, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28955937

RESUMO

An approach to assay proteolytic activity in vivo by altering the subcellular localization of a labelled substrate was demonstrated. The assay included a protein shuttling between different cellular compartments and a site-specific recombinant protease. The shuttle protein used was the human immunodeficiency virus type 1 (HIV-1) Rev protein tandemly fused to the enhanced green fluorescent protein (EGFP) and the red fluorescent protein (RFP), while the protease was the site-specific protease VP24 from the herpes simplex virus type 1 (HSV-1). The fluorescent proteins in the Rev fusion protein were separated by a cleavage site specific for the VP24 protease. When co-expressed in COS-7 cells proteolysis was observed by fluorescence microscopy as a shift from a predominantly cytoplasmic localization of the fusion protein RevEGFP to a nuclear localization while the RFP part of the fusion protein remained in the cytoplasm. The cleavage of the fusion protein by VP24 was confirmed by Western blot analysis. The activity of VP24, when tagged N-terminally by the Myc-epitope, was found to be comparable to VP24. These results demonstrates that the activity and localization of a recombinantly expressed protease can be assessed by protease-mediated cleavage of fusion proteins containing a specific protease cleavage site.

7.
Biochem Biophys Rep ; 7: 323-327, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955922

RESUMO

The HER4 receptor tyrosine kinase and STAT5A cooperate to promote mammary luminal progenitor cell maturation and mammary epithelial cell differentiation. Coupled HER4 and STAT5A signaling is mediated, in part, through association of the HER4 intracellular domain (4ICD) with STAT5A at STAT5A target gene promoters where 4ICD functions as a STAT5A transcriptional coactivator. Despite an essential role for coupled 4ICD and STAT5A signaling in mammary gland development, the mechanistic basis of 4ICD and STAT5A cooperative signaling remains unexplored. Here we show for the first time that 4ICD and STAT5A directly interact through STAT5A recruitment and binding to HER4/4ICD residue Y984. Accordingly, altering the 4ICD Y984 to phenylalanine results in a dramatic reduction of STAT5A and 4ICD-Y984F interacting complexes coimmunoprecipitated with HER4 or STAT5A specific antibodies. We further show that disrupting the 4ICD and STAT5A interaction has an important physiological impact on mammary epithelial cell differentiation. HC11 mammary epithelial cells with stable expression of 4ICD undergo differentiation with significantly increased expression of the STAT5A target genes and differentiation markers ß-casein and WAP. In contrast, HC11 cells stably expressing 4ICD-Y984F failed to undergo differentiation with basal expression levels of ß-casein and WAP. Differentiation in this cell system was induced in the absence of exogenous prolactin indicating that 4ICD activity is sufficient to induce mammary epithelial cell differentiation. Finally, we show that suppression of STAT5A expression abolishes the ability of 4ICD to induce HC11 differentiation and activate ß-casein or WAP expression. Taken together our results demonstrate for the first time that direct coupling of 4ICD and STAT5A is both necessary and sufficient to drive mammary epithelial differentiation. In conclusion, our findings that 4ICD and STAT5A directly interact to form a physiologically important transcriptional activation complex, provide a mechanistic basis for the in vivo observations that HER4/4ICD and STAT5A cooperate to promote mammary gland progenitor cell maturation and initiate lactation at parturition.

8.
Small GTPases ; 6(1): 20-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25862163

RESUMO

The GTP bound form of the Ran GTPase (RanGTP) in the nucleus promotes nuclear import of the proteins bearing nuclear localization signals (NLS). When nuclear envelopes break down during mitosis, RanGTP is locally produced around chromosomes and drives the assembly of the spindle early in mitosis and the nuclear envelope (NE) later. RanGTP binds to the heterodimeric nuclear transport receptor importin α/ß and releases NLS proteins from the receptor. Liberated NLS proteins around chromosomes have been shown to play distinct, essential roles in spindle and NE assembly. Here we provide a highly specific protocol to purify NLS proteins from crude cell lysates. The pure NLS fraction is an excellent resource to investigate the NLS protein function and identify new mitotic regulators, uncovering fundamental mechanisms of the cell division cycle. It takes 2-3 days to obtain the NLS fraction.


Assuntos
Proteínas de Ciclo Celular/isolamento & purificação , Fracionamento Celular/métodos , Núcleo Celular/química , Mitose , Sinais de Localização Nuclear , Proteínas Nucleares/isolamento & purificação , Óvulo/química , Animais , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Óvulo/metabolismo , Transporte Proteico , Xenopus , Proteína ran de Ligação ao GTP/metabolismo
9.
Nucleus ; 6(3): 197-202, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942571

RESUMO

The endosomal sorting complexes required for transport (ESCRT) are best known for their role in sorting ubiquitylated membrane proteins into endosomes. The most ancient component of the ESCRT machinery is ESCRT-III, which is capable of oligomerizing into a helical filament that drives the invagination and scission of membranes aided by the AAA ATPase, Vps4, in several additional subcellular contexts. Our recent study broadens the work of ESCRT-III by identifying its role in a quality control pathway at the nuclear envelope (NE) that ensures the normal biogenesis of nuclear pore complexes (NPCs). Here, we will elaborate on how we envision this mechanism to progress and incorporate ESCRT-III into an emerging model of nuclear pore formation. Moreover, we speculate there are additional roles for the ESCRT-III machinery at the NE that broadly function to ensure its integrity and the maintenance of the nuclear compartment.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Cromatina/química , Cromatina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/química , Regulação Fúngica da Expressão Gênica , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Poro Nuclear/química , Poro Nuclear/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
10.
Acta Pharm Sin B ; 5(5): 487-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26579480

RESUMO

The accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b, 9b and ORF14), predicted unknown proteins (PUPs) encoded by the genes, are considered to be unique to the severe acute respiratory syndrome coronavirus (SARS-CoV) genome. These proteins play important roles in various biological processes mediated by interactions with their partners. However, very little is known about the interactions among these accessory proteins. Here, a EYFP (enhanced yellow fluorescent protein) bimolecular fluorescence complementation (BiFC) assay was used to detect the interactions among accessory proteins. 33 out of 81 interactions were identified by BiFC, much more than that identified by the yeast two-hybrid (Y2H) system. This is the first report describing direct visualization of interactions among accessory proteins of SARS-CoV. These findings attest to the general applicability of the BiFC system for the verification of protein-protein interactions.

11.
Cell Mol Gastroenterol Hepatol ; 1(3): 285-294.e1, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-28210681

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) cell entry is mediated by several cell surface receptors, including scavenger receptor class B type I (SR-BI). Oxidized low density lipoprotein (oxLDL) inhibits the interaction between HCV and SR-BI in a noncompetitive manner. We tested whether serum oxLDL levels correlate with sustained virologic response (SVR) rates after interferon-based treatment of chronic hepatitis C. METHODS: Baseline oxLDL was determined in 379 participants with chronic HCV genotype 1 infection from the INDIV-2 study using a commercial enzyme-linked immunosorbent assay. The mechanistic in vitro studies used full-length and subgenomic HCV genomes replicating in hepatoma cells. RESULTS: In the multivariate analysis, oxLDL was found to be an independent predictor of SVR. Oxidized LDL did not correlate with markers of inflammation (alanine transaminase, ferritin), nor was serum oxLDL affected by exogenous interferon administration. Also, oxLDL did not alter the sensitivity of HCV replication to interferon. However, oxLDL was found to be a potent inhibitor of cell-to-cell spread of HCV between adjacent cells in vitro. It could thus reduce the rate at which new cells are infected by HCV through either the cell-free or cell-to-cell route. Finally, serum oxLDL was significantly associated with the estimated infected cell loss rate under treatment. CONCLUSIONS: Oxidized LDL is a novel predictor of SVR after interferon-based therapy and may explain the previously observed association of LDL with SVR. Rather than being a marker of activated antiviral defenses it may improve chances of SVR by limiting spread of infection to naive cells through the cell-to-cell route.

12.
Cell Cycle ; 14(13): 2109-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26030190

RESUMO

UNLABELLED: Cancer stem-like cells (CSCs) are a rare subpopulation of cancer cells capable of propagating the disease and causing cancer recurrence. In this study, we found that the cellular localization of PKB/Akt kinase affects the maintenance of CSCs. When Akt tagged with nuclear localization signal (Akt-NLS) was overexpressed in SKBR3 and MDA-MB468 cells, these cells showed a 10-15% increase in the number of cells with CSCs enhanced ALDH activity and demonstrated a CD44(+High)/CD24(-Low) phenotype. This effect was completely reversed in the presence of Akt-specific inhibitor, triciribine. Furthermore, cells overexpressing Akt or Akt-NLS were less likely to be in G0/G1 phase of the cell cycle by inactivating p21(Waf1/Cip1) and exhibited increased clonogenicity and proliferation as assayed by colony-forming assay (mammosphere formation). Thus, our data emphasize the importance the intracellular localization of Akt has on stemness in human breast cancer cells. It also indicates a new robust way for improving the enrichment and culture of CSCs for experimental purposes. Hence, it allows for the development of simpler protocols to study stemness, clonogenic potency, and screening of new chemotherapeutic agents that preferentially target cancer stem cells. SUMMARY: The presented data, (i) shows new, stemness-promoting role of nuclear Akt/PKB kinase, (ii) it underlines the effects of nuclear Akt on cell cycle regulation, and finally (iii) it suggests new ways to study cancer stem-like cells.


Assuntos
Neoplasias da Mama/metabolismo , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/química , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/análise
13.
Autophagy ; 11(5): 729-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951043

RESUMO

Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the classic autophagy model and also into cancer therapy, especially for the emerging targeted therapy, because a series of targeted agents execute antitumor activities via blocking STAT3 signaling, which inevitably affects the autophagy pathway. Here, we review several of the representative studies and the current understanding in this particular field.


Assuntos
Autofagia , Fator de Transcrição STAT3/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/terapia , Fator de Transcrição STAT3/química , Frações Subcelulares/metabolismo
14.
Plant Signal Behav ; 9(12): e977711, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482760

RESUMO

Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a ß-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.


Assuntos
Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Ácidos Fosfatídicos/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Núcleo Celular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Modelos Biológicos , Sinais de Localização Nuclear/metabolismo , Receptores de Superfície Celular/metabolismo
15.
Cell Cycle ; 13(22): 3565-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483093

RESUMO

Greatwall (Gwl) functions as an essential mitotic kinase by antagonizing protein phosphatase 2A. In this study we identified Hsp90, Cdc37 and members of the importin α and ß families as the major binding partners of Gwl. Both Hsp90/Cdc37 chaperone and importin complexes associated with the N-terminal kinase domain of Gwl, whereas an intact glycine-rich loop at the N-terminus of Gwl was essential for binding of Hsp90/Cdc37 but not importins. We found that Hsp90 inhibition led to destabilization of Gwl, a mechanism that may partially contribute to the emerging role of Hsp90 in cell cycle progression and the anti-proliferative potential of Hsp90 inhibition. Moreover, in agreement with its importin association, Gwl exhibited nuclear localization in interphase Xenopus S3 cells, and dynamic nucleocytoplasmic distribution during mitosis. We identified KR456/457 as the locus of importin binding and the functional NLS of Gwl. Mutation of this site resulted in exclusion of Gwl from the nucleus. Finally, we showed that the Gwl nuclear localization is indispensable for the biochemical function of Gwl in promoting mitotic entry.


Assuntos
Núcleo Celular/genética , Proteínas de Drosophila/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Núcleo Celular/metabolismo , Drosophila/genética , Proteínas de Drosophila/biossíntese , Proteínas de Choque Térmico HSP90/genética , Humanos , Mitose/genética , Oócitos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/biossíntese , Xenopus laevis/genética , alfa Carioferinas/metabolismo
16.
Int J Parasitol Drugs Drug Resist ; 4(3): 326-37, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25516844

RESUMO

The Trypanosomatidae family, composed of unicellular parasites, causes severe vector-borne diseases that afflict human populations worldwide. Chagas disease, sleeping sickness, as well as different sorts of leishmaniases are amongst the most important infectious diseases produced by Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively. All these infections are closely related to weak health care services in low-income populations of less developed and least economically developed countries. Search for new therapeutic targets in order to hit these pathogens is of paramount priority, as no effective vaccine is currently in use against any of these parasites. Furthermore, present-day chemotherapy comprises old-fashioned drugs full of important side effects. Besides, they are prone to produce tolerance and resistance as a consequence of their continuous use for decades. DNA topoisomerases (Top) are ubiquitous enzymes responsible for solving the torsional tensions caused during replication and transcription processes, as well as in maintaining genomic stability during DNA recombination. As the inhibition of these enzymes produces cell arrest and triggers cell death, Top inhibitors are among the most effective and most widely used drugs in both cancer and antibacterial therapies. Top relaxation and decatenation activities, which are based on a common nicking-closing cycle involving one or both DNA strands, have been pointed as a promising drug target. Specific inhibitors that bind to the interface of DNA-Top complexes can stabilize Top-mediated transient DNA breaks. In addition, important structural differences have been found between Tops from the Trypanosomatidae family members and Tops from the host. Such dissimilarities make these proteins very interesting for drug design and molecular intervention. The present review is a critical update of the last findings regarding trypanosomatid's Tops, their new structural features, their involvement both in the physiology and virulence of these parasites, as well as their use as promising targets for drug discovery.

