Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 51(5): 1261-1267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38095672

RESUMO

PURPOSE: Test the feasibility of an image-based method to identify taxane resistance in mouse bearing triple-negative breast cancer (TNBC) tumor xenografts. METHODS: Xenograft tumor-bearing mice from paclitaxel-sensitive and paclitaxel-resistant TNBC cells (MDA-MD-346) were generated by orthotopic injection into female NOD-SCID mice. When tumors reached 100-150 mm3, mice were scanned using [18F]choline PET/CT. Tumors were collected and sliced for autoradiography and immunofluorescence analysis. Quantitative data was analyzed accordingly. RESULTS: From fifteen mice scanned, five had taxane-sensitive cell line tumors of which two underwent taxol-based treatment. From the remaining 10 mice with taxane-resistant cell line tumors, four underwent taxol-based treatment. Only 13 mice had the tumor sample analyzed histologically. When normalized to the blood pool, both cell lines showed differences in metabolic uptake before and after treatment. CONCLUSIONS: Treated and untreated taxane-sensitive and taxane-resistant cell lines have different metabolic properties that could be leveraged before the start of chemotherapy.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Camundongos SCID , Camundongos Endogâmicos NOD , Tomografia por Emissão de Pósitrons/métodos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Modelos Animais , Resistência a Medicamentos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Exp Cell Res ; 422(1): 113429, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402426

RESUMO

This study aimed to explore the effect of PF in regulating the progression of T1D through regulating gut microbiota and inhibiting TLR4-myD88/TRIF pathway. T1D mouse models were established and received PF treatment through intraperitoneal injection. The glucose, sugar tolerance, the incidence of T1D and H&E staining were detected to verify the effect of PF on T1D. Meanwhile, the changes of gut microbiota and the permeability of intestines in mice were also measured. On parallel, the number and function of immune cells were detected by Flow Cytometry. The expressions of ZO-1, ZO-2 and TLR4-myD88/TRIF pathway related proteins were detected by western blotting. Mice received PF treatment had decreased incidence of T1D and inflammatory infiltration in islet tissues compared with those received PBS treatment. In addition to that, PF treated mice had increased Sutterella species and decreased intestinal permeability, in which the decreased ratio of Th1/Th17 and increased Treg cells were also identified. The expression of TLR4-myD88/TRIF pathway was also suppressed in response to PF treatment. Moreover, further treatment with TLR4 agonist, LPS, could reverse the effect of PF on T1D mice. PF can suppress the TLR4 mediated myD88/TRIF pathway to change the distribution of gut microbiota, so as to protect NOD mice from T1D.


Assuntos
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/genética , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/microbiologia
3.
Immunol Cell Biol ; 101(9): 867-874, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536708

RESUMO

NK cells are innate immune cells that target infected and tumor cells. Mature NK (mNK) cells undergo functional maturation characterized by four distinct stages, during which they acquire their cytotoxic properties. mNK cells from non-obese diabetic (NOD) mice exhibit a defect in functional maturation and have impaired cytotoxic functions. Hence, we tested whether the impaired cytotoxic function observed in mNK cells from NOD mice can be explained by their defect in functional maturation. By comparing the function of mNK cells from B6, B6g7 and NOD mice, we show that the expression of granzyme B is severely impaired in mNK cells from NOD mice, agreeing with their inability to control tumor growth in vivo. The low level of granzyme B expression in mNK cells from NOD mice is found at all stages of functional maturation and is therefore independent of their functional maturation defect. Consequently, this study demonstrates that phenotypic functional maturation of mNK cells can be uncoupled from the acquisition of cytotoxic functions.


Assuntos
Células Matadoras Naturais , Animais , Camundongos , Camundongos Endogâmicos NOD , Granzimas
4.
Pharm Biol ; 61(1): 1286-1297, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606264

RESUMO

CONTEXT: Zengye decoction (ZYD) has been considered to have a curative effect on Sjogren's syndrome (SS). However, its therapeutic mechanisms remain obscure. OBJECTIVES: This research explores the mechanisms of ZYD against SS. MATERIALS AND METHODS: The active compounds and targets of ZYD were searched in the TCMSP and BATMAN-TCM databases. SS-related targets were obtained from the GeneCards database. The GO and KEGG enrichment analyses elucidated the molecular mechanisms. Animal experiments were performed using 8 C57BL/6 mice that served as the control group (physiological saline treatment) and 16 NOD mice randomly divided into the model group (physiological saline treatment) and the ZYD group (ZYD treatment) for 8 weeks to verify the therapeutic effects of ZYD on SS. RESULTS: Twenty-nine active compounds with 313 targets of ZYD and 1038 SS-related targets were screened. Thirty-two common targets were identified. ß-Sitosterol and stigmasterol might be important components. GO analysis suggested that the action of ZYD against SS mainly involved oxidative stress, apoptotic processes, and tumor necrosis factor receptor superfamily binding, etc. KEGG analysis indicated the most significant signaling pathway was apoptosis-multiple species. Animal experiments showed that ZYD improved lymphocytic infiltration of the submandibular glands (SMGs), reduced the serum levels of TNF-α, IL-1ß, IL-6, and IL-17, upregulated the expression of Bcl-2, and downregulated the expression of Bax and Caspase-3 in the model mice. DISCUSSION AND CONCLUSION: ZYD has anti-inflammatory and anti-apoptotic effects on SS, which provides a theoretical basis for the treatment of SS with ZYD.


Assuntos
Experimentação Animal , Síndrome de Sjogren , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Farmacologia em Rede , Síndrome de Sjogren/tratamento farmacológico
5.
Immunol Cell Biol ; 100(1): 33-48, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668580

RESUMO

The autoimmune disease type 1 diabetes is predominantly mediated by CD8+ cytotoxic T-cell destruction of islet beta cells, of which islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214 is a dominant target antigen specificity. Previously, we found that a liposome-based antigen-specific immunotherapy encapsulating the CD4+ T-cell islet epitope 2.5mim together with the nuclear factor-κB inhibitor calcitriol induced regulatory T cells and protected from diabetes in NOD mice. Here we investigated whether the same system delivering IGRP206-214 could induce antigen-specific CD8+ T-cell-targeted immune regulation and delay diabetes. Subcutaneous administration of IGRP206-214 /calcitriol liposomes transiently activated and expanded IGRP-specific T-cell receptor transgenic 8.3 CD8+ T cells. Liposomal co-delivery of calcitriol was required to optimally suppress endogenous IGRP-specific CD8+ T-cell interferon-γ production and cytotoxicity. Concordantly, a short course of IGRP206-214 /calcitriol liposomes delayed diabetes progression and reduced insulitis. However, when IGRP206-214 /calcitriol liposomes were delivered together with 2.5mim /calcitriol liposomes, disease protection was not observed and the regulatory effect of 2.5mim /calcitriol liposomes was abrogated. Thus, tolerogenic liposomes that target either a dominant CD8+ or a CD4+ T-cell islet epitope can delay diabetes progression but combining multiple epitopes does not enhance protection.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Glucose-6-Fosfatase/metabolismo , Tolerância Imunológica , Lipossomos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T Reguladores
6.
Biol Proced Online ; 24(1): 26, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575389

RESUMO

BACKGROUND: Sjogren's syndrome (SS) is an autoimmune disorder characterized by the destruction of exocrine glands, resulting in dry mouth and eyes. Currently, there is no effective treatment for SS, and the mechanisms associated with inadequate salivary secretion are poorly understood. METHODS: In this study, we used NOD mice model to monitor changes in mice's salivary secretion and water consumption. Tissue morphology of the submandibular glands was examined by H&E staining, and Immunohistochemical detected the expression of AQP5 (an essential protein in salivary secretion). Global gene expression profiling was performed on submandibular gland tissue of extracted NOD mice model using RNA-seq. Subsequently, a series of bioinformatics analyses of transcriptome sequencing was performed, including differentially expressed genes (DEGs) identification, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, PPI network construction, hub gene identification, and the validity of diagnostic indicators using the dataset GSE40611. Finally, IFN-γ was used to treat the cells, the submandibular gland tissue of NOD mice model was extracted, and RT-qPCR was applied to verify the expression of hub genes. RESULTS: We found that NOD mice model had reduced salivary secretion and increased water consumption. H&E staining suggests acinar destruction and basement membrane changes in glandular tissue. Immunohistochemistry detects a decrease in AQP5 immunostaining within acinar. In transcriptome sequencing, 42 overlapping DEGs were identified, and hub genes (REN, A2M, SNCA, KLK3, TTR, and AZGP1) were identified as initiating targets for insulin signaling. In addition, insulin signaling and cAMP signaling are potential pathways for regulating salivary secretion and constructing a regulatory relationship between target-cAMP signaling-salivary secretion. CONCLUSION: The new potential targets and signal axes for regulating salivary secretion provide a strategy for SS therapy in a clinical setting.

7.
J Autoimmun ; 127: 102795, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35101708

RESUMO

Experimental and clinical data suggest that a gluten-free diet attenuates the development of type 1 diabetes. A gluten-free diet changes the gut microbiota composition, and such microbial changes are expected to reduce the autoimmune responses. However, in experiments with laboratory mice, a gluten-free diet changes the gut microbiota differently under varying experimental settings, questioning the specific role of the gut microbes. Here we show that a maternal gluten-free diet until weaning of their pups, delayed type 1 diabetes in both dams (parent generation) and offspring (F1 generation) of untreated non-obese diabetic (NOD) mice and in mice treated with a full cocktail of antibiotics that eradicates most of the existing microbiota. Breeding a second (F2) generation of NOD mice, never exposed to the gluten-free diet or the associated microbial changes, also demonstrated a preventative effect on type 1 diabetes even though their parents (the F1 generation) had only been on a gluten-free diet very early in life. Collectively, the experimental data, thus, points towards microbiota-independent dietary protection. Furthermore, both the perinatal gluten-free diet and antibiotic treatment reduced inflammation in the salivary glands and improved glucose challenged beta cell function in the F1 offspring. However, in contrast to the autoimmune response in the pancreas, those changes appeared to be microbiota dependent, as they were missing in the antibiotic treated mice, and do, therefore, not seem to be related to the preventative effect on type 1 diabetes. Interestingly, adoptive transfer of splenocytes from gluten-free fed mice protected NOD.SCID mice from developing diabetes, demonstrating that the anti-diabetic effect of a gluten-free diet was based on early life changes in the evolving immune system. In particular, genes involved in regulation of lymphocyte activation, proliferation, and cell adhesion were highly expressed in the spleen in gluten-free fed mice at weaning compared to control fed mice of the F1 generation, which suggested that gluten promotes autoimmunity by inhibiting immune regulation, though the involvement of the specific genes needs further investigation. In conclusion, gluten-free diet reduces autoimmune inflammation in salivary glands and pancreas in NOD mice in a microbiota-dependent and -independent manner respectively, and has preventative effect on type 1 diabetes by modulating the systemic immune system.


Assuntos
Diabetes Mellitus Tipo 1 , Microbiota , Animais , Dieta Livre de Glúten , Feminino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Gravidez
8.
Cytokine ; 152: 155832, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202987

RESUMO

Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (pAPCs), numerous in the pancreas of nonobese diabetic (NOD) mice and playing an essential role in the autoimmune response of type 1 diabetes. The expression of the enzyme indoleamine 2,3-dioxygenase (IDO) is a critical factor for the tolerogenic activity of pAPCs, acting in the catabolism of tryptophan, providing metabolites that suppress the T cell effectors and induce T regulatory cells differentiation. Here we investigated the in vitro mechanisms of lyophilized aqueous extract from Passiflora alata leaves (LAEPAL) that modulates bone marrow-derived professional antigen-presenting cells (BM-pAPCs), affecting their ability to polarize T cells. A cell culture model was defined using mixed cultures of BM-pAPCs and T lymphocytes NOD mice with stressed MIN-6 cells as a source of pancreatic ß cells antigens. We showed that the treatment with 300 µg/mL of LAEPAL induces a significant decrease in the CD4 and CD8 T effector lymphocytes proliferation from diabetic but not in non-diabetic mice, followed by a reduction of the IL-6 and IFN-γ cytokines release in the cell cultures supernatants. Moreover, we observed an increase of CD4+CD25+FoxP3+ Tregs in the cell cultures from diabetic mice. These results could be partially explained by the LAEPAL modulatory effects in BM-pAPCs, downregulating the CD86 co-stimulatory molecule expression, and increasing IDO-1 expression in F4/80+ BM-pAPCs. These results contribute to a better understanding of the polyphenols' immunomodulatory properties, meaning they could induce tolerogenic antigen-presenting cells, which could polarize T cells to a Treg profile and decrease the activity of CD4+ and CD8+ T effector cells.


Assuntos
Diabetes Mellitus Experimental , Passiflora , Animais , Células Apresentadoras de Antígenos/metabolismo , Antígenos , Antígeno B7-2/metabolismo , Medula Óssea/metabolismo , Células Cultivadas , Células Dendríticas , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Passiflora/metabolismo , Folhas de Planta , Linfócitos T Reguladores
9.
Diabetologia ; 64(4): 878-889, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33483762

RESUMO

AIMS/HYPOTHESIS: Stimulator of IFN genes (STING) is a central hub for cytosolic nucleic acid sensing and its activation results in upregulation of type I IFN production in innate immune cells. A type I IFN gene signature seen before the onset of type 1 diabetes has been suggested as a driver of disease initiation both in humans and in the NOD mouse model. A possible source of type I IFN is through activation of the STING pathway. Recent studies suggest that STING also has antiproliferative and proapoptotic functions in T cells that are independent of IFN. To investigate whether STING is involved in autoimmune diabetes, we examined the impact of genetic deletion of STING in NOD mice. METHODS: CRISPR/Cas9 gene editing was used to generate STING-deficient NOD mice. Quantitative real-time PCR was used to assess the level of type I IFN-regulated genes in islets from wild-type and STING-deficient NOD mice. The number of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214-specific CD8+ T cells was determined by magnetic bead-based MHC tetramer enrichment and flow cytometry. The incidence of spontaneous diabetes and diabetes after adoptive transfer of T cells was determined. RESULTS: STING deficiency partially attenuated the type I IFN gene signature in islets but did not suppress insulitis. STING-deficient NOD mice accumulated an increased number of IGRP206-214-specific CD8+ T cells (2878 ± 642 cells in NOD.STING-/- mice and 728.8 ± 196 cells in wild-type NOD mice) in peripheral lymphoid tissue, associated with a higher incidence of spontaneous diabetes (95.5% in NOD.STING-/- mice and 86.2% in wild-type NOD mice). Splenocytes from STING-deficient mice rapidly induced diabetes after adoptive transfer into irradiated NOD recipients (median survival 75 days for NOD recipients of NOD.STING-/- mouse splenocytes and 121 days for NOD recipients of NOD mouse splenocytes). CONCLUSIONS/INTERPRETATION: Data suggest that sensing of endogenous nucleic acids through the STING pathway may be partially responsible for the type I IFN gene signature but not autoimmunity in NOD mice. Our results show that the STING pathway may play an unexpected intrinsic role in suppressing the number of diabetogenic T cells.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Transferência Adotiva , Animais , Autoimunidade , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Ilhotas Pancreáticas/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos NOD , Camundongos Knockout , Transdução de Sinais
10.
Curr Diab Rep ; 21(3): 9, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547977

RESUMO

PURPOSE OF REVIEW: Type 1 diabetes (T1D) can be managed by insulin replacement, but it is still associated with an increased risk of microvascular/cardiovascular complications. There is considerable interest in antigen-specific approaches for treating T1D due to their potential for a favorable risk-benefit ratio relative to non-specific immune-based treatments. Here we review recent antigen-specific tolerance approaches using auto-antigen and/or immunomodulatory agents in NOD mice and provide insight into seemingly contradictory findings. RECENT FINDINGS: Although delivery of auto-antigen alone can prevent T1D in NOD mice, this approach may be prone to inconsistent results and has not demonstrated an ability to reverse established T1D. Conversely, several approaches that promote presentation of auto-antigen in a tolerogenic context through cell/tissue targeting, delivery system properties, or the delivery of immunomodulatory agents have had success in reversing recent-onset T1D in NOD mice. While initial auto-antigen based approaches were unable to substantially influence T1D progression clinically, recent antigen-specific approaches have promising potential.


Assuntos
Diabetes Mellitus Tipo 1 , Tolerância Imunológica , Animais , Antígenos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Insulina , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T Reguladores
11.
Diabetes Obes Metab ; 23(11): 2455-2465, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34212475

RESUMO

AIMS: Type 1 diabetes (T1D) has a strong genetic predisposition and requires an environmental trigger to initiate the beta-cell autoimmune destruction. The rate of childhood obesity has risen in parallel to the proportion of T1D, suggesting high-fat diet (HFD)/obesity as potential environmental triggers for autoimmune diabetes. To explore this, non-obese diabetic (NOD) mice were subjected to HFD and monitored for the development of diabetes, insulitis and beta-cell stress. MATERIALS AND METHODS: Four-week-old female NOD mice were placed on HFD (HFD-NOD) or standard chow-diet. Blood glucose was monitored weekly up to 40 weeks of age, and glucose- and insulin-tolerance tests performed at 4, 10 and 15 weeks. Pancreata and islets were analysed for insulin secretion, beta-cell mass, inflammation, insulitis and endoplasmic reticulum stress markers. Immune cell levels were measured in islets and spleens. Stool microbiome was analysed at age 4, 8 and 25 weeks. RESULTS: At early ages, HFD-NOD mice showed a significant increase in body weight, glucose intolerance and insulin resistance; but paradoxically, they were protected from developing diabetes. This was accompanied by increased insulin secretion and beta-cell mass, decreased insulitis, increased splenic T-regulatory cells and altered stool microbiome. CONCLUSIONS: This study shows that HFD protects NOD mice from autoimmune diabetes and preserves beta-cell mass and function through alterations in gut microbiome, increased T-regulatory cells and decreased insulitis. Further studies into the exact mechanism of HFD-mediated prevention of diabetes in NOD mice could potentially lead to interventions to prevent or delay T1D development in humans.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Obesidade Infantil , Animais , Glicemia , Diabetes Mellitus Tipo 1/prevenção & controle , Dieta Hiperlipídica , Feminino , Camundongos , Camundongos Endogâmicos NOD
12.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810172

RESUMO

The relationship between autoimmunity and changes in intestinal microbiota is not yet fully understood. In this study, the role of intestinal microbiota in the onset and progression of autoimmune lesions in non-obese diabetic (NOD) mice was evaluated by administering antibiotics to alter their intestinal microenvironment. Flow cytometric analysis of spleen cells showed that antibiotic administration did not change the proportion or number of T and B cells in NOD mice, and pathological analysis demonstrated that autoimmune lesions in the salivary glands and in the pancreas were also not affected by antibiotic administration. These results suggest that the onset and progression of autoimmunity may be independent of enteral microbiota changes. Our findings may be useful for determining the appropriate use of antibiotics in patients with autoimmune diseases who are prescribed drugs to maintain systemic immune function.


Assuntos
Antibacterianos/farmacologia , Doenças Autoimunes/etiologia , Autoimunidade , Suscetibilidade a Doenças , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Doenças Autoimunes/tratamento farmacológico , Autoimunidade/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Sialadenite/etiologia , Sialadenite/metabolismo , Sialadenite/patologia
13.
Mod Rheumatol ; 31(1): 186-196, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31859545

RESUMO

BACKGROUND: Primary Sjögren's syndrome (SS) is a lymphoproliferative disease with a chronic autoimmune disorder characterized by mononuclear cell (MNC) infiltration of notably the lacrimal and salivary glands. As mesenchymal stem cells (MSCs) regulate series of immunological responses partially by regulating proportion of CD4+ T cells and inducing an immunosuppressive local milieu, umbilical cord MSCs (UC-MSCs) are being considered as a novel source for cell-based therapies against primary SS. This study aimed to investigate the feasibility of UC-MSCs in treatment of SS and to explore the possible mechanism(s) with the special emphasis on regulatory T cells (Tregs). METHODS: Potent immunosuppressive effects of human UC-MSCs on SS were explored in vivo and in vitro. To study the effects of human UC-MSCs on the development and progression of SS, human UC-MSCs were administered before disease onset (preventive protocol) and after disease occurrence (therapeutic protocol) in non-obese diabetic (NOD) mice. In human study, the effect of human UC-MSCs on T cells from SS patients was studied. RESULTS: In both protocols, the histopathology of submandibular and sublingual salivary glands showed decreased inflammatory infiltrates. In vitro, human UC-MSCs exhibited potent suppressive effects on responses of MNCs in NOD mice and T cells in SS patients. Such inhibitory effects were coupled with decreased production of proinflammtory cytokines interferon-γ, interleukin (IL)-6, tumor necrosis factor-α and increased production of IL-10 (n = 10, p < .01). The frequency of CD4+Foxp3+T cells in the spleen of NOD recipients was elevated (n = 6, p < .05). CONCLUSION: Human UC-MSCs are capable of inducing CD4+Foxp3+ T cells in both NOD mice and human in vitro. Human UC-MSCs effectively interfere with the autoimmune attack in the course of SS by inducing an in vivo state of T cell unresponsiveness and the upregulation of Tregs.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Síndrome de Sjogren/terapia , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Citocinas/imunologia , Humanos , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos NOD , Glândulas Salivares/imunologia , Síndrome de Sjogren/imunologia , Cordão Umbilical/citologia
14.
J Physiol ; 598(21): 4907-4925, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32780506

RESUMO

KEY POINTS: Few reports have explored the possibility of involvement of non-inflammatory factors in lacrimal hyposecretion in Sjögren's syndrome (SS). RNA-sequencing analysis revealed that only four genes, including arginase 1, were downregulated in the lacrimal gland of SS model male mice (NOD mice) after onset of lacrimal hyposecretion and dacryoadenitis. Even in non-dacryoadenitis-type NOD mice, tear secretion and arginase 1 expression remained low. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. The results indicate that a non-inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status. ABSTRACT: Lacrimal fluid (tears) is important for preservation of the ocular surface, and thus lacrimal hyposecretion in Sjögren's syndrome (SS) leads to reduced quality of life. However, the cause(s) of lacrimal hyposecretion remains unknown, even though many studies have been conducted from the perspective of inflammation. Here, we hypothesized that a non-inflammatory factor induces lacrimal hyposecretion in SS pathology, and to elucidate such a factor, we conducted transcriptome analysis of the lacrimal glands in male non-obese diabetic (NOD) mice as an SS model. The NOD mice showed inflammatory cell infiltration and decreased pilocarpine-induced tear secretion at and after 6 weeks of age compared to age-matched BALB/c mice. RNA-sequencing analysis revealed that only four genes, including arginase 1, were downregulated, whereas many genes relating to inflammation were upregulated, in the lacrimal glands of male NOD mice after onset of lacrimal hyposecretion and dacryoadenitis (lacrimal gland inflammation). Changes in the level of arginase 1 expression were confirmed by real-time RT-PCR and western blot analysis. Furthermore, non-dacryoadenitis-type NOD mice were used to investigate the relationships among arginase 1 expression, lacrimal hyposecretion and dacryoadenitis. Interestingly, these NOD mice retained the phenotype of dacryoadenitis with regard to tear secretion and arginase 1 expression level. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. In conclusion, a non-inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status. These results shed light on the pathophysiological role of arginase 1 in SS (dry eye).


Assuntos
Dacriocistite , Aparelho Lacrimal , Síndrome de Sjogren , Animais , Arginase/genética , Dacriocistite/genética , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Qualidade de Vida , Síndrome de Sjogren/genética
15.
Biochem Biophys Res Commun ; 525(3): 693-698, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32139120

RESUMO

The levels of the anti-aging protein α-Klotho, in its soluble form (s-Klotho), are depressed in the circulation of patients with type 1 diabetes (T1D) or type 2 diabetes (T2D). Gene transfer experiments have suggested a protective role for ß-cell specific expression of α-Klotho in murine models of T1D and T1D, but these approaches are not easily translatable to clinical therapy. It is unknown whether systemic s-Klotho protein treatment ameliorates disease in T1D, which is characterized by autoimmune destruction of ß cells. We previously reported from in vitro experiments with ß cells that s-Klotho increases insulin secretion, reduces cells death and promotes ß-cell replication. Here, we investigated s-Klotho protein therapy in NOD mice, which have autoimmune T1D. We observed that diabetic NOD mice have significantly lower plasma levels of s-Klotho, compared to their non-diabetic counterparts. To examine in vivo effects of Klotho, we treated NOD mice with s-Klotho protein, or with a Klotho blocking antibody. Systemic treatment with s-Klotho ameliorated diabetes; notably increasing ß-cell replication and total ß-cell mass. Klotho expression was increased locally in the islets. s-Klotho also markedly reduced immune-cell infiltration of islets (insulitis). In contrast, administration of the Klotho antibody was detrimental, and aggravated the loss of ß-cell mass. Thus, s-Klotho has protective effects in this model of T1D, and this appears to depend on a combination of increased ß-cell replication and reduced insulitis. These findings suggest that s-Klotho might be effective as a new therapeutic agent for T1D.


Assuntos
Glucuronidase/uso terapêutico , Células Secretoras de Insulina/patologia , Animais , Proliferação de Células , Feminino , Glucuronidase/sangue , Humanos , Proteínas Klotho , Camundongos Endogâmicos NOD , Tamanho do Órgão
16.
Xenotransplantation ; 27(4): e12577, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31903659

RESUMO

BACKGROUND: Our goal was to identify clinically relevant immunotherapies that synergize with microencapsulation to protect adult porcine islet (API) xenografts in diabetic NOD mice. We have shown previously that dual costimulatory blockade (CTLA4-Ig plus anti-CD154 mAb) combined with encapsulation protects APIs long-term in NOD mice. Since no anti-CD154 mAbs currently are approved for use in humans, we tested the efficacy of other targeted immunosuppression regimens that might be used for diabetic patients receiving encapsulated islets. METHODS: Microencapsulated APIs were transplanted i.p. in diabetic NOD mice given either no immunosuppression or combinations immunosuppressive reagents. Graft function was monitored by blood glucose levels, i.p. glucose tolerance tests, and histology. Mechanisms of rejection were investigated by phenotyping host peritoneal cells and measuring graft site cytokine and chemokine levels. RESULTS: New immunosuppressive therapies were compared to CTLA4-Ig plus anti-CD154 mAb, used here as a control. The most effective was triple treatment with CTLA4-Ig, anti-CD154 mAb, and intracapsular CXCL12, and the next most effective was a non-depleting anti-CD4 mAb (YTS177.9) plus intracapsular CXCL12. Three additional regimens (CTLA4-Ig plus YTS177.9, YTS177.9 alone, and anti-OX40-Ligand mAb alone) significantly prolonged encapsulated API function. Dual treatment with CTLA4-Ig plus anti-CD40 mAb was as effective as CTLA4-Ig plus anti-CD154 mAb. Five other monotherapies and three combination therapies did not augment encapsulated API survival. Most peritoneal cytokines and chemokines were either absent or minimal. At necropsy, the capsules were intact, not fibrosed, and clean when function was maintained, but were coated with host cells if rejection had occurred. CONCLUSIONS: Multiple different immunotherapies which specifically inhibit CD4+ T cells, modulate T-cell trafficking, or interfere with antigen presentation can substitute for anti-CD154 mAb to prolong encapsulated islet xenograft function in diabetic NOD mice.


Assuntos
Diabetes Mellitus Experimental , Terapia de Imunossupressão/métodos , Transplante das Ilhotas Pancreáticas , Transplante Heterólogo , Animais , Ligante de CD40 , Diabetes Mellitus Experimental/cirurgia , Rejeição de Enxerto , Sobrevivência de Enxerto , Xenoenxertos , Camundongos , Camundongos Endogâmicos NOD , Suínos
17.
Proc Natl Acad Sci U S A ; 114(36): 9671-9676, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28831005

RESUMO

Certain MHC-II or HLA-D alleles dominantly protect from particular autoimmune diseases. For example, expression of the MHC-II Eα:Eß complex potently protects nonobese diabetic (NOD) mice, which normally lack this isotype, from spontaneous development of type 1 diabetes. However, the underlying mechanisms remain debated. We investigated MHC-II-mediated protection from type 1 diabetes using a previously reported NOD mouse line expressing an Eα transgene and, thereby, the Eα:Eß complex. Eα16/NOD females vertically protected their NOD offspring from diabetes and insulitis, an effect that was dependent on the intestinal microbiota; moreover, they developed autoimmunity when treated with certain antibiotics or raised in a germ-free environment. Genomic and proteomic analyses revealed NOD and Eα16/NOD mice to host mild but significant differences in the intestinal microbiotas during a critical early window of ontogeny, and transfer of cecal contents from the latter to the former suppressed insulitis. Thus, protection from autoimmunity afforded by particular MHC/HLA alleles can operate via intestinal microbes, highlighting potentially important societal implications of treating infants, or even just their pregnant mothers, with antibiotics.


Assuntos
Diabetes Mellitus Tipo 1/microbiologia , Diabetes Mellitus Tipo 1/prevenção & controle , Microbioma Gastrointestinal/imunologia , Antígenos de Histocompatibilidade Classe II , Alelos , Animais , Antibacterianos/efeitos adversos , Autoimunidade/efeitos dos fármacos , Autoimunidade/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Recém-Nascido , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Masculino , Troca Materno-Fetal/efeitos dos fármacos , Troca Materno-Fetal/genética , Troca Materno-Fetal/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Gravidez
18.
Acta Odontol Scand ; 78(5): 390-400, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32141357

RESUMO

Objective: Salivary flow rate exerts an essential impact on the development and progression of dental erosion. In this work, the experimental dental erosion in non-obese diabetic (NOD) mice with reduced salivary flow rate was induced, and the erosive effect of acidic drinks on their dentition was studied.Material and methods: Three acidic drinks (sports drink, cola light drink and sugar containing cola drink) were given to adult NOD mice (groups: N = 11) as the only drink for 6 weeks. Two control groups were included; wild type and NOD control (groups: N = 9). Experimental and control (water) teeth were dissected out and observed by scanning electron microscopy (SEM). Mandibular first molars were subsequently embedded in Epon, ground transversely, observed again by SEM, and the enamel thickness and tooth height were measured.Results: Mandibular molars were considerably more eroded than maxillary molars. The erosive process started at the top of the cusps and subsequently extended in the cervical, mesio-distal, and pulpal direction. Erosive lesions were evident in increased succession from sports drink, cola light to cola drink exposed mandibular molars, with the lingual tooth height being approximately 23%, 26%, and 37% lower, respectively, compared to the control. The lingual enamel was approximately 48% thinner in sports drink molars and 62% thinner in cola light molars. In cola drink molars, the lingual enamel was totally eroded, and significant erosion of dentine was evident.Conclusion: Reduced salivary flow, together with a high consumption of acidic drinks, results in severe erosion of NOD mice molars.


Assuntos
Bebidas/efeitos adversos , Bebidas Gaseificadas/efeitos adversos , Esmalte Dentário/efeitos dos fármacos , Glândulas Salivares/fisiopatologia , Erosão Dentária/induzido quimicamente , Animais , Esmalte Dentário/diagnóstico por imagem , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos NOD , Microscopia Eletrônica de Varredura , Saliva/química
19.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374418

RESUMO

Type 1 diabetes (T1D) is an auto-immune disorder characterized by a complex interaction between the host immune system and various environmental factors in genetically susceptible individuals. Genome-wide association studies (GWAS) identified different T1D risk and protection alleles, however, little is known about the environmental factors that can be linked to these alleles. Recent evidence indicated that, among those environmental factors, dysbiosis (imbalance) in the gut microbiota may play a role in the pathogenesis of T1D, affecting the integrity of the gut and leading to systemic inflammation and auto-destruction of the pancreatic ß cells. Several studies have identified changes in the gut microbiome composition in humans and animal models comparing T1D subjects with controls. Those changes were characterized by a higher abundance of Bacteroides and a lower abundance of the butyrate-producing bacteria such as Clostridium clusters IV and XIVa. The mechanisms by which the dysbiotic bacteria and/or their metabolites interact with the genome and/or the epigenome of the host leading to destructive autoimmunity is still not clear. As T1D is a multifactorial disease, understanding the interaction between different environmental factors such as the gut microbiome, the genetic and the epigenetic determinants that are linked with the early appearance of autoantibodies can expand our knowledge about the disease pathogenesis. This review aims to provide insights into the interaction between the gut microbiome, susceptibility genes, epigenetic factors, and the immune system in the pathogenesis of T1D.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/microbiologia , Diabetes Mellitus Tipo 1/virologia , Epigenoma , Microbioma Gastrointestinal , Predisposição Genética para Doença , Genoma Humano , Alelos , Animais , Bacteroides , Clostridium , Metilação de DNA , Estudo de Associação Genômica Ampla , Antígenos HLA , Humanos , Sistema Imunitário , Intestinos/microbiologia , Intestinos/virologia , Camundongos , Camundongos Endogâmicos NOD , Polimorfismo de Nucleotídeo Único , RNA não Traduzido/metabolismo
20.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331412

RESUMO

Type 1 diabetes (T1D) is the most common chronic metabolic disease in children and adolescents. The etiology of T1D is not fully understood but it seems multifactorial. The genetic background determines the predisposition to develop T1D, while the autoimmune process against ß-cells seems to be also determined by environmental triggers, such as endocrine disrupting chemicals (EDCs). Environmental EDCs may act throughout different temporal windows as single chemical agent or as chemical mixtures. They could affect the development and the function of the immune system or of the ß-cells function, promoting autoimmunity and increasing the susceptibility to autoimmune attack. Human studies evaluating the potential role of exposure to EDCs on the pathogenesis of T1D are few and demonstrated contradictory results. The aim of this narrative review is to summarize experimental and epidemiological studies on the potential role of exposure to EDCs in the development of T1D. We highlight what we know by animals about EDCs' effects on mechanisms leading to T1D development and progression. Studies evaluating the EDC levels in patients with T1D were also reported. Moreover, we discussed why further studies are needed and how they should be designed to better understand the causal mechanisms and the next prevention interventions.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/metabolismo , Suscetibilidade a Doenças , Disruptores Endócrinos/efeitos adversos , Animais , Estudos Clínicos como Assunto , Modelos Animais de Doenças , Disruptores Endócrinos/classificação , Exposição Ambiental/efeitos adversos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA