RESUMO
In neutrophils, nicotinamide adenine dinucleotide phosphate (NADPH) generated via the pentose phosphate pathway fuels NADPH oxidase NOX2 to produce reactive oxygen species for killing invading pathogens. However, excessive NOX2 activity can exacerbate inflammation, as in acute respiratory distress syndrome (ARDS). Here, we use two unbiased chemical proteomic strategies to show that small-molecule LDC7559, or a more potent designed analog NA-11, inhibits the NOX2-dependent oxidative burst in neutrophils by activating the glycolytic enzyme phosphofructokinase-1 liver type (PFKL) and dampening flux through the pentose phosphate pathway. Accordingly, neutrophils treated with NA-11 had reduced NOX2-dependent outputs, including neutrophil cell death (NETosis) and tissue damage. A high-resolution structure of PFKL confirmed binding of NA-11 to the AMP/ADP allosteric activation site and explained why NA-11 failed to agonize phosphofructokinase-1 platelet type (PFKP) or muscle type (PFKM). Thus, NA-11 represents a tool for selective activation of PFKL, the main phosphofructokinase-1 isoform expressed in immune cells.
Assuntos
Fagocitose , Fosfofrutoquinase-1 Hepática/metabolismo , Explosão Respiratória , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Fosfofrutoquinase-1 Hepática/antagonistas & inibidores , Fosfofrutoquinase-1 Hepática/ultraestrutura , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/isolamento & purificação , Explosão Respiratória/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
The presence of gallstones (cholelithiasis) is a highly prevalent and severe disease and one of the leading causes of hospital admissions worldwide. Due to its substantial health impact, we investigated the biological mechanisms that lead to the formation and growth of gallstones. We show that gallstone assembly essentially requires neutrophil extracellular traps (NETs). We found consistent evidence for the presence of NETs in human and murine gallstones and describe an immune-mediated process requiring activation of the innate immune system for the formation and growth of gallstones. Targeting NET formation via inhibition of peptidyl arginine deiminase type 4 or abrogation of reactive oxygen species (ROS) production, as well as damping of neutrophils by metoprolol, effectively inhibit gallstone formation in vivo. Our results show that after the physicochemical process of crystal formation, NETs foster their assembly into larger aggregates and finally gallstones. These insights provide a feasible therapeutic concept to prevent cholelithiasis in patients at risk.
Assuntos
Armadilhas Extracelulares/imunologia , Cálculos Biliares/imunologia , Neutrófilos/imunologia , Animais , Feminino , Humanos , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/imunologiaRESUMO
Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91phox), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22phox heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22phox are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple ß-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.
Assuntos
Microscopia Crioeletrônica , NADPH Oxidase 2 , NADPH Oxidases , Fagócitos , Humanos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/química , Fagócitos/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/química , Ligação Proteica , Sítios de Ligação , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/genética , Modelos Moleculares , Espécies Reativas de Oxigênio/metabolismoRESUMO
Monocytes play a key role in innate immunity by eliminating pathogens, releasing high levels of cytokines, and differentiating into several cell types, including macrophages and dendritic cells. Similar to other phagocytes, monocytes produce superoxide anions through the NADPH oxidase complex, which is composed of two membrane proteins (p22phox and gp91phox/NOX2) and four cytosolic proteins (p47phox, p67phox, p40phox and Rac1). The pathways involved in NADPH oxidase activation in monocytes are less known than those in neutrophils. Here, we show that p22phox is associated with Rho-associated coiled-coil kinase 2 (ROCK2) in human monocytes but not neutrophils. This interaction occurs between the cytosolic region of p22phox (amino acids 132 to 195) and the coiled-coil region of ROCK2 (amino acids 400 to 967). Interestingly, ROCK2 does not phosphorylate p22phox, p40phox, p67phox, or gp91phox in vitro but phosphorylates p47phox on Ser304, Ser315, Ser320 and Ser328. Furthermore, KD025, a selective inhibitor of ROCK2, inhibited reactive oxygen species (ROS) production and p47phox phosphorylation in monocytes. Specific inhibition of ROCK2 expression in THP1-monocytic cell line by siRNA inhibited ROS production. These data show that ROCK2 interacts with p22phox and phosphorylates p47phox, and suggest that p22phox could be a shuttle for ROCK2 to allow p47phox phosphorylation and NADPH oxidase activation in human monocytes.
Assuntos
Monócitos , NADPH Oxidases , Quinases Associadas a rho , Humanos , Aminoácidos , Monócitos/metabolismo , NADPH Oxidases/metabolismo , Fosfoproteínas/metabolismo , Espécies Reativas de Oxigênio , Quinases Associadas a rho/metabolismoRESUMO
Cells undergo metabolic adaptation during environmental changes by using evolutionarily conserved stress response programs. This metabolic homeostasis is exquisitely regulated, and its imbalance could underlie human pathological conditions. We report here that C9orf72, which is linked to the most common forms of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), is a key regulator of lipid metabolism under stress. Loss of C9orf72 leads to an overactivation of starvation-induced lipid metabolism that is mediated by dysregulated autophagic digestion of lipids and increased de novo fatty acid synthesis. C9orf72 acts by promoting the lysosomal degradation of coactivator-associated arginine methyltransferase 1 (CARM1), which in turn regulates autophagy-lysosomal functions and lipid metabolism. In ALS/FTD patient-derived neurons or tissues, a reduction in C9orf72 function is associated with dysregulation in the levels of CARM1, fatty acids, and NADPH oxidase NOX2. These results reveal a C9orf72-CARM1 axis in the control of stress-induced lipid metabolism and implicates epigenetic dysregulation in relevant human diseases.
Assuntos
Proteína C9orf72/fisiologia , Glucose/fisiologia , Metabolismo dos Lipídeos , Proteína-Arginina N-Metiltransferases/metabolismo , Estresse Fisiológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Células Cultivadas , Ácidos Graxos/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Camundongos , Proteína-Arginina N-Metiltransferases/fisiologiaRESUMO
The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.
Assuntos
NADPH Oxidase 2 , Família de Proteínas da Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sítios de LigaçãoRESUMO
The phagocyte NADPH oxidase (NOX2) is an enzyme, crucial for innate immune defense, producing reactive oxygen species necessary for pathogen destruction. Its activation requires the assembly of soluble proteins (p47phox, p40phox, p67phox, and Rac) with the membrane-bound flavocytochrome b558 (cytb558). We combined circular-dichroism analyses, with decades of experimental data, to filter structural models of the NADPH oxidase complex generated by the artificial intelligence program AlphaFold2 (AF2). The predicted patterns tend to closely resemble the active states of the proteins, as shown by the compact structure of the cytb558, whose dehydrogenase domain is stabilized closer to the membrane. The modeling of the interaction of p47phox with cytb558, which is the initial assembly and activation steps of the NADPH oxidase, enables us to describe how the C-terminus of p47phox interacts with the cytb558. Combining the AF2 cytb558 -p47phox model and its classical molecular dynamics simulations, we highlighted new hydrophobic lipid insertions of p47phox, particularly at residues Trp80-Phe81 of its PX domain. The AF2 models also revealed the implications of intrinsically disordered regions, such as the fragment between the PX domain and the SH3 regions of p47phox, in ensuring distant protein-protein and membrane-protein interactions. Finally, the AF2 prediction of the cytb558-Trimera model highlighted the importance of leaving Rac1 as a separate protein to reach an active state of the NADPH oxidase complex. Altogether, our step-by-step approach provides a structural model of the active complex showing how disordered regions and specific lipid and protein interactions can enable and stabilize the multi-subunit assembly.
RESUMO
Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population with high immunosuppressive activity that proliferates in infections, inflammation, and tumor microenvironments. In tumors, MDSC exert immunosuppression mainly by producing reactive oxygen species (ROS), a process triggered by the NADPH oxidase 2 (NOX2) activity. NOX2 is functionally coupled with the Hv1 proton channel in certain immune cells to support sustained free-radical production. However, a functional expression of the Hv1 channel in MDSC has not yet been reported. Here, we demonstrate that mouse MDSC express functional Hv1 proton channel by immunofluorescence microscopy, flow cytometry, and Western blot, besides performing a biophysical characterization of its macroscopic currents via patch-clamp technique. Our results show that the immunosuppression by MDSC is conditional to their ability to decrease the proton concentration elevated by the NOX2 activity, rendering Hv1 a potential drug target for cancer treatment.
Assuntos
Canais Iônicos , Células Supressoras Mieloides , Prótons , Linfócitos T , Animais , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Células Supressoras Mieloides/imunologia , NADPH Oxidase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologiaRESUMO
Skeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death. Molecular and biochemical analysis confirms NOX2-dependent generation of reactive oxygen species, leading to autophagy flux inhibition and cell apoptosis. Along with this, an alteration in mitochondrial dynamics (change in fusion and fission process) and a decrease in the total number of mitochondria copies were found during JEV disease progression. The study represents the initial evidence of skeletal muscle damage caused by JEV and provides insights into potential avenues for therapeutic advancement.
Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Dinâmica Mitocondrial , Músculo Esquelético , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/virologia , Camundongos , Encefalite Japonesa/metabolismo , Dinâmica Mitocondrial/fisiologia , Apoptose/fisiologia , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Autofagia/fisiologia , Modelos Animais de DoençasRESUMO
OBJECTIVES: Patients with systemic lupus erythematosus (SLE) display heightened immune activation and elevated IgG autoantibody levels, indicating compromised regulatory T cell (Tregs) function. Our recent findings pinpoint CD8+ Tregs as crucial regulators within secondary lymphoid organs, operating in a NOX2-dependent mechanism. However, the specific involvement of CD8+ Tregs in SLE pathogenesis and the mechanisms underlying their role remain uncertain. METHODS: SLE and healthy individuals were enlisted to assess the quantity and efficacy of Tregs. CD8+CD45RA+CCR7+ Tregs were generated ex vivo, and their suppressive capability was gauged by measuring pZAP70 levels in targeted T cells. Notch1 activity was evaluated by examining activated Notch1 and HES1, with manipulation of Notch1 accomplished with Notch inhibitor DAPT, Notch1 shRNA, and Notch1-ICD. To create humanized SLE chimeras, immune-deficient NSG mice were engrafted with PBMCs from SLE patients. RESULTS: We observed a reduced frequency and impaired functionality of CD8+ Tregs in SLE patients. There was a downregulation of NOX2 in CD8+ Tregs from SLE patients, leading to a dysfunction. Mechanistically, the reduction of NOX2 in SLE CD8+ Tregs occurred at a post-translational level rather than at the transcriptional level. SLE CD8+ Tregs exhibited heightened Notch1 activity, resulting in increased expression of STUB1, an E3 ubiquitin ligase that binds to NOX2 and facilitates its ubiquitination. Consequently, restoring NOX2 levels and inhibiting Notch1 activity could alleviate the severity of the disease in humanized SLE chimeras. CONCLUSION: Notch1 is the cell-intrinsic mechanism underlying NOX2 deficiency and CD8+ Treg dysfunction, serving as a therapeutic target for clinical management of SLE.
RESUMO
BACKGROUND: Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS: This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS: The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin ß1, but without significant impact on piezo 1. CONCLUSIONS: Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.
Assuntos
Compostos Benzidrílicos , Cardiomiopatias Diabéticas , Matriz Extracelular , Glucosídeos , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Glucosídeos/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Compostos Benzidrílicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Ratos , Quinase 1 de Adesão Focal/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaçõesRESUMO
The crosstalk between astrocytes and microglia plays a pivotal role in neuroinflammation following ischemic stroke, and phenotypic distribution of these cells can change with the progression of ischemic stroke. Peroxiredoxin (PRDX) 6 phospholipase A2 (iPLA2) activity is involved in the generation of reactive oxygen species(ROS), with ROS driving the activation of microglia and astrocytes; however, its exact function remains unexplored. MJ33, PRDX6D140A mutation was used to block PRDX6-iPLA2 activity in vitro and vivo after ischemic stroke. PRDX6T177A mutation was used to block the phosphorylation of PRDX6 in CTX-TNA2 cell lines. NAC, GSK2795039, Mdivi-1, U0126, and SB202190 were used to block the activity of ROS, NOX2, mitochondrial fission, ERK, and P38, respectively, in CTX-TNA2 cells. In ischemic stroke, PRDX6 is mainly expressed in astrocytes and PRDX6-iPLA2 is involved in the activation of astrocytes and microglia. In co-culture system, Asp140 mutation in PRDX6 of CTX-TNA2 inhibited the polarization of microglia, reduced the production of ROS, suppressed NOX2 activation, and inhibited the Drp1-dependent mitochondrial fission following OGD/R. These effects were further strengthened by the inhibition of ROS production. In subsequent experiments, U0126 and SB202190 inhibited the phosphorylation of PRDX6 at Thr177 and reduced PRDX6-iPLA2 activity. These results suggest that PRDX6-iPLA2 plays an important role in the astrocyte-induced generation of ROS and activation of microglia, which are regulated by the activation of Nox2 and Drp1-dependent mitochondrial fission pathways. Additionally, PRDX6-iPLA2 activity is regulated by MAPKs via the phosphorylation of PRDX6 at Thr177 in astrocytes.
Assuntos
Astrócitos , Butadienos , AVC Isquêmico , Nitrilas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismoRESUMO
BACKGROUND: Nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2) deficiency, or chronic granulomatous disease (CGD), is an inborn error of immunity associated with increased susceptibility to infection and inflammatory manifestations. The pathophysiologic mechanism leading to the increased inflammatory response in CGD remains elusive. OBJECTIVE: We investigated the pathophysiologic mechanisms leading to NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation in NOX2 deficiency. METHODS: We used NOX2-deficient human primary and CRISPR-engineered macrophages to show that NOX2 deficiency enhances the inflammatory response mainly by modulating the 2 steps of NLRP3 inflammasome activation: its transcriptional priming and its posttranslational triggering. RESULTS: At the transcriptional level, NOX2-deficient phagocytes display increased priming of the NLRP3 inflammasome, as evidenced by increased transcription of NLRP3 and IL-1ß through an IL-1ß-dependent stimulation of the nuclear factor kappa-light-chain enhancer of activated B cells (aka NF-κB) pathway. At the posttranslational level, the absence of NOX2 triggers the NLRP3 inflammasome activation by increased K+ efflux and excessive release of mitochondrial DNA due to mitochondrial damage. Furthermore, NLRP3-driven pyroptosis in NOX2-deficient phagocytes further enhances NLRP3 activation by increasing K+ efflux. CONCLUSION: Our results unveil the role of NOX2 as a repressor of the inflammatory response at both transcriptional and posttranslational levels and pave the way for a more targeted approach to treating CGD patients with inflammatory manifestations.
RESUMO
Neutrophil extracellular traps (NETs) are three-dimensional reticular structures that release chromatin and cellular contents extracellularly upon neutrophil activation. As a novel effector mechanism of neutrophils, NETs possess the capacity to amplify localized inflammation and have been demonstrated to contribute to the exacerbation of various inflammatory diseases, including cardiovascular diseases and tumors. It is suggested that lysophosphatidylcholine (LPC), as the primary active component of oxidized low-density lipoprotein, represents a significant risk factor for various inflammatory diseases, such as cardiovascular diseases and neurodegenerative diseases. However, the specific mechanism of NETs formation induced by LPC remains unclear. Quercetin has garnered considerable attention due to its anti-inflammatory properties, serving as a prevalent flavonoid in daily diet. However, little is currently known about the underlying mechanisms by which quercetin inhibits NETs formation and alleviates associated diseases. In our study, we utilized LPC-treated primary rat neutrophils to establish an in vitro model of NETs formation, which was subsequently subjected to treatment with a combination of quercetin or relevant inhibitors/activators. Compared to the control group, the markers of NETs and the expression of P2X7R/P38MAPK/NOX2 pathway-associated proteins were significantly increased in cells treated with LPC alone. Quercetin intervention decreased the LPC-induced upregulation of the P2X7R/P38MAPK/NOX2 pathway and effectively reduced the expression of NETs markers. The results obtained using a P2X7R antagonist/activator and P38MAPK inhibitor/activator support these findings. In summary, quercetin reversed the upregulation of the LPC-induced P2X7R/P38MAPK/NOX2 pathway, further mitigating NETs formation. Our study investigated the potential mechanism of LPC-induced NETs formation, elucidated the inhibitory effect of quercetin on NETs formation, and offered new insights into the anti-inflammatory properties of quercetin.
Assuntos
Armadilhas Extracelulares , Lisofosfatidilcolinas , NADPH Oxidase 2 , Neutrófilos , Quercetina , Receptores Purinérgicos P2X7 , Proteínas Quinases p38 Ativadas por Mitógeno , Quercetina/farmacologia , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/farmacologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ratos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , NADPH Oxidase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , MasculinoRESUMO
M2-polarized, tumor-associated macrophages (TAMs) produce pro-tumorigenic and angiogenic mediators, such as interleukin-8 (IL-8) and IL-10. Leucine-rich repeat-containing protein 8 members (LRRC8s) form volume-regulated anion channels and play an important role in macrophage functions by regulating cytokine and chemokine production. We herein examined the role of LRRC8A in IL-8 and IL-10 expression in THP-1-differentiated M2-like macrophages (M2-MACs), which are a useful tool for investigating TAMs. In M2-MACs, the pharmacological inhibition of LRRC8A led to hyperpolarizing responses after a transient depolarization phase, followed by a slight elevation in the intracellular concentration of Ca2+. Both the small interfering RNA-mediated and pharmacological inhibition of LRRC8A repressed the transcriptional expression of IL-8 and IL-10, resulting in a significant reduction in their secretion. The inhibition of LRRC8A decreased the nuclear translocation of phosphorylated nuclear factor-erythroid 2-related factor 2 (Nrf2), while the activation of Nrf2 reversed the LRRC8A inhibition-induced transcriptional repression of IL-8 and IL-10 in M2-MACs. We identified the CCAAT/enhancer-binding protein isoform B, CEBPB, as a downstream target of Nrf2 signaling in M2-MACs. Moreover, among several upstream candidates, the inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) suppressed the Nrf2-CEBPB transcriptional axis in M2-MACs. Collectively, the present results indicate that the inhibition of LRRC8A repressed IL-8 and IL-10 transcription in M2-MACs through the NOX2-Nrf2-CEBPB axis and suggest that LRRC8A inhibitors suppress the IL-10-mediated evasion of tumor immune surveillance and IL-8-mediated metastasis and neovascularization in TAMs.
Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Interleucina-10 , Interleucina-8 , Macrófagos , Proteínas de Membrana , NADPH Oxidase 2 , Fator 2 Relacionado a NF-E2 , Humanos , Interleucina-10/metabolismo , Interleucina-10/genética , Interleucina-8/metabolismo , Interleucina-8/genética , Fator 2 Relacionado a NF-E2/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Transdução de Sinais , Regulação para Baixo , Células THP-1RESUMO
This study aims to analyze post-mortem human cardiac specimens, to verify and evaluate the existence or extent of oxidative stress in subjects whose cause of death has been traced to sepsis, through immunohistological oxidative/nitrosative stress markers. Indeed, in the present study, i-NOS, NOX2, and nitrotyrosine markers were higher expressed in the septic death group when compared to the control group, associated with also a significant increase in 8-OHdG, highlighting the pivotal role of oxidative stress in septic etiopathogenesis. In particular, 70% of cardiomyocyte nuclei from septic death specimens showed positivity for 8-OHdG. Furthermore, intense and massive NOX2-positive myocyte immunoreaction was noticed in the septic group, as nitrotyrosine immunostaining intense reaction was found in the cardiac cells. These results demonstrated a correlation between oxidative and nitrosative stress imbalance and the pathophysiology of cardiac dysfunction documented in cases of sepsis. Therefore, subsequent studies will focus on the expression of oxidative stress markers in other organs and tissues, as well as on the involvement of the intracellular pattern of apoptosis, to better clarify the complex pathogenesis of multi-organ failure, leading to support the rationale for including therapies targeting redox abnormalities in the management of septic patients.
Assuntos
Cardiopatias , Sepse , Humanos , Estresse Oxidativo/fisiologia , Sepse/metabolismo , Miócitos Cardíacos/metabolismo , Cardiopatias/metabolismo , Estresse NitrosativoRESUMO
Myocardial stretch physiologically activates NADPH oxidase 2 (NOX2) to increase reactive oxygen species (ROS) production. Although physiological low-level ROS are known to be important as signalling molecules, the role of stretch-induced ROS in the intact myocardium remains unclear. To address this, we investigated the effects of stretch-induced ROS on myocardial cellular contractility and calcium transients in C57BL/6J and NOX2-/- mice. Axial stretch was applied to the isolated cardiomyocytes using a pair of carbon fibres attached to both cell ends to evaluate stretch-induced modulation in the time course of the contraction curve and calcium transient, as well as to evaluate maximum cellular elastance, an index of cellular contractility, which is obtained from the end-systolic force-length relationship. In NOX2-/- mice, the peak calcium transient was not altered by stretch, as that in wild-type mice, but the lack of stretch-induced ROS delayed the rise of calcium transients and reduced contractility. Our mathematical modelling studies suggest that the augmented activation of ryanodine receptors by stretch-induced ROS causes a rapid and large increase in the calcium release flux, resulting in a faster rise in the calcium transient. The slight increase in the magnitude of calcium transients is offset by a decrease in sarcoplasmic reticulum calcium content as a result of ROS-induced calcium leakage, but the faster rise in calcium transients still maintains higher contractility. In conclusion, a physiological role of stretch-induced ROS is to increase contractility to counteract a given preload, that is, it contributes to the Frank-Starling law of the heart. KEY POINTS: Myocardial stretch increases the production of reactive oxygen species by NADPH oxidase 2. We used NADPH oxidase 2 knockout mice to elucidate the physiological role of stretch-induced reactive oxygen species in the heart. We showed that stretch-induced reactive oxygen species modulate the rising phase of calcium transients and increase myocardial contractility. A mathematical model simulation study demonstrated that rapid activation of ryanodine receptors by reactive oxygen species is important for increased contractility. This response is advantageous for the myocardium, which must contract against a given preload.
RESUMO
Salmonella invades host cells and replicates inside acidified, remodeled vacuoles that are exposed to reactive oxygen species (ROS) generated by the innate immune response. Oxidative products of the phagocyte NADPH oxidase mediate antimicrobial activity, in part, by collapsing the ΔpH of intracellular Salmonella. Given the role of arginine in bacterial resistance to acidic pH, we screened a library of 54 single-gene mutants in Salmonella that are each involved in, but do not entirely block, arginine metabolism. We identified several mutants that affected Salmonella virulence in mice. The triple mutant ΔargCBH, which is deficient in arginine biosynthesis, was attenuated in immunocompetent mice, but recovered virulence in phagocyte NADPH oxidase deficient Cybb-/- mice. Furthermore, ΔargCBH Salmonella was profoundly susceptible to the bacteriostatic and bactericidal effects of hydrogen peroxide. Peroxide stress led to a larger collapse of the ΔpH in ΔargCBH mutants than occurred in wild-type Salmonella. The addition of exogenous arginine rescued ΔargCBH Salmonella from peroxide-induced ΔpH collapse and killing. Combined, these observations suggest that arginine metabolism is a hitherto unknown determinant of virulence that contributes to the antioxidant defenses of Salmonella by preserving pH homeostasis. In the absence of phagocyte NADPH oxidase-produced ROS, host cell-derived l-arginine appears to satisfy the needs of intracellular Salmonella. However, under oxidative stress, Salmonella must additionally rely on de novo biosynthesis to maintain full virulence.
Assuntos
Macrófagos , Estresse Oxidativo , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Salmonella/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Peróxido de Hidrogênio/metabolismoRESUMO
Chronic granulomatous disease (CGD) is a rare primary immune disorder caused by mutations in one of the five subunits of the NADPH oxidase complex expressed in phagocytes. Two-thirds of CGD cases are caused by mutations in CYBB that encodes NOX2 or gp91phox. Some rare X91+-CGD point mutations lead to a loss of function but with a normal expression of the mutated NOX2 protein. It is therefore necessary to ensure that this mutation is indeed responsible for the loss of activity in order to make a safe diagnosis for genetic counselling. We previously used the X-CGD PLB-985 cell model of M.C. Dinauer obtained by homologous recombination in the original PLB-985 human myeloid cell line, in order to study the functional impact of such mutations. Although the PLB-985 cell line was originally described by K.A. Tucker et al. in1987 as a distinct cell line isolated from a patient with acute nonlymphocytic leukemia, it is actually identified as a subclone of the HL-60 cells. In order to use a cellular model that meets the quality standard for the functional study of X91+-CGD mutations in CGD diagnosis, we developed our own model using the CRISPR-Cas9 technology in a certified PLB-985 cell line from DSMZ-German Collection of Microorganisms and Cell Cultures. Thanks to this new X-CGD model, we demonstrated that the G412E mutation in NOX2 found in a X91+-CGD patient prohibits access of the electron donor NADPH to its binding site explaining the absence of superoxide production in his neutrophils.
Assuntos
Doença Granulomatosa Crônica , Humanos , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Mutação/genética , Neutrófilos/metabolismoRESUMO
Increasing evidence shows that polycystic ovary syndrome (PCOS) is often accompanied by an inflammatory response, hence, appropriately managing granulosa cell inflammation is critical to regaining ovarian function in PCOS. In this study, the differential levels of purinergic receptor P2X7 between the control and PCOS samples in the dataset GSE34526 were assessed, then PCOS mouse models were established. Following evaluating the fluctuations in hormone levels, inflammatory cytokines, and P2X7, mice received treatment with the P2X7 antagonist A740003. Its effects on hormones, inflammation, apoptosis, and NOX2 signaling in mice were examined. Afterward, primary mouse granulosa cells were isolated, and the mediating role of NOX2 signaling in the P2X7 regulatory pathway was confirmed by transfection of NOX2 overexpression plasmids. The results demonstrated that P2X7 was significantly elevated in the PCOS samples in the dataset. Compared with the control group, PCOS mice had significant differences in the follicle-stimulating hormone, luteinizing hormone, testosterone, anti-Müllerian hormone, inflammatory factors, and P2X7. Treatment with A740003 partially restored these parameter levels, including NOX2 signaling. Based on in vitro experiments on primary mouse granulosa cells, the above findings were re-verified, and the overexpression of NOX2 could reverse the regulatory function of P2X7. The present study highlights that P2X7 level increases in PCOS, and inhibition of P2X7 can reduce disease symptoms. It is involved in inflammation and apoptosis in granulosa cells through NOX2/JNK signaling.