17.
Cell Cycle ; 13(20): 3271-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485507

RESUMO

Embryonic cell cycles of amphibians are rapid and lack zygotic transcription and checkpoint control. At the mid-blastula transition, zygotic transcription is initiated and cell divisions become asynchronous. Several cell cycle-related amphibian genes retain 2 distinct forms, maternal and zygotic, but little is known about the functional differences between these 2 forms of proteins. The minichromosome maintenance (MCM) 2-7 complex, consisting of 6 MCM proteins, plays a central role in the regulation of eukaryotic DNA replication. Almost all eukaryotes retain just a single MCM gene for each subunit. Here we report that Xenopus and zebrafish have 2 copies of MCM3 genes, one of which shows a maternal and the other a zygotic expression pattern. Phylogenetic analysis shows that the Xenopus and zebrafish zygotic MCM3 genes are more similar to their mammalian MCM3 ortholog, suggesting that maternal MCM3 was lost during evolution in most vertebrate lineages. Maternal MCM3 proteins in these 2 species are functionally different from zygotic MCM3 proteins because zygotic, but not maternal, MCM3 possesses an active nuclear localization signal in its C-terminal region, such as mammalian MCM3 orthologs do. mRNA injection experiments in zebrafish embryos show that overexpression of maternal MCM3 impairs proliferation and causes developmental defects, whereas zygotic MCM3 has a much weaker effect. This difference is brought about by the difference in their C-terminal regions, which contain putative nuclear localization signals; swapping the C-terminal region between maternal and zygotic genes diminishes the developmental defects. This study suggests that evolutionary diversification has occurred in MCM3 genes, leading to distinct functions, possibly as an adaption to the rapid DNA replication required for early development of Xenopus and zebrafish.


Assuntos
Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Evolução Molecular , Componente 3 do Complexo de Manutenção de Minicromossomo/genética , Proteínas de Xenopus/genética , Xenopus laevis , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
18.
FEBS Open Bio ; 4: 683-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161876

RESUMO

The influenza virus replicates in the host cell nucleus, and the progeny viral ribonucleoprotein complex (vRNP) is exported to the cytoplasm prior to maturation. NS2 has a nuclear export signal that mediates the nuclear export of vRNP by the vRNP-M1-NS2 complex. We previously reported that the heat shock cognate 70 (Hsc70) protein binds to M1 protein and mediates vRNP export. However, the interactions among M1, NS2, and Hsc70 are poorly understood. In the present study, we demonstrate that Hsc70 interacts with M1 more strongly than with NS2 and competes with NS2 for M1 binding, suggesting an important role of Hsc70 in the nuclear export of vRNP.

19.
Redox Biol ; 2: 314-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24563849

RESUMO

Prolonged exposure to hyperoxia results in acute lung injury (ALI), accompanied by a significant elevation in the levels of proinflammatory cytokines and leukocyte infiltration in the lungs. However, the mechanisms underlying hyperoxia-induced proinflammatory ALI remain to be elucidated. In this study, we investigated the role of the proinflammatory cytokine high mobility group box protein 1 (HMGB1) in hyperoxic inflammatory lung injury, using an adult mouse model. The exposure of C57BL/6 mice to ≥99% O2 (hyperoxia) significantly increased the accumulation of HMGB1 in the bronchoalveolar lavage fluids (BALF) prior to the onset of severe inflammatory lung injury. In the airways of hyperoxic mice, HMGB1 was hyperacetylated and existed in various redox forms. Intratracheal administration of recombinant HMGB1 (rHMGB1) caused a significant increase in leukocyte infiltration into the lungs compared to animal treated with a non-specific peptide. Neutralizing anti-HMGB1 antibodies, administrated before hyperoxia significantly attenuated pulmonary edema and inflammatory responses, as indicated by decreased total protein content, wet/dry weight ratio, and numbers of leukocytes in the airways. This protection was also observed when HMGB1 inhibitors were administered after the onset of the hyperoxic exposure. The aliphatic antioxidant, ethyl pyruvate (EP), inhibited HMGB1 secretion from hyperoxic macrophages and attenuated hyperoxic lung injury. Overall, our data suggest that HMGB1 plays a critical role in mediating hyperoxic ALI through the recruitment of leukocytes into the lungs. If these results can be translated to humans, they suggest that HMGB1 inhibitors provide treatment regimens for oxidative inflammatory lung injury in patients receiving hyperoxia through mechanical ventilation.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Anticorpos/administração & dosagem , Líquido da Lavagem Broncoalveolar/imunologia , Proteína HMGB1/metabolismo , Piruvatos/administração & dosagem , Acetilação , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/terapia , Animais , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Proteína HMGB1/antagonistas & inibidores , Injeções Espinhais , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo
20.
Redox Biol ; 2: 535-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24634836

RESUMO

The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm-nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M(-1) s(-1) and ≥1.3 × 10(3) M(-1) s(-1) were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação da Expressão Gênica/fisiologia , Peróxido de Hidrogênio/metabolismo , Proteínas Repressoras/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Animais , Compartimento Celular , Cisteína/metabolismo , Proteínas Fúngicas/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Humanos , Oxirredução , Oxirredutases/metabolismo , Estabilidade Proteica , Estabilidade de RNA , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA