Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Immunol Rev ; 307(1): 116-133, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174510

RESUMO

Random VDJ recombination early in T and B cell development enables the adaptive immune system to recognize a vast array of evolving pathogens via antigen receptors. However, the potential of such randomly generated TCRs and BCRs to recognize and respond to self-antigens requires layers of tolerance mechanisms to mitigate the risk of life-threatening autoimmunity. Since they were originally cloned more than three decades ago, the NR4A family of nuclear hormone receptors have been implicated in many critical aspects of immune tolerance, including negative selection of thymocytes, peripheral T cell tolerance, regulatory T cells (Treg), and most recently in peripheral B cell tolerance. In this review, we discuss important insights from many laboratories as well as our own group into the function and mechanisms by which this small class of primary response genes promotes self-tolerance and immune homeostasis to balance the need for host defense against the inherent risks posed by the adaptive immune system.


Assuntos
Tolerância Imunológica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Linfócitos B , Humanos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Tolerância a Antígenos Próprios , Linfócitos T Reguladores
2.
EMBO Rep ; 24(12): e57164, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37965920

RESUMO

A high-salt diet (HSD) elicits sustained sterile inflammation and worsens tissue injury. However, how this occurs after stroke, a leading cause of morbidity and mortality, remains unknown. Here, we report that HSD impairs long-term brain recovery after intracerebral hemorrhage, a severe form of stroke, despite salt withdrawal prior to the injury. Mechanistically, HSD induces innate immune priming and training in hematopoietic stem and progenitor cells (HSPCs) by downregulation of NR4a family and mitochondrial oxidative phosphorylation. This training compromises alternative activation of monocyte-derived macrophages (MDMs) without altering the initial inflammatory responses of the stroke brain. Healthy mice transplanted with bone marrow from HSD-fed mice retain signatures of reduced MDM reparative functions, further confirming a persistent form of innate immune memory that originates in the bone marrow. Loss of NR4a1 in macrophages recapitulates HSD-induced negative impacts on stroke outcomes while gain of NR4a1 enables stroke recovery in HSD animals. Together, we provide the first evidence that links HSD-induced innate immune memory to the acquisition of persistent dysregulated inflammatory responses and unveils NR4a1 as a potential therapeutic target.


Assuntos
Acidente Vascular Cerebral , Imunidade Treinada , Camundongos , Animais , Macrófagos , Inflamação , Cloreto de Sódio na Dieta/efeitos adversos , Dieta , Imunidade Inata
3.
Mol Ther ; 32(5): 1479-1496, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429926

RESUMO

Intense inflammatory response impairs bone marrow mesenchymal stem cell (BMSC)-mediated bone regeneration, with transforming growth factor (TGF)-ß1 being the most highly expressed cytokine. However, how to find effective and safe means to improve bone formation impaired by excessive TGF-ß1 remains unclear. In this study, we found that the expression of orphan nuclear receptor Nr4a1, an endogenous repressor of TGF-ß1, was suppressed directly by TGF-ß1-induced Smad3 and indirectly by Hdac4, respectively. Importantly, Nr4a1 overexpression promoted BMSC osteogenesis and reversed TGF-ß1-mediated osteogenic inhibition and pro-fibrotic effects. Transcriptomic and histologic analyses confirmed that upregulation of Nr4a1 increased the transcription of Wnt family member 4 (Wnt4) and activated Wnt pathway. Mechanistically, Nr4a1 bound to the promoter of Wnt4 and regulated its expression, thereby enhancing the osteogenic capacity of BMSCs. Moreover, treatment with Nr4a1 gene therapy or Nr4a1 agonist Csn-B could promote ectopic bone formation, defect repair, and fracture healing. Finally, we demonstrated the correlation of NR4A1 with osteogenesis and the activation of the WNT4/ß-catenin pathway in human BMSCs and fracture samples. Taken together, these findings uncover the critical role of Nr4a1 in bone formation and alleviation of inflammation-induced bone regeneration disorders, and suggest that Nr4a1 has the potential to be a therapeutic target for accelerating bone healing.


Assuntos
Regeneração Óssea , Inflamação , Células-Tronco Mesenquimais , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Osteogênese , Proteína Wnt4 , Células-Tronco Mesenquimais/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Osteogênese/genética , Regeneração Óssea/genética , Animais , Camundongos , Proteína Wnt4/metabolismo , Proteína Wnt4/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Via de Sinalização Wnt , Masculino , Transcrição Gênica , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Modelos Animais de Doenças
4.
Am J Physiol Cell Physiol ; 327(4): C1111-C1124, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219449

RESUMO

A central aspect of type 2 diabetes is decreased functional ß-cell mass. The orphan nuclear receptor Nr4a1 is critical for fuel utilization, but little is known regarding its regulation and function in the ß-cell. Nr4a1 expression is decreased in type 2 diabetes rodent ß-cells and type 2 diabetes patient islets. We have shown that Nr4a1-deficient mice have reduced ß-cell mass and that Nr4a1 knockdown impairs glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 ß-cells. Here, we demonstrate that glucose concentration directly regulates ß-cell Nr4a1 expression. We show that 11 mM glucose increases Nr4a1 expression in INS-1 832/13 ß-cells and primary mouse islets. We show that glucose functions through the cAMP/PKA/CREB pathway to regulate Nr4a1 mRNA and protein expression. Using Nr4a1-/- animals, we show that Nr4a1 is necessary for GSIS and systemic glucose handling. Using RNA-seq, we define Nr4a1-regulated pathways in response to glucose in the mouse islet, including Glut2 expression. Our data suggest that Nr4a1 plays a critical role in the ß-cells response to the fed state.NEW & NOTEWORTHY Nr4a1 has a key role in fuel metabolism and ß-cell function, but its exact role is unclear. Nr4a1 expression is regulated by glucose concentration using cAMP/PKA/CREB pathway. Nr4a1 regulates Glut2, Ndufa4, Ins1, In2, Sdhb, and Idh3g expression in response to glucose treatment. These results suggest that Nr4a1 is necessary for proper insulin secretion both through glucose uptake and metabolism machinery.


Assuntos
Glucose , Homeostase , Secreção de Insulina , Células Secretoras de Insulina , Camundongos Knockout , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Glucose/metabolismo , Secreção de Insulina/efeitos dos fármacos , Camundongos , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Ratos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Transdução de Sinais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo
5.
J Hepatol ; 80(6): 941-956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38365182

RESUMO

BACKGROUND & AIMS: The PNPLA3 rs738409 C>G (encoding for I148M) variant is a risk locus for the fibrogenic progression of chronic liver diseases, a process driven by hepatic stellate cells (HSCs). We investigated how the PNPLA3 I148M variant affects HSC biology using transcriptomic data and validated findings in 3D-culture models. METHODS: RNA sequencing was performed on 2D-cultured primary human HSCs and liver biopsies of individuals with obesity, genotyped for the PNPLA3 I148M variant. Data were validated in wild-type (WT) or PNPLA3 I148M variant-carrying HSCs cultured on 3D extracellular matrix (ECM) scaffolds from human healthy and cirrhotic livers, with/without TGFB1 or cytosporone B (Csn-B) treatment. RESULTS: Transcriptomic analyses of liver biopsies and HSCs highlighted shared PNPLA3 I148M-driven dysregulated pathways related to mitochondrial function, antioxidant response, ECM remodelling and TGFB1 signalling. Analogous pathways were dysregulated in WT/PNPLA3-I148M HSCs cultured in 3D liver scaffolds. Mitochondrial dysfunction in PNPLA3-I148M cells was linked to respiratory chain complex IV insufficiency. Antioxidant capacity was lower in PNPLA3-I148M HSCs, while reactive oxygen species secretion was increased in PNPLA3-I148M HSCs and higher in bioengineered cirrhotic vs. healthy scaffolds. TGFB1 signalling followed the same trend. In PNPLA3-I148M cells, expression and activation of the endogenous TGFB1 inhibitor NR4A1 were decreased: treatment with the Csn-B agonist increased total NR4A1 in HSCs cultured in healthy but not in cirrhotic 3D scaffolds. NR4A1 regulation by TGFB1/Csn-B was linked to Akt signalling in PNPLA3-WT HSCs and to Erk signalling in PNPLA3-I148M HSCs. CONCLUSION: HSCs carrying the PNPLA3 I148M variant have impaired mitochondrial function, antioxidant responses, and increased TGFB1 signalling, which dampens antifibrotic NR4A1 activity. These features are exacerbated by cirrhotic ECM, highlighting the dual impact of the PNPLA3 I148M variant and the fibrotic microenvironment in progressive chronic liver diseases. IMPACT AND IMPLICATIONS: Hepatic stellate cells (HSCs) play a key role in the fibrogenic process associated with chronic liver disease. The PNPLA3 genetic mutation has been linked with increased risk of fibrogenesis, but its role in HSCs requires further investigation. Here, by using comparative transcriptomics and a novel 3D in vitro model, we demonstrate the impact of the PNPLA3 genetic mutation on primary human HSCs' behaviour, and we show that it affects the cell's mitochondrial function and antioxidant response, as well as the antifibrotic gene NR4A1. Our publicly available transcriptomic data, 3D platform and our findings on NR4A1 could facilitate the discovery of targets to develop more effective treatments for chronic liver diseases.


Assuntos
Matriz Extracelular , Células Estreladas do Fígado , Lipase , Proteínas de Membrana , Fosfolipases A2 Independentes de Cálcio , Fator de Crescimento Transformador beta1 , Humanos , Masculino , Aciltransferases , Células Cultivadas , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Lipase/genética , Lipase/metabolismo , Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Obesidade/genética , Obesidade/metabolismo , Fosfolipases A2 Independentes de Cálcio/genética , Fosfolipases A2 Independentes de Cálcio/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética
6.
Biochem Biophys Res Commun ; 700: 149582, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38306930

RESUMO

Doxorubicin (DOX) is a widely used antitumor drug, but its clinical applicability is hampered by the unfortunate side effect of DOX-induced cardiotoxicity (DIC). In our current study, we retrieved three high-throughput sequencing datasets related to DIC from the Gene Expression Omnibus (GEO) datasets. We conducted differential analysis using R (DESeq2) to pinpoint differentially expressed genes (DEGs, and identified 11 genes that were consistently altered in both the control and DOX-treated groups. Notably, our Random Forest analysis of these three GEO datasets highlighted the significance of nuclear receptor subfamily 4 group A member 1 (NR4A1) in the context of DIC. The DOX-induced mouse model and cell model were used for the in vivo and in vitro studies to reveal the role of NR4A1 in DIC. We found that silencing NR4A1 by adeno-associated virus serotype 9 (AAV9) contained shRNA in vivo alleviated the DOX-induced cardiac dysfunction, cardiomyocyte injury and fibrosis. Mechanistically, we found NR4A1 silencing was able to inhibit DOX-induced the cleavage of NLRP3, IL-1ß and GSDMD in vivo. Further in vitro studies have shown that inhibition of NR4A1 suppressed DOX-induced cytotoxicity and oxidative stress through the same molecular mechanism. We prove that NR4A1 plays a critical role in DOX-induced cardiotoxicity by inducing pyroptosis via activation of the NLRP3 inflammasome, and it might be a promising therapeutic target for DIC.


Assuntos
Cardiotoxicidade , Inflamassomos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Camundongos , Apoptose , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Doxorrubicina/farmacologia , Inflamassomos/genética , Inflamassomos/metabolismo , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética
7.
Biol Reprod ; 111(3): 640-654, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38936833

RESUMO

Nuclear receptor NR4A1 is a key factor in glycolipid metabolism and steroidogenesis, while lipid droplets serve as crucial dynamic organelles for lipid metabolism in luteal cells. To investigate the effects of NR4A1 on lipid droplet metabolism and progesterone (P4) synthesis in goat corpus luteum in vitro, luteal cells from the middle-cyclic corpus luteum were isolated and treated with Cytosporone B (CSNB, an agonist) or siRNA of NR4A1. Results showed that both low (1 µM) and high (50 µM) concentrations of CSNB promoted lipid droplet accumulation, while NR4A1 knockdown reduced lipid droplet content. CSNB increased while siNR4A1 decreased total cholesterol content; however, CSNB and siNR4A1 did not change triglyceride content. CSNB increased the expression of perilipins at mRNA and protein levels, also increased LDLR, SCARB1, SREBFs, and HMGCR mRNA abundance. Treatment with siNR4A1 revealed opposite results of CSNB, except for HMCGR and SREBF2. For steroidogenesis, 1 µM CSNB increased, but 50 µM CSNB inhibited P4 synthesis, NR4A1 knockdown also reduced the P4 level. Further analysis demonstrated that 1 µM CSNB increased the protein levels of StAR, HSD3B, and P-HSL, while 50 µM CSNB decreased StAR, HSD3B, and CYP11A1 protein levels. Moreover, 50 µM CSNB impaired active mitochondria, reduced the BCL2, and increased DRP1, Caspase 3, and cleaved-Caspase 3 protein levels. siNR4A1 consistently downregulated the P-HSL/HSL ratio and the steroidogenic protein levels. In conclusion, NR4A1-mediated lipid droplets are involved in the regulation of progesterone synthesis in goat luteal cells.


Assuntos
Cabras , Gotículas Lipídicas , Células Lúteas , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Progesterona , Animais , Feminino , Progesterona/metabolismo , Progesterona/biossíntese , Células Lúteas/metabolismo , Células Lúteas/efeitos dos fármacos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Células Cultivadas
8.
J Reprod Dev ; 70(2): 115-122, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38346724

RESUMO

The NR4A nuclear receptor family (NR4As), encompassing NR4A1, NR4A2, and NR4A3, exerts pivotal roles in cellular processes through intricate expression patterns and interactions. Despite the influence of some NR4As on anterior pituitary functions regulated by the hypothalamus, their physiological expression patterns remain unclear. In our prior work, we demonstrated the specific upregulation of NR4A3 in the rat anterior pituitary gland during the proestrus afternoon, coinciding with a gonadotropin surge. In this study, we investigated changes in pituitary Nr4a gene expression throughout the estrous cycle in rats and a gonadotropin surge-induced model. Nr4a1 and Nr4a2 gene expression significantly increased during proestrus, aligning with previous observations for Nr4a3. Furthermore, prolactin gene expression increased sequentially with rising Nr4a gene expression, while thyroid-stimulating hormone beta gene expression remained stable. Immunohistochemistry revealed a widespread and differential distribution of NR4A proteins in the anterior pituitary, with NR4A1 and NR4A3 being particularly abundant in thyrotrophs, and NR4A2 in gonadotrophs. In estrogen-treated ovariectomized rats, elevated luteinizing hormone secretion corresponded to markedly upregulated expression of Nr4a1, Nr4a2, and Nr4a3. In gonadotroph and somatomammotroph cell lines, gonadotropin- and thyrotropin-releasing hormones transiently and dose-dependently increased the expression of Nr4a genes. These findings suggest that hypothalamic hormone secretion during proestrus may induce the parallel expression of pituitary Nr4a genes, potentially influencing the pituitary gene expression program related to endocrine functions before and after ovulation.


Assuntos
Adeno-Hipófise , Hipófise , Feminino , Ratos , Animais , Proestro/fisiologia , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo
9.
BMC Biol ; 21(1): 218, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833706

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are critical sources of type 2 cytokines and represent one of the major tissue-resident lymphoid cells in the mouse lung. However, the molecular mechanisms underlying ILC2 activation under challenges are not fully understood. RESULTS: Here, using single-cell transcriptomics, genetic reporters, and gene knockouts, we identify four ILC2 subsets, including two non-activation subsets and two activation subsets, in the mouse acute inflammatory lung. Of note, a distinct activation subset, marked by the transcription factor Nr4a1, paradoxically expresses both tissue-resident memory T cell (Trm), and effector/central memory T cell (Tem/Tcm) signature genes, as well as higher scores of proliferation, activation, and wound healing, all driven by its particular regulons. Furthermore, we demonstrate that the Nr4a1+ILC2s are restrained from activating by the programmed cell death protein-1 (PD-1), which negatively modulates their activation-related regulons. PD-1 deficiency places the non-activation ILC2s in a state that is prone to activation, resulting in Nr4a1+ILC2 differentiation through different activation trajectories. Loss of PD-1 also leads to the expansion of Nr4a1+ILC2s by the increase of their proliferation ability. CONCLUSIONS: The findings show that activated ILC2s are a heterogenous population encompassing distinct subsets that have different propensities, and therefore provide an opportunity to explore PD-1's role in modulating the activity of ILC2s for disease prevention and therapy.


Assuntos
Imunidade Inata , Pulmão , Animais , Camundongos , Pulmão/metabolismo , Linfócitos , Receptor de Morte Celular Programada 1/metabolismo , Citocinas/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo
10.
Alzheimers Dement ; 20(5): 3504-3524, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38605605

RESUMO

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.


Assuntos
Envelhecimento , Disfunção Cognitiva , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Envelhecimento/fisiologia , Região CA1 Hipocampal/metabolismo , Disfunção Cognitiva/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos Endogâmicos C57BL , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células Piramidais/metabolismo , Receptor trkB/metabolismo
11.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791553

RESUMO

Long non-coding RNAs (lncRNAs) have been shown to modulate gene expression and are involved in the initiation and progression of various cancer types. Despite the wealth of studies describing transcriptome changes upon lncRNA knockdown, there is limited information describing lncRNA-mediated effects on regulatory elements (REs) modulating gene expression. In this study, we investigated how the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) lncRNA regulates primary target genes using time-resolved MALAT1 knockdown followed by parallel RNA-seq and ATAC-seq assays. The results revealed that MALAT1 primarily regulates specific protein-coding genes and a substantial decrease in the accessibility downstream of the NR4A1 gene that was associated with a decreased NR4A1 expression. Moreover, the presence of an NR4A1-downstream RE was demonstrated by CRISPR-i assays to define a functional MALAT1/NR4A1 axis. By analyzing TCGA data, we identified a positive correlation between NR4A1 expression and NR4A1-downstream RE accessibility in breast cancer but not in pancreatic cancer. Accordingly, this regulatory mechanism was experimentally validated in breast cancer cells (MCF7) but not in pancreatic duct epithelial carcinoma (PANC1) cells. Therefore, our results demonstrated that MALAT1 is involved in a molecular mechanism that fine-tunes NR4A1 expression by modulating the accessibility of a downstream RE in a cell type-specific manner.


Assuntos
Regulação Neoplásica da Expressão Gênica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Feminino , Sequências Reguladoras de Ácido Nucleico
12.
Immunology ; 169(1): 69-82, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36420610

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal tumours worldwide and has a high recurrence rate. Nevertheless, the mechanism of HCC genesis remains partly unexplored, while the efficiency of HCC treatments remains limited. The present study analysed the expression of nuclear receptor subfamily 4 group A member 1 (NR4A1) in tumour-infiltrating natural killer (NK) cells derived from both human patients with HCC and tumour-bearing mouse models, as well as the features of NR4A1high and NR4A1low NK cells. In addition, knockout of NR4A1 by CRISPR/Cas9 and adoptive transfer experiments were applied to verify the function of NR4A1 in both tumour-infiltrating NK cells and anti-PD-1 therapy. The present study found that NR4A1 was significantly highly expressed in tumour-infiltrating NK cells, which mediated the dysfunction of tumour-infiltrating NK cells by regulating the IFN-γ/p-STAT1/IRF1 signalling pathway. Knockout of NR4A1 in NK cells not only restored the antitumour function of NK cells but also enhanced the efficacy of anti-PD-1 therapy. The present findings suggest a regulatory role of NR4A1 in the immune progress of NK cells against HCC, which may provide a new direction for immunotherapies of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Camundongos Knockout , Células Matadoras Naturais , Imunoterapia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo
13.
Biochem Cell Biol ; 101(2): 148-159, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861809

RESUMO

Nuclear receptor 4A1 (NR4A1), a member of the NR4A subfamily, acts as a gene regulator in a wide range of signaling pathways and responses to human diseases. Here, we provide a brief overview of the current functions of NR4A1 in human diseases and the factors involved in its function. A deeper understanding of these mechanisms can potentially improve drug development and disease therapy.


Assuntos
Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Transdução de Sinais , Humanos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética
14.
Cancer Immunol Immunother ; 72(12): 3985-3999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847301

RESUMO

There is evidence that the orphan nuclear receptor 4A1 (NR4A1, Nur77) is overexpressed in exhausted CD8 + T cells and regulates PD-L1 in tumors. This study investigated the effects of potent bis-indole-derived NR4A1 antagonists on reversing T-cell exhaustion and downregulating PD-L1 in colon tumors/cells. NR4A1 antagonists inhibited colon tumor growth and downregulated expression of PD-L1 in mouse colon MC-38-derived tumors and cells. TILs from MC-38 cell-derived colon tumors and splenic lymphocytes exhibited high levels of the T-cell exhaustion markers including PD-1, 2B4, TIM3+ and TIGIT and similar results were observed in the spleen, and these were inhibited by NR4A1 antagonists. In addition, treatment with NR4A1 antagonists induced cytokine activation markers interferon γ, granzyme B and perforin mRNAs and decreased TOX, TOX2 and NFAT in TIL-derived CD8 + T cells. Thus, NR4A1 antagonists decrease NR4A1-dependent pro-oncogenic activity and PD-L1 expression in colon tumors and inhibit NR4A1-dependent T-cell exhaustion in TILs and spleen and represent a novel class of mechanism-based drugs that enhance immune surveillance in tumors.


Assuntos
Antígeno B7-H1 , Neoplasias do Colo , Animais , Camundongos , Exaustão das Células T , Baço , Neoplasias do Colo/tratamento farmacológico , Linfócitos T CD8-Positivos , Indóis/farmacologia
15.
FASEB J ; 36(11): e22609, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36250380

RESUMO

Stricture formation is a common complication of Crohn's disease (CD), driven by enhanced deposition of extracellular matrix (ECM) and expansion of the intestinal smooth muscle layers. Nuclear receptor subfamily 4 group A member 1 (NR4A1) is an orphan nuclear receptor that exhibits anti-proliferative effects in smooth muscle cells (SMCs). We hypothesized that NR4A1 regulates intestinal SMC proliferation and muscle thickening in the context of inflammation. Intestinal SMCs isolated from Nr4a1+/+ and Nr4a1-/- littermates were subjected to shotgun proteomic analysis, proliferation, and bioenergetic assays. Proliferation was assessed in the presence and absence of NR4A1 agonists, cytosporone-B (Csn-B) and 6-mercaptopurine (6-MP). In vivo, we compared colonic smooth muscle thickening in Nr4a1+/+ and Nr4a1-/- mice using the chronic dextran sulfate sodium (DSS) model of colitis. Second, SAMP1/YitFc mice (a model of spontaneous ileitis) were treated with Csn-B and small intestinal smooth muscle thickening was assessed. SMCs isolated from Nr4a1-/- mice exhibited increased abundance of proteins related to cell proliferation, metabolism, and ECM production, whereas Nr4a1+/+ SMCs highly expressed proteins related to the regulation of the actin cytoskeleton and contractile processes. SMCs isolated from Nr4a1-/- mice exhibited increased proliferation and alterations in cellular metabolism, whereas activation of NR4A1 attenuated proliferation. In vivo, Nr4a1-/- mice exhibited increased colonic smooth muscle thickness following repeated cycles of DSS. Activating NR4A1 with Csn-B, in the context of established inflammation, reduced ileal smooth muscle thickening in SAMP1/YitFc mice. Targeting NR4A1 may provide a novel approach to regulate intestinal SMC phenotype, limiting excessive proliferation that contributes to stricture development in CD.


Assuntos
Doença de Crohn , Mercaptopurina , Animais , Células Cultivadas , Constrição Patológica/complicações , Constrição Patológica/metabolismo , Doença de Crohn/metabolismo , Sulfato de Dextrana , Inflamação/metabolismo , Mercaptopurina/metabolismo , Camundongos , Músculo Liso , Miócitos de Músculo Liso/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Nucleares Órfãos/metabolismo , Fenótipo , Fenilacetatos , Proteômica
16.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175855

RESUMO

It was recently reported that the hydroxyflavones quercetin and kaempferol bind the orphan nuclear receptor 4A1 (NR4A1, Nur77) and act as antagonists in cancer cells and tumors, and they inhibit pro-oncogenic NR4A1-regulated genes and pathways. In this study, we investigated the interactions of flavone, six hydroxyflavones, seven dihydroxyflavones, three trihydroxyflavones, two tetrahydroxyflavones, and one pentahydroxyflavone with the ligand-binding domain (LBD) of NR4A1 using direct-binding fluorescence and an isothermal titration calorimetry (ITC) assays. Flavone and the hydroxyflavones bound NR4A1, and their KD values ranged from 0.36 µM for 3,5,7-trihydroxyflavone (galangin) to 45.8 µM for 3'-hydroxyflavone. KD values determined using ITC and KD values for most (15/20) of the hydroxyflavones were decreased compared to those obtained using the fluorescence assay. The results of binding, transactivation and receptor-ligand modeling assays showed that KD values, transactivation data and docking scores for these compounds are highly variable with respect to the number and position of the hydroxyl groups on the flavone backbone structure, suggesting that hydroxyflavones are selective NR4A1 modulators. Nevertheless, the data show that hydroxyflavone-based neutraceuticals are NR4A1 ligands and that some of these compounds can now be repurposed and used to target sub-populations of patients that overexpress NR4A1.


Assuntos
Flavonas , Receptores Nucleares Órfãos , Humanos , Flavonas/farmacologia , Ligantes , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Receptores Nucleares Órfãos/metabolismo , Ligação Proteica
17.
Immunol Rev ; 292(1): 37-60, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31631352

RESUMO

Efficient mechanisms of central tolerance, including receptor editing and deletion, prevent highly self-reactive B cell receptors (BCRs) from populating the periphery. Despite this, modest self-reactivity persists in (and may even be actively selected into) the mature B cell repertoire. In this review, we discuss new insights into mechanisms of peripheral B cell tolerance that restrain mature B cells from mounting inappropriate responses to endogenous antigens, and place recent work into historical context. In particular, we discuss new findings that have arisen from application of a novel in vivo reporter of BCR signaling, Nur77-eGFP, expression of which scales with the degree of self-reactivity in both monoclonal and polyclonal B cell repertoires. We discuss new and historical evidence that self-reactivity is not just tolerated, but actively selected into the peripheral repertoire. We review recent progress in understanding how dual expression of the IgM and IgD BCR isotypes on mature naive follicular B cells tunes responsiveness to endogenous antigen recognition, and discuss how this may be integrated with other features of clonal anergy. Finally, we discuss how expression of Nur77 itself couples chronic antigen stimulation with B cell tolerance.


Assuntos
Linfócitos B/imunologia , Anergia Clonal/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Tolerância a Antígenos Próprios/imunologia , Animais , Autoantígenos/imunologia , Linfócitos B/metabolismo , Humanos , Imunoglobulina M/imunologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo
18.
J Biol Chem ; 297(5): 101240, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34571009

RESUMO

The orphan nuclear receptor Nur77 is an immediate-early response gene that based on tissue and cell context is implicated in a plethora of cellular processes, including proliferation, differentiation, apoptosis, metabolism, and inflammation. Nur77 has a ligand-binding pocket that is obstructed by hydrophobic side groups. Naturally occurring, cell-endogenous ligands have not been identified, and Nur77 transcriptional activity is thought to be regulated through posttranslational modification and modulation of protein levels. To determine whether Nur77 is transcriptionally active in hematopoietic cells in vivo, we used an upstream activating sequence (UAS)-GFP transgenic reporter. We found that Nur77 is transcriptionally inactive in vivo in hematopoietic cells under basal conditions, but that activation occurs following cytokine exposure by G-CSF or IL-3. We also identified a series of serine residues required for cytokine-dependent transactivation of Nur77. Moreover, a kinase inhibitor library screen and proximity labeling-based mass spectrometry identified overlapping kinase pathways that physically interacted with Nur77 and whose inhibition abrogated cytokine-induced activation of Nur77. We determined that transcriptional activation of Nur77 by G-CSF or IL-3 requires functional JAK and mTor signaling since their inhibition leads to Nur77 transcriptional inactivation. Thus, intracellular cytokine signaling networks appear to regulate Nur77 transcriptional activity in mouse hematopoietic cells.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Interleucina-3/farmacologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Camundongos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ativação Transcricional/genética
19.
BMC Genomics ; 23(1): 478, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764919

RESUMO

BACKGROUND: In mammals, Imprinting Control Regions (ICRs) regulate a subset of genes in a parent-of-origin-specific manner. In both human and mouse, previous studies identified a set of CpG-rich motifs occurring as clusters in ICRs and germline Differentially Methylated Regions (gDMRs). These motifs consist of the ZFP57 binding site (ZFBS) overlapping a subset of MLL binding units known as MLL morphemes. MLL or MLL1 (Mixed Lineage Leukemia 1) is a relatively large multidomain protein that plays a central role in the regulation of transcription. The structures of both MLL1 and MLL2 include a domain (MT) that binds CpG-rich DNA and a conserved domain (SET) that methylates lysine 4 in histone H3 producing H3K4me3 marks in chromatin. RESULTS: Since genomic imprinting impacts many developmental and key physiological processes, we followed a previous bioinformatics strategy to pinpoint ICR positions in the Bos taurus genome. Initial genome-wide analyses involved finding the positions of ZFP57 binding sites, and the CpG-rich motifs (ZFBS-morph overlaps) along cattle chromosomal DNA. By creating plots displaying the density of ZFBS-morph overlaps, we removed background noise and thus improved signal detection. With the density-plots, we could view the positions of peaks locating known and candidate ICRs in cattle DNA. Our evaluations revealed the correspondence of peaks in plots to reported known and inferred ICRs/DMRs in cattle. Beside peaks pinpointing such ICRs, the density-plots also revealed additional peaks. Since evaluations validated the robustness of our approach, we inferred that the additional peaks may correspond to candidate ICRs for imprinted gene expression. CONCLUSION: Our bioinformatics strategy offers the first genome-wide approach for systematically localizing candidate ICRs. Furthermore, we have tailored our datasets for upload onto the UCSC genome browser so that researchers could find known and candidate ICRs with respect to a wide variety of annotations at all scales: from the positions of Single Nucleotide Polymorphisms (SNPs), to positions of genes, transcripts, and repeated DNA elements. Furthermore, the UCSC genome browser offers tools to produce enlarged views: to uncover the genes in the vicinity of candidate ICRs and thus discover potential imprinted genes for experimental validations.


Assuntos
Metilação de DNA , Estudo de Associação Genômica Ampla , Animais , Bovinos , DNA , Genoma , Impressão Genômica , Mamíferos/genética
20.
Mol Carcinog ; 61(1): 73-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699643

RESUMO

Paraspeckles compound 1 (PSPC1) is a multifunctional protein that plays an important role in cancer cells, where PSPC1 is a master regulator of pro-oncogenic responses that includes activation of TGFß (TGFß1), TGFß-dependent EMT, and metastasis. The pro-oncogenic activities of PSPC1 closely resembled those observed for the orphan nuclear receptor 4A1 (NR4A1, Nur77) and knockdown of NR4A1 decreased expression of PSPC1 in MDA-MB-231 breast, H1299 lung, and SNU449 liver cancer cells. Similar results were observed in these same cell lines after treatment with bisindole-derived (CDIMs) NR4A1 antagonists. Moreover, PSPC1-dependent regulation of TGFß, genes associated with cancer stem cells and epithelial to mesenchymal transition (EMT) were also downregulated after NR4A1 silencing or treatment of breast, lung, and liver cancer cells with CDIM/NR4A1 antagonists. Results of chromatin immunoprecipitation (ChIP) assays suggest that NR4A1 regulates PSPC1 through interaction with an NBRE sequence in the PSPC1 gene promoter. These results coupled with in vivo studies showing that NR4A1 antagonists inhibit breast tumor growth and downregulate PSPC1 in tumors indicate that the pro-oncogenic nuclear PSPC1 factor can be targeted by CDIM/NR4A1 antagonists.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Metano/administração & dosagem , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Células A549 , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Células HCT116 , Células Hep G2 , Humanos , Metano/farmacologia , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Células PC-3 , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA