Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Cell ; 177(5): 1293-1307.e16, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031008

RESUMO

The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.


Assuntos
Hipotálamo/metabolismo , Mesencéfalo/metabolismo , Neurônios/metabolismo , Fases do Sono/fisiologia , Animais , Colecistocinina/metabolismo , Hipotálamo/citologia , Mesencéfalo/citologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Optogenética
2.
Mol Cell ; 81(24): 4979-4993.e7, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34798058

RESUMO

The characteristics of the sleep drivers and the mechanisms through which sleep relieves the cellular homeostatic pressure are unclear. In flies, zebrafish, mice, and humans, DNA damage levels increase during wakefulness and decrease during sleep. Here, we show that 6 h of consolidated sleep is sufficient to reduce DNA damage in the zebrafish dorsal pallium. Induction of DNA damage by neuronal activity and mutagens triggered sleep and DNA repair. The activity of the DNA damage response (DDR) proteins Rad52 and Ku80 increased during sleep, and chromosome dynamics enhanced Rad52 activity. The activity of the DDR initiator poly(ADP-ribose) polymerase 1 (Parp1) increased following sleep deprivation. In both larva zebrafish and adult mice, Parp1 promoted sleep. Inhibition of Parp1 activity reduced sleep-dependent chromosome dynamics and repair. These results demonstrate that DNA damage is a homeostatic driver for sleep, and Parp1 pathways can sense this cellular pressure and facilitate sleep and repair activity.


Assuntos
Comportamento Animal , Encéfalo , Dano ao DNA , Reparo do DNA , Neurônios , Poli(ADP-Ribose) Polimerase-1 , Sono , Proteínas de Peixe-Zebra , Animais , Feminino , Masculino , Animais Geneticamente Modificados , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/enzimologia , Neurônios/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/fisiologia , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38604779

RESUMO

Memory reactivation during sleep is thought to facilitate memory consolidation. Most sleep reactivation research has examined how reactivation of specific facts, objects, and associations benefits their overall retention. However, our memories are not unitary, and not all features of a memory persist in tandem over time. Instead, our memories are transformed, with some features strengthened and others weakened. Does sleep reactivation drive memory transformation? We leveraged the Targeted Memory Reactivation technique in an object category learning paradigm to examine this question. Participants (20 female, 14 male) learned three categories of novel objects, where each object had unique, distinguishing features as well as features shared with other members of its category. We used a real-time EEG protocol to cue the reactivation of these objects during sleep at moments optimized to generate reactivation events. We found that reactivation improved memory for distinguishing features while worsening memory for shared features, suggesting a differentiation process. The results indicate that sleep reactivation does not act holistically on object memories, instead supporting a transformation where some features are enhanced over others.


Assuntos
Eletroencefalografia , Consolidação da Memória , Sono , Humanos , Feminino , Masculino , Sono/fisiologia , Adulto Jovem , Adulto , Consolidação da Memória/fisiologia , Eletroencefalografia/métodos , Memória/fisiologia , Adolescente
4.
Brain ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650060

RESUMO

In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive dysfunction. Epileptic encephalopathies share the trait of spike-wave activation during non-rapid eye movement sleep (EE-SWAS), a sleep stage dominated by sleep spindles, brain oscillations known to coordinate offline memory consolidation. Epileptic activity has been proposed to hijack the circuits driving these thalamocortical oscillations, thereby contributing to cognitive impairment. Using a unique dataset of simultaneous human thalamic and cortical recordings in subjects with and without EE-SWAS, we provide evidence for epileptic spike interference of thalamic sleep spindle production in patients with EE-SWAS. First, we show that epileptic spikes and sleep spindles are both predicted by slow oscillations during stage two sleep (N2), but at different phases of the slow oscillation. Next, we demonstrate that sleep activated cortical epileptic spikes propagate to the thalamus (thalamic spike rate increases after a cortical spike, p≈0). We then show that epileptic spikes in the thalamus increase the thalamic spindle refractory period (p≈0). Finally, we show that in three patients with EE-SWAS, there is a downregulation of sleep spindles for 30 seconds after each thalamic spike (p<0.01). These direct human thalamocortical observations support a proposed mechanism for epileptiform activity to impact cognitive function, wherein epileptic spikes inhibit thalamic sleep spindles in epileptic encephalopathy with spike and wave activation during sleep.

5.
J Neurosci ; 43(35): 6197-6211, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37536983

RESUMO

Alzheimer's disease (AD) increases the risk for seizures and sleep disorders. We show here that germline deletion of ß-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) in neurons, but not in astrocytes, increased epileptiform activity. However, Bace1 deletion at adult ages did not alter the normal EEG waveform, indicating less concern for BACE1 inhibition in patients. Moreover, we showed that deletion of Bace1 in the adult was able to reverse epileptiform activity in 5xFAD mice. Intriguingly, treating 5xFAD and APPNL-G-F/NL-G-F (APP KI) mice of either sex with one BACE1 inhibitor Lanabecestat (AZD3293) dramatically increased epileptiform spiking, likely resulting from an off-target effect. We also monitored sleep-wake pathologies in these mice and showed increased wakefulness, decreased non-rapid eye movement sleep, and rapid eye movement sleep in both 5xFAD and APP KI mice; BACE1 inhibition in the adult 5xFAD mice reversed plaque load and sleep disturbances, but this was not seen in APP KI mice. Further studies with and without BACE1 inhibitor treatment showed different levels of plaque-associated microgliosis and activated microglial proteins in 5xFAD mice compared with APP KI mice. Together, BACE1 inhibition should be developed to avoid off-target effect for achieving benefits in reducing epileptic activity and sleep disturbance in Alzheimer's patients.SIGNIFICANCE STATEMENT BACE1 is widely recognized as a therapeutic target for treating Alzheimer's disease patients. However, BACE1 inhibitors failed in clinical trials because of inability to show cognitive improvement in patients. Here we show that BACE1 inhibition actually reduces sleep disturbances and epileptic seizures; both are seen in AD patients. We further showed that one of clinically tested BACE1 inhibitors does have off-target effects, and development of safer BACE1 inhibitors will be beneficial to AD patients. Results from this study will provide useful guidance for additional drug development.


Assuntos
Doença de Alzheimer , Transtornos do Sono-Vigília , Camundongos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Camundongos Transgênicos , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Placa Amiloide , Convulsões , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/genética , Sono , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
6.
J Neurosci ; 43(48): 8157-8171, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37788939

RESUMO

Sleep is a highly stereotyped phenomenon, requiring robust spatiotemporal coordination of neural activity. Understanding how the brain coordinates neural activity with sleep onset can provide insights into the physiological functions subserved by sleep and the pathologic phenomena associated with sleep onset. We quantified whole-brain network changes in synchrony and information flow during the transition from wakefulness to light non-rapid eye movement (NREM) sleep, using MEG imaging in a convenient sample of 14 healthy human participants (11 female; mean 63.4 years [SD 11.8 years]). We furthermore performed computational modeling to infer excitatory and inhibitory properties of local neural activity. The transition from wakefulness to light NREM was identified to be encoded in spatially and temporally specific patterns of long-range synchrony. Within the delta band, there was a global increase in connectivity from wakefulness to light NREM, which was highest in frontoparietal regions. Within the theta band, there was an increase in connectivity in fronto-parieto-occipital regions and a decrease in temporal regions from wakefulness to Stage 1 sleep. Patterns of information flow revealed that mesial frontal regions receive hierarchically organized inputs from broad cortical regions upon sleep onset, including direct inflow from occipital regions and indirect inflow via parieto-temporal regions within the delta frequency band. Finally, biophysical neural mass modeling demonstrated changes in the anterior-to-posterior distribution of cortical excitation-to-inhibition with increased excitation-to-inhibition model parameters in anterior regions in light NREM compared with wakefulness. Together, these findings uncover whole-brain corticocortical structure and the orchestration of local and long-range, frequency-specific cortical interactions in the sleep-wake transition.SIGNIFICANCE STATEMENT Our work uncovers spatiotemporal cortical structure of neural synchrony and information flow upon the transition from wakefulness to light non-rapid eye movement sleep. Mesial frontal regions were identified to receive hierarchically organized inputs from broad cortical regions, including both direct inputs from occipital regions and indirect inputs via the parieto-temporal regions within the delta frequency range. Biophysical neural mass modeling revealed a spatially heterogeneous, anterior-posterior distribution of cortical excitation-to-inhibition. Our findings shed light on the orchestration of local and long-range cortical neural structure that is fundamental to sleep onset, and support an emerging view of cortically driven regulation of sleep homeostasis.


Assuntos
Eletroencefalografia , Vigília , Humanos , Feminino , Vigília/fisiologia , Eletroencefalografia/métodos , Movimentos Oculares , Fases do Sono/fisiologia , Sono/fisiologia
7.
Semin Cell Dev Biol ; 125: 91-100, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33712366

RESUMO

Sleep requires that we disconnect from the environment, losing the ability to promptly respond to stimuli. There must be at least one essential function that justifies why we take this risk every day, and that function must depend on the brain being offline. We have proposed that this function is to renormalize synaptic weights after learning has led to a net increase in synaptic strength in many brain circuits. Without this renormalization, synaptic activity would become energetically too expensive and saturation would prevent new learning. There is converging evidence from molecular, electrophysiological, and ultrastructural experiments showing a net increase in synaptic strength after the major wake phase, and a net decline after sleep. The evidence also suggests that sleep-dependent renormalization is a smart process of synaptic down-selection, comprehensive and yet specific, which could explain the many beneficial effects of sleep on cognition. Recently, a key molecular mechanism that allows broad synaptic weakening during sleep was identified. Other mechanisms still being investigated should eventually explain how sleep can weaken most synapses but afford protection to some, including those directly activated by learning. That synaptic down-selection takes place during sleep is by now established; why it should take place during sleep has a plausible explanation; how it happens is still work in progress.


Assuntos
Sono , Sinapses , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos , Aprendizagem , Sono/fisiologia , Sinapses/fisiologia
8.
J Neurosci Res ; 102(4): e25325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562056

RESUMO

Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.


Assuntos
Eletroencefalografia , Sono de Ondas Lentas , Humanos , Eletroencefalografia/métodos , Sono de Ondas Lentas/fisiologia , Sono/fisiologia , Fases do Sono/fisiologia , Polissonografia
9.
Neurobiol Learn Mem ; 213: 107957, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964599

RESUMO

This study investigated the effects of diurnal nap in the recognition memory for faces in habitual nappers. Thirty volunteers with habitual midday napping (assigned as the sleep group) and 28 non-nappers (assigned as the wake group) participated in this study. Participants were instructed to memorize faces, and subsequently to perform two recognition tasks before and after nap/wakefulness, i.e., an immediate recognition and a delayed recognition. There were three experimental conditions: same faces with the same view angle (S-S condition); same faces with a different view angle (22.5°) (S-D condition); and novel faces (NF condition). A mixed repeated-measures ANOVA revealed that the sleep group exhibited significantly longer reaction times (RT) following their nap compared to those of the wake group; no significant between-group differences were observed in accuracy or sensitivity (d'). Furthermore, both groups were more conservative in the delayed recognition task compared to the immediate recognition task, but the sleep group was more conservative after their nap (vs pre-nap), reflected by the criterion (ß, Ohit/Ofalse alarm). Further stepwise regression analysis revealed a positive relationship between duration of stage N3 sleep and normalized RT difference before/after nap on the S-S condition. These findings suggest that an immediate nap following face learning is associated with memory reorganization during N3 sleep in habitual nappers, rendering the memories not readily accessible.

10.
J Sleep Res ; : e14134, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196146

RESUMO

The circuitry underlying the initiation, maintenance, and coordination of wakefulness, rapid eye movement sleep, and non-rapid eye movement sleep is not thoroughly understood. Sleep is thought to arise due to decreased activity in the ascending reticular arousal system, which originates in the brainstem and awakens the thalamus and cortex during wakefulness. Despite the conventional association of sleep-wake states with hippocampal rhythms, the mutual influence of the hippocampal formation in regulating vigilance states has been largely neglected. Here, we focus on the subiculum, the main output region of the hippocampal formation. The subiculum, particulary the ventral part, sends extensive monosynaptic projections to crucial regions implicated in sleep-wake regulation, including the thalamus, lateral hypothalamus, tuberomammillary nucleus, basal forebrain, ventrolateral preoptic nucleus, ventrolateral tegmental area, and suprachiasmatic nucleus. Additionally, second-order projections from the subiculum are received by the laterodorsal tegmental nucleus, locus coeruleus, and median raphe nucleus, suggesting the potential involvement of the subiculum in the regulation of the sleep-wake cycle. We also discuss alterations in the subiculum observed in individuals with sleep disorders and in sleep-deprived mice, underscoring the significance of investigating neuronal communication between the subiculum and pathways promoting both sleep and wakefulness.

11.
J Sleep Res ; 33(1): e13963, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37318087

RESUMO

Restless sleep disorder (RSD) is an important sleep disorder characterised by the presence of frequent large muscle movements (LMM) during sleep, which may be comorbid to other conditions/diseases. In this study, we investigated the frequency and the characteristics of RSD among children who were evaluated by polysomnography (PSG) due to epileptic and non-epileptic nocturnal attacks. We analysed consecutively children younger than 18 years who were referred for PSG recording due to abnormal motor activities during sleep. The diagnosis of nocturnal events as sleep-related epilepsy was made based on the current consensus. Patients who were referred with suspicion of sleep-related epilepsy, but who were diagnosed to have non-epileptic nocturnal events and children with a definitive diagnosis of NREM sleep parasomnias were also enrolled. Sixty-two children were analysed in this study (17 children with sleep-related epilepsy, 20 children with NREM parasomnia, and 25 children with nocturnal events not otherwise classified [neNOS]). The mean number of LMM, LMM index, LMM-associated with arousal and its index were all significantly higher in children with sleep-related epilepsy. Restless sleep disorder was present in 47.1% of patients with epilepsy, 25% of patients with parasomnia, and in 20% of patients with neNOS. The mean A3 duration and the A3 index were higher in children with sleep-related epilepsy and RSD compared with those with parasomnia and restless sleep disorder. Patients with RSD had lower ferritin levels than those without RSD in all subgroups. Our study demonstrates a high prevalence of restless sleep disorder in children with sleep-related epilepsy, associated with an increased cyclic alternating pattern.


Assuntos
Epilepsia , Parassonias , Transtornos Intrínsecos do Sono , Transtornos do Sono-Vigília , Criança , Humanos , Sono/fisiologia , Polissonografia , Parassonias/complicações , Parassonias/epidemiologia , Epilepsia/complicações , Epilepsia/epidemiologia , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/epidemiologia
12.
Brain Topogr ; 37(2): 312-328, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37253955

RESUMO

The majority of EEG microstate analyses concern wakefulness, and the existing sleep studies have focused on changes in spatial microstate properties and on microstate transitions between adjacent time points, the shortest available time scale. We present a more extensive time series analysis of unsmoothed EEG microstate sequences in wakefulness and non-REM sleep stages across many time scales. Very short time scales are assessed with Markov tests, intermediate time scales by the entropy rate and long time scales by a spectral analysis which identifies characteristic microstate frequencies. During the descent from wakefulness to sleep stage N3, we find that the increasing mean microstate duration is a gradual phenomenon explained by a continuous slowing of microstate dynamics as described by the relaxation time of the transition probability matrix. The finite entropy rate, which considers longer microstate histories, shows that microstate sequences become more predictable (less random) with decreasing vigilance level. Accordingly, the Markov property is absent in wakefulness but in sleep stage N3, 10/19 subjects have microstate sequences compatible with a second-order Markov process. A spectral microstate analysis is performed by comparing the time-lagged mutual information coefficients of microstate sequences with the autocorrelation function of the underlying EEG. We find periodic microstate behavior in all vigilance states, linked to alpha frequencies in wakefulness, theta activity in N1, sleep spindle frequencies in N2, and in the delta frequency band in N3. In summary, we show that EEG microstates are a dynamic phenomenon with oscillatory properties that slow down in sleep and are coupled to specific EEG frequencies across several sleep stages.


Assuntos
Eletroencefalografia , Vigília , Humanos , Sono , Fases do Sono , Cadeias de Markov , Encéfalo
13.
Cereb Cortex ; 33(9): 5409-5419, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36336346

RESUMO

Sleep spindles (SP) are one of the few known electrophysiological neuronal biomarkers of interindividual differences in cognitive abilities and aptitudes. Recent simultaneous electroencephalography with functional magnetic resonance imaging (EEG-fMRI) studies suggest that the magnitude of the activation of brain regions recruited during spontaneous spindle events is specifically related to Reasoning abilities. However, it is not known if the relationship with cognitive abilities differs between uncoupled spindles, uncoupled slow waves (SW), and coupled SW-SP complexes, nor have the functional-neuroanatomical substrates that support this relationship been identified. Here, we investigated the functional significance of activation of brain areas recruited during SW-coupled spindles, uncoupled spindles, and uncoupled slow waves. We hypothesize that brain activations time locked to SW-coupled spindle complexes will be primarily associated to Reasoning abilities, especially in subcortical areas. Our results provide direct evidence that the relationship between Reasoning abilities and sleep spindles depends on spindle coupling status. Specifically, we found that the putamen and thalamus, recruited during coupled SW-SP events were positively correlated with Reasoning abilities. In addition, we found a negative association between Reasoning abilities and hippocampal activation time-locked to uncoupled SWs that might reflect a refractory mechanism in the absence of new, intensive hippocampal-dependent memory processing.


Assuntos
Sono de Ondas Lentas , Sono/fisiologia , Eletroencefalografia/métodos , Cognição , Encéfalo/fisiologia
14.
Cereb Cortex ; 33(6): 3026-3042, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764255

RESUMO

Ventromedial prefrontal cortex (vmPFC) processes many critical brain functions, such as decision-making, value-coding, thinking, and emotional arousal/recognition, but whether vmPFC plays a role in sleep-wake promotion circuitry is still unclear. Here, we find that photoactivation of dorsomedial hypothalamus (DMH)-projecting vmPFC neurons, their terminals, or their postsynaptic DMH neurons rapidly switches non-rapid eye movement (NREM) but not rapid eye movement sleep to wakefulness, which is blocked by photoinhibition of DMH outputs in lateral hypothalamus (LHs). Chemoactivation of DMH glutamatergic but not GABAergic neurons innervated by vmPFC promotes wakefulness and suppresses NREM sleep, whereas chemoinhibition of vmPFC projections in DMH produces opposite effects. DMH-projecting vmPFC neurons are inhibited during NREM sleep and activated during wakefulness. Thus, vmPFC neurons innervating DMH likely represent the first identified set of cerebral cortical neurons for promotion of physiological wakefulness and suppression of NREM sleep.


Assuntos
Sono REM , Sono , Sono/fisiologia , Sono REM/fisiologia , Nível de Alerta , Vigília/fisiologia , Neurônios GABAérgicos/fisiologia
15.
Cereb Cortex ; 33(9): 5238-5250, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36376911

RESUMO

Previous studies have shown that modulating neural activity can affect rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. Low-intensity transcranial ultrasound stimulation (TUS) can effectively modulate neural activity. However, the modulation effect of TUS on REM and NREM sleep is still unclear. In this study, we used ultrasound to stimulate motor cortex and hippocampus, respectively, and found the following: (i) In healthy mice, TUS increased the NREM sleep ratio and decreased the REM sleep ratio, and altered the relative power and sample entropy of the delta band and spindle in NREM sleep and that of the theta and gamma bands in REM sleep. (ii) In sleep-deprived mice, TUS decreased the ratio of REM sleep or the relative power of the theta band during REM sleep. (iii) In sleep-disordered Alzheimer's disease (AD) mice, TUS increased the total sleep time and the ratio of NREM sleep and modulated the relative power and the sample entropy of the delta and spindle bands during NREM and that of the theta band during REM sleep. These results demonstrated that TUS can effectively modulate REM and NREM sleep and that modulation effect depends on the sleep state of the samples, and can improve sleep in sleep-disordered AD mice.


Assuntos
Sono REM , Sono de Ondas Lentas , Camundongos , Animais , Sono REM/fisiologia , Eletroencefalografia/métodos , Sono/fisiologia , Sono de Ondas Lentas/fisiologia , Hipocampo/fisiologia
16.
Sleep Breath ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755507

RESUMO

STUDY OBJECTIVES: The International Classification of Sleep Disorders categorized catathrenia as a respiratory disorder, but there are doubts whether episodes appear during rapid eye movement (REM) sleep or the non-rapid eye movement (NREM), their duration, and symptoms. The main objectives were to identify the most common features and relations of catathrenia. METHODS: PubMed, Embase, and Web of Science were searched according to the PRISMA 2020 guidelines. The Joanna Briggs Institute and the ROBINS-I tools were chosen to assess the risk of bias. RESULTS: A total of 288 records were identified, 31 articles were included. The majority of the studies had a moderate risk of bias. 49.57% of episodes occurred during the NREM sleep, while 46% took place during REM. In 60.34% females, catathrenia was more common in the NREM, while in 59.26% of males was in REM sleep (p < 0.05). Females and obese individuals were found to have shorter episodes (p < 0.05). Age was inversely correlated with minimal episodes duration (r = - 0.34). The continuous positive airway pressure (CPAP) therapy was inversely correlated with the maximal episode duration (r = - 0.48). CONCLUSIONS: Catathrenia occurs with similar frequency in both genders. The most frequent symptoms embraced groaning, awareness of disturbing bedpartners, and daytime somnolence-not confirmed by the Epworth Sleepiness Scale. The episodes occur more frequently in NREM than in REM sleep. Catathrenia may be considered as a sex-specific condition. The effects of CPAP treatment leading to shortening episodes duration, which may indicate the respiratory origin of catathrenia.

17.
Fish Physiol Biochem ; 50(2): 827-842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150068

RESUMO

Sleep is a globally observable fact, or period of reversible distracted rest, that can be distinguished from arousal by various behavioral criteria. Although the function of sleep is an evolutionarily conserved behavior, its mechanism is not yet clear. The zebrafish (Danio rerio) has become a valuable model for neurobehavioral studies such as studying learning, memory, anxiety, and depression. It is characterized by a sleep-like state and circadian rhythm, making it comparable to mammals. Zebrafish are a good model for behavioral studies because they share genetic similarities with humans. A number of neurotransmitters are involved in sleep and wakefulness. There is a binding between melatonin and the hypocretin system present in zebrafish. The full understanding of sleep and wakefulness physiology in zebrafish is still unclear among researchers. Therefore, to make a clear understanding of the sleep/wake cycle in zebrafish, this article covers the mechanism involved behind it, and the role of the neuromodulator system followed by the mechanism of the HPA axis.


Assuntos
Pesquisa Biomédica , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/fisiologia , Vigília/fisiologia , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Sono/fisiologia , Ritmo Circadiano/fisiologia , Orexinas , Modelos Teóricos , Mamíferos
18.
J Neurosci ; 42(27): 5389-5409, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35649726

RESUMO

The lateral preoptic (LPO) hypothalamus is a center for NREM and REM sleep induction and NREM sleep homeostasis. Although LPO is needed for NREM sleep, we found that calcium signals were, surprisingly, highest in REM sleep. Furthermore, and equally surprising, NMDA receptors in LPO were the main drivers of excitation. Deleting the NMDA receptor GluN1 subunit from LPO abolished calcium signals in all cells and produced insomnia. Mice of both sexes had highly fragmented NREM sleep-wake patterns and could not generate conventionally classified REM sleep. The sleep phenotype produced by deleting NMDA receptors depended on where in the hypothalamus the receptors were deleted. Deleting receptors from the anterior hypothalamic area (AHA) did not influence sleep-wake states. The sleep fragmentation originated from NMDA receptors on GABA neurons in LPO. Sleep fragmentation could be transiently overcome with sleeping medication (zolpidem) or sedatives (dexmedetomidine; Dex). By contrast, fragmentation persisted under high sleep pressure produced by sleep deprivation (SD), mice had a high propensity to sleep but woke up. By analyzing changes in δ power, sleep homeostasis (also referred to as "sleep drive") remained intact after NMDA receptor ablation. We suggest NMDA glutamate receptor activation stabilizes firing of sleep-on neurons and that mechanisms of sleep maintenance differ from that of the sleep drive itself.SIGNIFICANCE STATEMENT Insomnia is a common affliction. Most insomniacs feel that they do not get enough sleep, but in fact, often have good amounts of sleep. Their sleep, however, is fragmented, and sufferers wake up feeling unrefreshed. It is unknown how sleep is maintained once initiated. We find that in mice, NMDA-type glutamate receptors in the hypothalamus are the main drivers of excitation and are required for a range of sleep properties: they are, in fact, needed for both sustained NREM sleep periods, and REM sleep generation. When NMDA receptors are selectively reduced from inhibitory preoptic (PO) neurons, mice have normal total amounts of sleep but high sleep-wake fragmentation, providing a model for studying intractable insomnia.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Sono REM , Animais , Cálcio , Eletroencefalografia , Feminino , Hipotálamo , Masculino , Camundongos , N-Metilaspartato , Receptores de N-Metil-D-Aspartato , Sono/fisiologia , Privação do Sono , Sono REM/fisiologia , Vigília/fisiologia
19.
Neuroimage ; 266: 119823, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535322

RESUMO

Sleep regulation and functioning may rely on systematic coordination throughout the whole brain, including the cerebellum. However, whether and how interactions between the cerebellum and other brain regions vary across sleep stages remain poorly understood. Here, using simultaneous EEG-fMRI recordings captured from 73 participants during wakefulness and non-rapid eye movement (NREM) sleep, we constructed cerebellar connectivity among intrinsic functional networks with intra-cerebellar, neocortical and subcortical regions. We uncovered that cerebellar connectivity exhibited sleep-dependent alterations: slight differences between wakefulness and N1/N2 sleep and greater changes in N3 sleep than other states. Region-specific cerebellar connectivity changes between N2 sleep and N3 sleep were also revealed: general breakdown of intra-cerebellar connectivity, enhancement of limbic-cerebellar connectivity and alterations of cerebellar connectivity with spatially specific neocortices. Further correlation analysis showed that functional connectivity between the cerebellar Control II network and regions (including the insula, hippocampus, and amygdala) correlated with delta power during N3 and beta power during N2 sleep. These findings systematically reveal altered cerebellar connectivity among intrinsic networks from wakefulness to deep sleep and highlight the potential role of the cerebellum in sleep regulation and functioning.


Assuntos
Neocórtex , Vigília , Humanos , Vigília/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Encéfalo/fisiologia , Sono/fisiologia , Fases do Sono/fisiologia , Cerebelo/diagnóstico por imagem
20.
Neurobiol Dis ; 184: 106222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419254

RESUMO

Either hypertension or chronic insomnia is the risk factor of developing vascular dementia. Durative hypertension can induce vascular remodeling and is used for modeling small vessel disease in rodents. It remains undetermined if the combination of hypertension and sleep disturbance exacerbates vascular dysfunction or pathologies. Previously, we found chronic sleep fragmentation (SF) dampened cognition in young mice without disease predispositions. In the current study, we superimposed SF with hypertension modeling in young mice. Angiotensin II (AngII)-releasing osmotic mini pumps were subcutaneously implanted to generate persistent hypertension, while sham surgeries were performed as controls. Sleep fragmentation with repetitive arousals (10 s every 2 min) during light-on 12 h for consecutive 30 days, while mice undergoing normal sleep (NS) processes were set as controls. Sleep architectures, whisker-stimulated cerebral blood flow (CBF) changes, vascular responsiveness as well as vascular pathologies were compared among normal sleep plus sham (NS + sham), SF plus sham (SF + sham), normal sleep plus AngII (NS + AngII), and SF plus AngII (SF + AngII) groups. SF and hypertension both alter sleep structures, particularly suppressing REM sleep. SF no matter if combined with hypertension strongly suppressed whisker-stimulated CBF increase, suggesting the tight association with cognitive decline. Hypertension modeling sensitizes vascular responsiveness toward a vasoactive agent, Acetylcholine (ACh, 5 mg/ml, 10 µl) delivered via cisterna magna infusion, while SF exhibits a similar but much milder effect. None of the modeling above was sufficient to induce arterial or arteriole vascular remodeling, but SF or SF plus hypertension increased vascular network density constructed by all categories of cerebral vessels. The current study would potentially help understand the pathogenesis of vascular dementia, and the interconnection between sleep and vascular health.


Assuntos
Demência Vascular , Hipertensão , Camundongos , Animais , Pressão Sanguínea , Sono REM , Privação do Sono/complicações , Remodelação Vascular , Hipertensão/complicações , Hipertensão/patologia , Angiotensina II/farmacologia , Acetilcolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA