Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(4): 1434-1448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38156952

RESUMO

PURPOSE: Static and dynamic B 0 $$ {\mathrm{B}}_0 $$ field imperfections are detrimental to functional MRI (fMRI) applications, especially at ultra-high magnetic fields (UHF). In this work, a field camera is used to assess the benefits of retrospectively correcting B 0 $$ {\mathrm{B}}_0 $$ field perturbations on Blood Oxygen Level Dependent (BOLD) sensitivity in non-Cartesian three-dimensional (3D)-SPARKLING fMRI acquisitions. METHODS: fMRI data were acquired at 1 mm 3 $$ {}^3 $$ and for a 2.4s-TR while concurrently monitoring in real-time field perturbations using a Skope Clip-on field camera in a novel experimental setting involving a shorter TR than the required minimal TR of the field probes. Measurements of the dynamic field deviations were used along with a static Δ B 0 $$ \Delta {\mathrm{B}}_0 $$ map to retrospectively correct static and dynamic field imperfections, respectively. In order to evaluate the impact of such a correction on fMRI volumes, a comparative study was conducted on healthy volunteers. RESULTS: Correction of B 0 $$ {\mathrm{B}}_0 $$ deviations improved image quality and yielded between 20% and 30% increase in median temporal signal-to-noise ratio (tSNR).Using fMRI data collected during a retinotopic mapping experiment, we demonstrated a significant increase in sensitivity to the BOLD contrast and improved accuracy of the BOLD phase maps: 44% (resp., 159%) more activated voxels were retrieved when using a significance control level based on a p-value of 0.001 without correcting for multiple comparisons (resp., 0.05 with a false discovery rate correction). CONCLUSION: 3D-SPARKLING fMRI hugely benefits from static and dynamic B 0 $$ {\mathrm{B}}_0 $$ imperfections correction. However, the proposed experimental protocol is flexible enough to be deployed on a large spectrum of encoding schemes, including arbitrary non-Cartesian readouts.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Estudos Retrospectivos , Razão Sinal-Ruído
2.
NMR Biomed ; 34(5): e4364, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33089547

RESUMO

Long acquisition times due to intrinsically low signal-to-noise ratio and the need for highly homogeneous B0 field make MRS particularly susceptible to motion or scanner instability compared with MRI. Motion-induced changes in both localization and shimming (ie B0 homogeneity) degrade MRS data quality. To mitigate the effects of motion three approaches can be employed: (1) subject immobilization, (2) retrospective correction, and (3) prospective real-time correction using internal and/or external tracking methods. Prospective real-time correction methods can simultaneously update localization and the B0 field to improve MRS data quality. While localization errors can be corrected with both internal (navigators) and external (optical camera, NMR probes) tracking methods, the B0 field correction requires internal navigator methods to measure the B0 field inside the imaged volume and the possibility to update the scanner shim hardware in real time. Internal and external tracking can rapidly update the MRS localization with submillimeter and subdegree precision, while scanner frequency and first-order shims of scanner hardware can be updated by internal methods every sequence repetition. These approaches are most well developed for neuroimaging, for which rigid transformation is primarily applicable. Real-time correction greatly improves the stability of MRS acquisition and quantification, as shown in clinical studies on subjects prone to motion, including children and patients with movement disorders, enabling robust measurement of metabolite signals including those with low concentrations, such as gamma-aminobutyric acid and glutathione. Thus, motion correction is recommended for MRS users and calls for tighter integration and wider availability of such methods by MR scanner manufacturers.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Movimento (Física) , Prova Pericial , Humanos , Imageamento por Ressonância Magnética , Metaboloma , Ácido gama-Aminobutírico/metabolismo
3.
Solid State Nucl Magn Reson ; 100: 63-69, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30965254

RESUMO

The development of new, high-frequency solid-state diode sources capable of operating at 263 GHz, together with an optimized stator design for improved millimeter-wave coupling to the NMR sample, have enabled low-power DNP experiments at 263 GHz/400 MHz. With 250 mW output power, signal enhancements as high as 120 are achieved on standard samples - approximately 1/3 of the maximal enhancement available with high-power gyrotrons under similar conditions. Diode-based sources have a number of advantages over vacuum tube devices: they emit a pure mode, can be rapidly frequency-swept over a wide range of frequencies, have reproducible output power over this range, and have excellent output stability. By virtue of their small size, low thermal footprint, and lack of facility requirements, solid-state diodes are also considerably cheaper to operate and maintain than high-power vacuum tube devices. In light of these features, and anticipating further improvements in terms of available output power, solid-state diodes are likely to find widespread use in DNP and contribute to further advances in the field.

4.
Magn Reson Med ; 78(2): 775-783, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27612330

RESUMO

PURPOSE: To develop methods for characterizing materials used in screen-printed MRI coils and improve signal-to-noise ratio (SNR) with new lower-loss materials. METHODS: An experimental apparatus was created to characterize dielectric properties of plastic substrates used in receive coils. Coils were fabricated by screen printing conductive ink onto several plastic substrates. Unloaded and sample loaded quality factor (QUnloaded /QLoaded ) measurements and scans on a 3T scanner were used to characterize coil performance. An experimental method was developed to describe the relationship between a coil's QUnloaded and the SNR it provides in images of a phantom. In addition, 3T scans of a phantom and the head of a volunteer were obtained with a proof-of-concept printed eight-channel array, and the results were compared with a commercial 12-channel array. RESULTS: Printed coils with optimized substrates exhibited up to 97% of the image SNR when compared with a traditional coil on a loading phantom. QUnloaded and the SNR of coils were successfully correlated. The printed array resulted in images comparable to the quality given by the commercial array. CONCLUSION: Using the proposed methods and materials, the SNR of printed coils approached that of commercial coils while using a new fabrication technique that provided more flexibility and close contact with the patient's body. Magn Reson Med 78:775-783, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Impressão , Razão Sinal-Ruído
5.
Beilstein J Org Chem ; 13: 285-300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326137

RESUMO

Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the µL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

6.
J Biomol NMR ; 65(1): 1-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27240587

RESUMO

Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of (19)F-NMR probes include high sensitivity of the (19)F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where (19)F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of (19)F-NMR probes used in GPCRs. Analysis of previously reported (19)F-NMR data on the ß2-adrenergic receptor and mammalian rhodopsin showed that all (19)F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on (19)F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related (19)F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future (19)F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the (19)F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with (19)F-NMR markers can be substantiated by a more extensive data base resulting from future studies.


Assuntos
Flúor , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica
7.
Prog Nucl Magn Reson Spectrosc ; 123: 51-72, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34078537

RESUMO

Single-crystal (SC) NMR spectroscopy is a solid-state NMR method that has been used since the early days of NMR to study the magnitude and orientation of tensorial nuclear spin interactions in solids. This review first presents the field of SC NMR instrumentation, then provides a survey of software for analysis of SC NMR data, and finally it highlights selected applications of SC NMR in various fields of research. The aim of the last part is not to provide a complete review of all SC NMR literature but to provide examples that demonstrate interesting applications of SC NMR.

8.
J Magn Reson ; 305: 180-184, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31301461

RESUMO

Shielding of the NMR sample by a thin coating of metal between the sample and the rf coil arises in some geometries. The shielding may be used for rf heating of the sample tube or for a high infrared reflectivity coating in cryoprobe applications. An important application is for a shield that prevents noise from entering the rf probe circuit while allowing pulsed magnetic field gradients or field modulation to pass. We show by simple, approximate derivations that the criterion for shielding is not whether the coating exceeds the classical electromagnetic skin depth δ at the operating frequency (as is often stated), but whether the geometric mean between the thickness and an appropriate radius r exceeds δ. Thus, because r is typically much larger than δ, conducting layers substantially thinner than δ may still be good shields. Measurements are performed at high audio frequencies to confirm the calculations, using geometries relevant to rf saddle coils and to rf solenoids. Measurements of the slowing of the edges of a pulsed field gradient are also in accord with the calculations.

9.
J Magn Reson ; 292: 53-58, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29787983

RESUMO

The concept of circuit filling factor (CFF) is re-examined for multi-tuned, multi-inductor probe circuits. The CFF is the fraction of magnetic stored energy residing in the NMR coil. The CFF theorem states that the CFF sums to unity across all the resonant normal modes. It dictates that improved performance from a large CFF in one mode comes at the expense of CFF (and performance) at the other mode(s). Simple analytical calculations of two-mode circuits are used to demonstrate and confirm the CFF theorem. A triple-resonance circuit is calculated to show the large trade-offs involved there. The theorem can provide guidance for choosing the best circuit and relative inductances in multi-nuclear probes. The CFF is directly accessible from ball frequency-shift measurements. We give experimental measures of the CFF from ball shifts and compare to calculated values of the CFF, with good agreement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA