Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 819
Filtrar
1.
Physiol Rev ; 103(1): 787-854, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007181

RESUMO

An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.


Assuntos
Canalopatias , Glomerulosclerose Segmentar e Focal , Nefropatias , Humanos , Canal de Cátion TRPC6/metabolismo , Canalopatias/metabolismo , Canais de Cátion TRPC/metabolismo , Glomérulos Renais/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Nefropatias/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(35): e2304323120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603735

RESUMO

The generation of appropriate behavioral responses involves dedicated neuronal circuits. The cortico-striatal-thalamo-cortical loop is especially important for the expression of motor routines and habits. Defects in this circuitry are closely linked to obsessive stereotypic behaviors, hallmarks of neuropsychiatric diseases including autism spectrum disorders (ASDs) and obsessive-compulsive disorders (OCDs). However, our knowledge of the essential synaptic machinery required to maintain balanced neurotransmission and plasticity within the cortico-striatal circuitry remains fragmentary. Mutations in the large synaptic scaffold protein intersectin1 (ITSN1) have been identified in patients presenting with ASD symptoms including stereotypic behaviors, although a causal relationship between stereotypic behavior and intersectin function has not been established. We report here that deletion of the two closely related proteins ITSN1 and ITSN2 leads to severe ASD/OCD-like behavioral alterations and defective cortico-striatal neurotransmission in knockout (KO) mice. Cortico-striatal function was compromised at multiple levels in ITSN1/2-depleted animals. Morphological analyses showed that the striatum of intersectin KO mice is decreased in size. Striatal neurons exhibit reduced complexity and an underdeveloped dendritic spine architecture. These morphological abnormalities correlate with defects in cortico-striatal neurotransmission and plasticity as well as reduced N-methyl-D-aspartate (NMDA) receptor currents as a consequence of postsynaptic NMDA receptor depletion. Our findings unravel a physiological role of intersectin in cortico-striatal neurotransmission to counteract ASD/OCD. Moreover, we delineate a molecular pathomechanism for the neuropsychiatric symptoms of patients carrying intersectin mutations that correlates with the observation that NMDA receptor dysfunction is a recurrent feature in the development of ASD/OCD-like symptoms.


Assuntos
Comportamento Compulsivo , Receptores de N-Metil-D-Aspartato , Animais , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Comportamento Compulsivo/genética , Transmissão Sináptica , Camundongos Knockout
3.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37989594

RESUMO

Glutamate spillover from the synapse is tightly regulated by astrocytes, limiting the activation of extrasynaptically located NMDA receptors (NMDAR). The processes of astrocytes are dynamic and can modulate synaptic physiology. Though norepinephrine (NE) and ß-adrenergic receptor (ß-AR) activity can modify astrocyte volume, this has yet to be confirmed outside of sensory cortical areas, nor has the effect of noradrenergic signaling on glutamate spillover and neuronal NMDAR activity been explored. We monitored changes to astrocyte process volume in response to noradrenergic agonists in the medial prefrontal cortex of male and female mice. Both NE and the ß-AR agonist isoproterenol (ISO) increased process volume by ∼20%, significantly higher than changes seen when astrocytes had G-protein signaling blocked by GDPßS. We measured the effect of ß-AR signaling on evoked NMDAR currents. While ISO did not affect single stimulus excitatory currents of Layer 5 pyramidal neurons, ISO reduced NMDAR currents evoked by 10 stimuli at 50 Hz, which elicits glutamate spillover, by 18%. After isolating extrasynaptic NMDARs by blocking synaptic NMDARs with the activity-dependent NMDAR blocker MK-801, ISO similarly reduced extrasynaptic NMDAR currents in response to 10 stimuli by 18%. Finally, blocking ß-AR signaling in the astrocyte network by loading them with GDPßS reversed the ISO effect on 10 stimuli-evoked NMDAR currents. These results demonstrate that astrocyte ß-AR activity reduces extrasynaptic NMDAR recruitment, suggesting that glutamate spillover is reduced.


Assuntos
Astrócitos , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Masculino , Feminino , Receptores de N-Metil-D-Aspartato/metabolismo , Astrócitos/metabolismo , Células Piramidais/fisiologia , Córtex Pré-Frontal/fisiologia , Ácido Glutâmico/fisiologia , Receptores Adrenérgicos beta , Sinapses/fisiologia
4.
J Neurosci ; 43(24): 4513-4524, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37160364

RESUMO

Corticotropin-releasing hormone (CRH) is a neuropeptide regulating neuroendocrine and autonomic function. CRH mRNA and protein levels in the hypothalamic paraventricular nucleus (PVN) are increased in primary hypertension. However, the role of CRH in elevated sympathetic outflow in primary hypertension remains unclear. CRHR1 proteins were distributed in retrogradely labeled PVN presympathetic neurons with an increased level in the PVN tissue in adult spontaneously hypertensive rats (SHRs) compared with age-matched male Wistar-Kyoto (WKY) rats. CRH induced a more significant increase in the firing rate of PVN-rostral ventrolateral medulla (RVLM) neurons and sympathoexcitatory response in SHRs than in WKY rats, an effect that was blocked by preapplication of NMDA receptors (NMDARs) antagonist AP5 and PSD-95 inhibitor, Tat-N-dimer. Blocking CRHRs with astressin or CRHR1 with NBI35965 significantly decreased the firing rate of PVN-RVLM output neurons and reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in SHRs but not in WKY, whereas blocking CRHR2 with antisauvagine-30 did not. Furthermore, Immunocytochemistry staining revealed that CRHR1 colocalized with NMDARs in PVN presympathetic neurons. Blocking CRHRs significantly decreased the NMDA currents in labeled PVN neurons. PSD-95-bound CRHR1 and PSD-95-bound GluN2A in the PVN were increased in SHRs. These data suggested that the upregulation of CRHR1 in the PVN is critically involved in the hyperactivity of PVN presympathetic neurons and elevated sympathetic outflow in primary hypertension.SIGNIFICANCE STATEMENT Our study found that corticotropin-releasing hormone receptor (CRHR)1 protein levels were increased in the paraventricular nucleus (PVN), and CRHR1 interacts with NMDA receptors (NMDARs) through postsynaptic density protein (PSD)-95 in the PVN neurons in primary hypertension. The increased CRHR1 and CRHR1-NMDAR-PSD-95 complex in the PVN contribute to the hyperactivity of the PVN presympathetic neurons and elevated sympathetic vasomotor tone in hypertension in SHRs. Thus, the antagonism of CRHR1 decreases sympathetic outflow and blood pressure in hypertension. These findings determine a novel role of CRHR1 in elevated sympathetic vasomotor tone in hypertension, which is useful for developing novel therapeutics targeting CRHR1 to treat elevated sympathetic outflow in primary hypertension. The CRHR1 receptor antagonists, which are used to treat health consequences resulting from chronic stress, are candidates to treat primary hypertension.


Assuntos
Hipertensão Essencial , Hipertensão , Receptores de N-Metil-D-Aspartato , Animais , Masculino , Ratos , Hormônio Adrenocorticotrópico , Hormônio Liberador da Corticotropina/metabolismo , Hipertensão Essencial/metabolismo , Hipertensão/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/farmacologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervoso Simpático/fisiologia
5.
J Neurochem ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770633

RESUMO

Here, we describe the characterization of a radioligand selective for GluN2B-containing NMDA receptors, 3-[3H] 1-(azetidin-1-yl)-2-(6-(4-fluoro-3-methyl-phenyl)pyrrolo[3,2-b]pyridin-1-yl)ethanone ([3H]-JNJ- GluN2B-5). In rat cortical membranes, the compound bound to a single site, and the following kinetic parameters were measured; association rate constant Kon = 0.0066 ± 0.0006 min-1 nM-1, dissociation rate constant Koff = 0.0210 ± 0.0001 min-1 indicating calculated KD = Koff/Kon = 3.3 ± 0.4 nM, (mean ± SEM, n = 3). The equilibrium dissociation constant determined from saturation binding experiments in rat cortex was KD of 2.6 ± 0.3 nM (mean ± SEM, n = 3). In contrast to the widely used GluN2B radioligand [3H]-Ro 25-6981, whose affinity Ki for sigma 1 and sigma 2 receptors are 2 and 189 nM, respectively, [3H]-JNJ-GluN2B-5 exhibits no measurable affinity for sigma 1 and sigma 2 receptors (Ki > 10 µM for both) providing distinct selectivity advantages. Anatomical distribution of [3H]-JNJ-GluN2B-5 binding sites in rat, mouse, dog, monkey, and human brain tissue was studied using in vitro autoradiography, which showed high specific binding in the hippocampus and cortex and negligible binding in the cerebellum. Enhanced selectivity for GluN2B-containing receptors translated to a good signal-to-noise ratio in both in vitro radioligand binding and in vitro autoradiography assays. In conclusion, [3H]-JNJ-GluN2B-5 is a high-affinity GluN2B radioligand with excellent signal-to-noise ratio and unprecedented selectivity.

6.
J Neurochem ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770573

RESUMO

Huntington's disease (HD) is a monogenic disorder with autosomal dominant inheritance. In HD patients, neurons in the striatum and cortex degenerate, leading to motor, psychiatric and cognitive disorders. Dysregulated synaptic function and calcium handling are common in many neurodegenerative diseases, including HD. N-methyl-D-aspartate (NMDA) receptor function is enhanced in HD at extrasynaptic sites, altering the balance of calcium-dependent neuronal survival versus death signalling pathways. Endoplasmic reticulum (ER) calcium handling is also abnormal in HD. The ER, which is continuous with the nuclear envelope, is purportedly involved in nuclear calcium signalling; based on this, we hypothesised that nuclear calcium signalling is altered in HD. We explored this hypothesis with calcium imaging techniques, including simultaneous epifluorescent imaging of cytosolic and nuclear calcium using jRCaMP1b and GCaMP3 sensors, respectively, in striatal spiny projection neurons in cortical-striatal co-cultures from the YAC128 mouse model of HD. Our data show contributions from a variety of calcium channels to nuclear calcium signalling. NMDA receptors (NMDARs) play an essential role in initiating action potential-dependent calcium signalling to the nucleus, and ryanodine receptors (RyR) contribute to both cytosolic and nuclear calcium signals. Unlike previous reports in glutamatergic hippocampal and cortical neurons, we found that in GABAergic striatal neurons, L-type voltage-gated calcium channels (CaV) contribute to cytosolic, but not nuclear calcium signalling. Calcium imaging also suggests impairments in nuclear calcium signalling in HD striatal neurons, where spontaneous action potential-dependent calcium transients in the nucleus were smaller in YAC128 striatal neurons compared to those of wild-type (WT). Our results elucidate mechanisms involved in action potential-dependent nuclear calcium signalling in GABAergic striatal neurons, and have revealed a clear deficit in this signalling in HD.

7.
Annu Rev Pharmacol Toxicol ; 61: 701-721, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32997602

RESUMO

Excitatory/inhibitory (E/I) balance, defined as the balance between excitation and inhibition of synaptic activity in a neuronal network, accounts in part for the normal functioning of the brain, controlling, for example, normal spike rate. In many pathological conditions, this fine balance is perturbed, leading to excessive or diminished excitation relative to inhibition, termed E/I imbalance, reflected in network dysfunction. E/I imbalance has emerged as a contributor to neurological disorders that occur particularly at the extremes of life, including autism spectrum disorder and Alzheimer's disease, pointing to the vulnerability of neuronal networks at these critical life stages. Hence, it is important to develop approaches to rebalance neural networks. In this review, we describe emerging therapies that can normalize the E/I ratio or the underlying abnormality that contributes to the imbalance in electrical activity, thus improving neurological function in these maladies.


Assuntos
Transtorno do Espectro Autista , Doenças Neurodegenerativas , Encéfalo , Humanos , Neurônios
8.
Eur J Neurosci ; 59(6): 1194-1212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37611917

RESUMO

Abnormalities in dopamine function might be related to psychiatric disorders such as schizophrenia. Even at the same concentration, dopamine exerts opposite effects on information processing in the prefrontal cortex depending on independent dopamine release modes known as tonic and phasic releases. This duality of dopamine prevents a blanket interpretation of the implications of dopamine abnormalities for diseases on the basis of absolute dopamine levels. Moreover, the mechanisms underlying the mode-specific dopamine abnormalities are not clearly understood. Here, I show that the two modes of dopamine release in the prefrontal cortex of a schizophrenia-like model are disrupted by different mechanisms. In the schizophrenia-like model established by perinatal exposure to inflammatory cytokine, epidermal growth factor, tonic release was enhanced and phasic release was decreased in the prefrontal cortex. I examined the activity of dopamine neurons in the ventral tegmental area (VTA), which sends dopamine projections to the prefrontal cortex, under anaesthesia. The activation of VTA dopamine neurons during excitatory stimulation (local application of glutamate or N-methyl-d-aspartic acid [NMDA]), which is associated with phasic activity, was blunt in this model. Dopaminergic neuronal activity in the resting state related to tonic release was increased by disinhibition of the dopamine neurons due to the impairment of 5HT2 (5HT2A) receptor-regulated GABAergic inputs. Moreover, chronic administration of risperidone ameliorated this disinhibition of dopaminergic neurons. These results provide an idea about the mechanism of dopamine disturbance in schizophrenia and may be informative in explaining the effects of atypical antipsychotics as distinct from those of typical drugs.


Assuntos
Dopamina , Esquizofrenia , Humanos , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Neurônios Dopaminérgicos/metabolismo , Serotonina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Área Tegmentar Ventral/metabolismo , Córtex Pré-Frontal/metabolismo
9.
Headache ; 64(5): 533-546, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38650105

RESUMO

OBJECTIVES: Investigation of chronic homocysteine action on the excitability and N-methyl-D-aspartate (NMDA) sensitivity of the peripheral trigeminovascular system of rats. BACKGROUND: Migraine is a neurological disease that affects 15%-20% of the general population. Epidemiological observations show that an increase of the sulfur-containing amino acid homocysteine in plasma-called hyperhomocysteinemia-is associated with a high risk of migraine, especially migraine with aura. In animal studies, rats with hyperhomocysteinemia demonstrated mechanical allodynia, photophobia, and anxiety, and higher sensitivity to cortical spreading depression. In addition, rats with hyperhomocysteinemia were more sensitive in a model of chronic migraine induced by nitroglycerin which indicated the involvement of peripheral nociceptive mechanisms. The present work aimed to analyze the excitability of meningeal afferents and neurons isolated from the trigeminal ganglion of rats with prenatal hyperhomocysteinemia. METHODS: Experiments were performed on male rats born from females fed with a methionine-rich diet before and during pregnancy. The activity of meningeal afferents was recorded extracellularly in hemiskull preparations ex vivo and action potentials were characterized using cluster analysis. The excitability of trigeminal ganglion neurons was assessed using whole-cell patch clamp recording techniques and calcium imaging studies. Meningeal mast cells were stained using toluidine blue. RESULTS: The baseline extracellular recorded electrical activity of the trigeminal nerve was higher in the hyperhomocysteinemia group with larger amplitude action potentials. Lower concentrations of KCl caused an increase in the frequency of action potentials of trigeminal afferents recorded in rat hemiskull ex vivo preparations. In trigeminal ganglion neurons of rats with hyperhomocysteinemia, the current required to elicit at least one action potential (rheobase) was lower, and more action potentials were induced in response to stimulus of 2 × rheobase. In controls, short-term application of homocysteine and its derivatives increased the frequency of action potentials of the trigeminal nerve and induced Ca2+ transients in neurons, which are associated with the activation of NMDA receptors. At the same time, in rats with hyperhomocysteinemia, we did not observe an increased response of the trigeminal nerve to NMDA. Similarly, the parameters of Ca2+ transients induced by NMDA, homocysteine, and its derivatives were not changed in rats with hyperhomocysteinemia. Acute incubation of the meninges in homocysteine and homocysteinic acid did not change the state of the mast cells, whereas in the model of hyperhomocysteinemia, an increased degranulation of mast cells in the meninges was observed. CONCLUSIONS: Our results demonstrated higher excitability of the trigeminal system of rats with hyperhomocysteinemia. Together with our previous finding about the lower threshold of generation of cortical spreading depression in rats with hyperhomocysteinemia, the present data provide evidence of homocysteine as a factor that increases the sensitivity of the peripheral migraine mechanisms, and the control of homocysteine level may be an important strategy for reducing the risk and/or severity of migraine headache attacks.


Assuntos
Homocisteína , Hiper-Homocisteinemia , Meninges , Transtornos de Enxaqueca , Gânglio Trigeminal , Animais , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Transtornos de Enxaqueca/metabolismo , Masculino , Homocisteína/farmacologia , Ratos , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiopatologia , Feminino , Modelos Animais de Doenças , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos dos fármacos , Gravidez , Ratos Wistar , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Neurônios Aferentes/fisiologia , Neurônios Aferentes/metabolismo
10.
Acta Pharmacol Sin ; 45(2): 282-297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803141

RESUMO

The GRIN genes encoding N-methyl-D-aspartate receptor (NMDAR) subunits are remarkably intolerant to variation. Many pathogenic NMDAR variants result in their protein misfolding, inefficient assembly, reduced surface expression, and impaired function on neuronal membrane, causing neurological disorders including epilepsy and intellectual disability. Here, we investigated the proteostasis maintenance of NMDARs containing epilepsy-associated variations in the GluN2A subunit, including M705V and A727T. In the transfected HEK293T cells, we showed that the two variants were targeted to the proteasome for degradation and had reduced functional surface expression. We demonstrated that the application of BIX, a known small molecule activator of an HSP70 family chaperone BiP (binding immunoglobulin protein) in the endoplasmic reticulum (ER), dose-dependently enhanced the functional surface expression of the M705V and A727T variants in HEK293T cells. Moreover, BIX (10 µM) increased the surface protein levels of the M705V variant in human iPSC-derived neurons. We revealed that BIX promoted folding, inhibited degradation, and enhanced anterograde trafficking of the M705V variant by modest activation of the IRE1 pathway of the unfolded protein response. Our results suggest that adapting the ER proteostasis network restores the folding, trafficking, and function of pathogenic NMDAR variants, representing a potential treatment for neurological disorders resulting from NMDAR dysfunction.


Assuntos
Epilepsia , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Proteostase , Células HEK293 , Epilepsia/genética , Epilepsia/metabolismo , Retículo Endoplasmático/metabolismo
11.
Cell Mol Life Sci ; 80(12): 368, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989792

RESUMO

Recent findings suggest an important role for the dysregulation of stromal interaction molecule (STIM) proteins, activators of store-operated Ca2+ channels, and the prolonged activation of N-methyl-D-aspartate receptors (NMDARs) in the development of neurodegenerative diseases. We previously demonstrated that STIM silencing increases Ca2+ influx through NMDAR and STIM-NMDAR2 complexes are present in neurons. However, the interplay between NMDAR subunits (GluN1, GluN2A, and GluN2B) and STIM1/STIM2 with regard to intracellular trafficking remains unknown. Here, we found that the activation of NMDAR endocytosis led to an increase in STIM2-GluN2A and STIM2-GluN2B interactions in primary cortical neurons. STIM1 appeared to migrate from synaptic to extrasynaptic sites. STIM2 silencing inhibited post-activation NMDAR translocation from the plasma membrane and synaptic spines and increased NMDAR currents. Our findings reveal a novel molecular mechanism by which STIM2 regulates NMDAR synaptic trafficking by promoting NMDAR endocytosis after receptor overactivation, which may suggest protection against excessive uncontrolled Ca2+ influx through NMDARs.


Assuntos
Receptores de N-Metil-D-Aspartato , Transdução de Sinais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios/metabolismo , Transporte de Íons , Endocitose
12.
Biochemistry (Mosc) ; 89(6): 1045-1060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981700

RESUMO

Astrocytic NMDA receptors (NMDARs) are heterotetramers, whose expression and properties are largely determined by their subunit composition. Astrocytic NMDARs are characterized by a low sensitivity to magnesium ions and low calcium conductivity. Their activation plays an important role in the regulation of various intracellular processes, such as gene expression and mitochondrial function. Astrocytic NMDARs are involved in calcium signaling in astrocytes and can act through the ionotropic and metabotropic pathways. Astrocytic NMDARs participate in the interactions of the neuroglia, thus affecting synaptic plasticity. They are also engaged in the astrocyte-vascular interactions and contribute to the regulation of vascular tone. Astrocytic NMDARs are involved in various pathologies, such as ischemia and hyperammonemia, and their blockade prevents negative changes in astrocytes during these diseases.


Assuntos
Astrócitos , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Astrócitos/metabolismo , Humanos , Animais , Sinalização do Cálcio , Plasticidade Neuronal
13.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083436

RESUMO

Prefrontal control of cognitive functions critically depends upon glutamatergic transmission and N-methyl D-aspartate (NMDA) receptors, the activity of which is regulated by dopamine. Yet whether the NMDA receptor coagonist d-serine is implicated in the dopamine-glutamate dialogue in the prefrontal cortex (PFC) and other brain areas remains unexplored. Here, using electrophysiological recordings, we show that d-serine is required for the fine-tuning of glutamatergic neurotransmission, neuronal excitability, and synaptic plasticity in the PFC through the actions of dopamine at D1 and D3 receptors. Using in vivo microdialysis, we show that D1 and D3 receptors exert a respective facilitatory and inhibitory influence on extracellular levels and activity of d-serine in the PFC, with actions expressed primarily via the cAMP/protein kinase A (PKA) signaling cascade. Further, using functional magnetic resonance imaging (fMRI) and behavioral assessment, we show that d-serine is required for the potentiation of cognition by D3R blockade as revealed in a test of novel object recognition memory. Collectively, these results unveil a key role for d-serine in the dopaminergic neuromodulation of glutamatergic transmission and PFC activity, findings with clear relevance to the pathogenesis and treatment of diverse brain disorders involving alterations in dopamine-glutamate cross-talk.


Assuntos
Dopamina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Animais , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Racemases e Epimerases/deficiência , Racemases e Epimerases/genética , Receptores Dopaminérgicos/metabolismo , Esquizofrenia , Transmissão Sináptica/efeitos dos fármacos
14.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891774

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.


Assuntos
Esclerose Lateral Amiotrófica , Ácido Glutâmico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Humanos , Ácido Glutâmico/metabolismo , Animais , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Envelhecimento/metabolismo , Receptores de AMPA/metabolismo , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Astrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
J Neurochem ; 166(3): 534-546, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37332201

RESUMO

The neuroinflammatory process characterizing multiple sclerosis (MS) is associated with changes in excitatory synaptic transmission and altered central concentrations of the primary excitatory amino acid, L-glutamate (L-Glu). Recent findings report that cerebrospinal fluid (CSF) levels of L-Glu positively correlate with pro-inflammatory cytokines in MS patients. However, to date, there is no evidence about the relationship between the other primary excitatory amino acid, L-aspartate (L-Asp), its derivative D-enantiomer, D-aspartate, and the levels of pro-inflammatory and anti-inflammatory cytokines in the CSF of MS. In the present study, we measured by HPLC the levels of these amino acids in the cortex, hippocampus, cerebellum, and spinal cord of mice affected by experimental autoimmune encephalomyelitis (EAE). Interestingly, in support of glutamatergic neurotransmission abnormalities in neuroinflammatory conditions, we showed reduced L-Asp levels in the cortex and spinal cord of EAE mice and increased D-aspartate/total aspartate ratio within the cerebellum and spinal cord of these animals. Additionally, we found significantly decreased CSF levels of L-Asp in both relapsing-remitting (n = 157) MS (RR-MS) and secondary progressive/primary progressive (n = 22) (SP/PP-MS) patients, compared to control subjects with other neurological diseases (n = 40). Importantly, in RR-MS patients, L-Asp levels were correlated with the CSF concentrations of the inflammatory biomarkers G-CSF, IL-1ra, MIP-1ß, and Eotaxin, indicating that the central content of this excitatory amino acid, as previously reported for L-Glu, reflects a neuroinflammatory environment in MS. In keeping with this, we revealed that CSF L-Asp levels were positively correlated with those of L-Glu, highlighting the convergent variation of these two excitatory amino acids under inflammatory synaptopathy occurring in MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Ácido Aspártico/líquido cefalorraquidiano , Ácido D-Aspártico/metabolismo , Medula Espinal/metabolismo , Encéfalo/metabolismo , Transmissão Sináptica , Aminoácidos Excitatórios/metabolismo , Ácido Glutâmico/metabolismo , Citocinas/metabolismo
16.
J Neurochem ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102897

RESUMO

Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.

17.
Neurobiol Dis ; 184: 106207, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331530

RESUMO

Over the last decades, lactate has emerged as important energy substrate for the brain fueling of neurons. A growing body of evidence now indicates that it is also a signaling molecule modulating neuronal excitability and activity as well as brain functions. In this review, we will briefly summarize how different cell types produce and release lactate. We will further describe different signaling mechanisms allowing lactate to fine-tune neuronal excitability and activity, and will finally discuss how these mechanisms could cooperate to modulate neuroenergetics and higher order brain functions both in physiological and pathological conditions.


Assuntos
Ácido Láctico , Neurônios , Ácido Láctico/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Encéfalo/metabolismo , Astrócitos/metabolismo
18.
Mol Pain ; 19: 17448069231179011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37227022

RESUMO

Synaptic plasticity such as Long-term potentiation (LTP) is a key mechanism for learning in central synapses including the cortex. There are two least two major forms of LTPs: presynaptic LTP and postsynaptic LTP. For postsynaptic LTP, the potentiation of AMPA receptor-mediated responses through protein phosphorylation is thought to be a key mechanism. Silent synapses have been reported in the hippocampus, but it is thought to be mainly present in the cortex during early development, and may contribute to maturation of the cortical circuit. However, recent several lines of evidence demonstrate that silent synapses may exist in mature synapses of adult cortex, and they can be recruited by LTP-inducing protocols, as well as chemical-induced LTP. In pain-related cortical regions, silent synapses may not only contribute to cortical excitation after peripheral injury, but also the recruitment of new cortical circuits as well. Thus, it is proposed that silent synapses and modification of functional AMPA receptors and NMDA receptors may play important roles in chronic pain, including phantom pain.


Assuntos
Dor Crônica , Giro do Cíngulo , Adulto , Humanos , Potenciação de Longa Duração , Plasticidade Neuronal , Receptores de AMPA , Sinapses
19.
Eur J Neurosci ; 57(3): 440-455, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36226598

RESUMO

In prodromal and early schizophrenia, disorders of attention and perception are associated with structural and chemical brain abnormalities and with dysfunctional corticothalamic networks exhibiting disturbed brain rhythms. The underlying mechanisms are elusive. The non-competitive NMDA receptor antagonist ketamine simulates the symptoms of prodromal and early schizophrenia, including disturbances in ongoing and task & sensory-related broadband beta-/gamma-frequency (17-29 Hz/30-80 Hz) oscillations in corticothalamic networks. In normal healthy subjects and rodents, complex integration processes, like sensory perception, induce transient, large-scale synchronised beta/gamma oscillations in a time window of a few hundred ms (200-700 ms) after the presentation of the object of attention (e.g., sensory stimulation). Our goal was to use an electrophysiological multisite network approach to investigate, in lightly anesthetised rats, the effects of a single psychotomimetic dose (2.5 mg/kg, subcutaneous) of ketamine on sensory stimulus-induced oscillations. Ketamine transiently increased the power of baseline beta/gamma oscillations and decreased sensory-induced beta/gamma oscillations. In addition, it disrupted information transferability in both the somatosensory thalamus and the related cortex and decreased the sensory-induced thalamocortical connectivity in the broadband gamma range. The present findings support the hypothesis that NMDA receptor antagonism disrupts the transfer of perceptual information in the somatosensory cortico-thalamo-cortical system.


Assuntos
Ketamina , Ratos , Animais , Ketamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptores de N-Metil-D-Aspartato , Encéfalo , Tálamo
20.
Biol Chem ; 404(4): 279-289, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36215695

RESUMO

GluN2B-NMDA receptors play a key role in several neurological and neurodegenerative disorders. In order to develop novel negative allosteric GluN2B-NMDA receptor modulators, the concept of conformational restriction was pursued, i.e. the flexible aminoethanol substructure of ifenprodil was embedded into a more rigid tetrahydro-3-benzazepine system. The resulting tetrahydro-3-benzazepine-1,7-diol (±)-2 (WMS-1410) showed promising receptor affinity in receptor binding studies (K i = 84 nM) as well as pharmacological activity in two-electrode-voltage-clamp experiments (IC 50 = 116 nM) and in cytoprotective assays (IC 50 = 18.5 nM). The interactions of (R)-2 with the ifenprodil binding site of GluN2B-NMDA receptors were analyzed on the molecular level and the "foot-in-the-door" mechanism was developed. Due to promising pharmacokinetic parameters (logD7.4 = 1.68, plasma protein binding of 76-77%, sufficient metabolic stability) F-substituted analogs were prepared and evaluated as tracers for positron emission tomography (PET). Both fluorine-18-labeled PET tracers [18F]11 and [18F]15 showed high brain uptake, specific accumulation in regions known for high GluN2B-NMDA receptor expression, but no interactions with σ 1 receptors. Radiometabolites were not observed in the brain. Both PET tracers might be suitable for application in humans.


Assuntos
Tomografia por Emissão de Pósitrons , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Benzazepinas/farmacologia , Benzazepinas/química , Benzazepinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA