Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177924

RESUMO

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Assuntos
COVID-19 , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2
2.
Proc Natl Acad Sci U S A ; 120(31): e2305674120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487098

RESUMO

SARS-CoV-2, the causative agent of COVID-19 encodes at least 16 nonstructural proteins of variably understood function. Nsp3, the largest nonstructural protein contains several domains, including a SARS-unique domain (SUD), which occurs only in Sarbecovirus. The SUD has a role in preferentially enhancing viral translation. During isolation of mouse-adapted SARS-CoV-2, we isolated an attenuated virus that contained a single mutation in a linker region of nsp3 (nsp3-S676T). The S676T mutation decreased virus replication in cultured cells and primary human cells and in mice. Nsp3-S676T alleviated the SUD translational enhancing ability by decreasing the interaction between two translation factors, Paip1 and PABP1. We also identified a compensatory mutation in the nucleocapsid (N) protein (N-S194L) that restored the virulent phenotype, without directly binding to SUD. Together, these results reveal an aspect of nsp3-N interactions, which impact both SARS-CoV-2 replication and, consequently, pathogenesis.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Animais , Camundongos , SARS-CoV-2 , Virulência , Mutação
3.
J Virol ; 98(4): e0157523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38483167

RESUMO

As for all single-stranded, positive-sense RNA (+RNA) viruses, intracellular RNA synthesis relies on extensive remodeling of host cell membranes that leads to the formation of specialized structures. In the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus causing COVID-19, endoplasmic reticulum membranes are modified, resulting in the formation of double-membrane vesicles (DMVs), which contain the viral dsRNA intermediate and constitute membrane-bound replication organelles. The non-structural and transmembrane protein nsp3 is a key player in the biogenesis of DMVs and, therefore, represents an interesting antiviral target. However, as an integral transmembrane protein, it is challenging to express for structural biology. The C-terminus of nsp3 encompasses all the membrane-spanning, -interacting, and -remodeling elements. By using a cell-free expression system, we successfully produced the C-terminal region of nsp3 (nsp3C) and reconstituted purified nsp3C into phospholipid nanodiscs, opening the way for structural studies. Negative-stain transmission electron microscopy revealed the presence of nsp3C oligomers very similar to the region abutting and spanning the membrane on the cytosolic side of DMVs in a recent subtomogram average of the SARS-CoV-2 nsp3-4 pore (1). AlphaFold-predicted structural models fit particularly well with our experimental data and support a pore-forming hexameric assembly. Altogether, our data give unprecedented clues to understand the structural organization of nsp3, the principal component that shapes the molecular pore that spans the DMVs and is required for the export of RNA in vivo. IMPORTANCE: Membrane remodeling is at the heart of intracellular replication for single-stranded, positive-sense RNA viruses. In the case of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this leads to the formation of a network of double-membrane vesicles (DMVs). Targeting DMV biogenesis offers promising prospects for antiviral therapies. This requires a better understanding of the molecular mechanisms and proteins involved. Three non-structural proteins (nsp3, nsp4, and nsp6) direct the intracellular membrane rearrangements upon SARS-CoV-2 infection. All of them contain transmembrane helices. The nsp3 component, the largest and multi-functional protein of the virus, plays an essential role in this process. Aiming to understand its structural organization, we used a cell-free protein synthesis assay to produce and reconstitute the C-terminal part of nsp3 (nsp3C) including transmembrane domains into phospholipid nanodiscs. Our work reveals the oligomeric organization of one key player in the biogenesis of SARS-CoV-2 DMVs, providing basis for the design of future antiviral strategies.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais , Humanos , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , COVID-19/virologia , Retículo Endoplasmático/metabolismo , Fosfolipídeos , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
4.
J Virol ; 97(11): e0097923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902397

RESUMO

IMPORTANCE: Our study highlights the mechanisms behind the cell's resistance to stress granule (SG) formation after infection with Old World alphaviruses. Shortly after infection, the replication of these viruses hinders the cell's ability to form SGs, even when exposed to chemical inducers such as sodium arsenite. This resistance is primarily attributed to virus-induced transcriptional and translational shutoffs, rather than interactions between the viral nsP3 and the key components of SGs, G3BP1/2, or the ADP-ribosylhydrolase activity of nsP3 macro domain. While interactions between G3BPs and nsP3 are essential for the formation of viral replication complexes, their role in regulating SG development appears to be small, if any. Cells harboring replicating viruses or replicons with lower abilities to inhibit transcription and/or translation, but expressing wild-type nsP3, retain the ability for SG development. Understanding these mechanisms of regulation of SG formation contributes to our knowledge of viral replication and the intricate relationships between alphaviruses and host cells.


Assuntos
Alphavirus , DNA Helicases , Interações entre Hospedeiro e Microrganismos , Biossíntese de Proteínas , Grânulos de Estresse , Transcrição Gênica , Alphavirus/fisiologia , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Replicon , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Grânulos de Estresse/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
5.
J Virol ; 97(10): e0050723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37768083

RESUMO

IMPORTANCE: Generation of virus-host protein-protein interactions (PPIs) maps may provide clues to uncover SARS-CoV-2-hijacked cellular processes. However, these PPIs maps were created by expressing each viral protein singularly, which does not reflect the life situation in which certain viral proteins synergistically interact with host proteins. Our results reveal the host-viral protein-protein interactome of SARS-CoV-2 NSP3, NSP4, and NSP6 expressed individually or in combination. Furthermore, REEP5/TRAM1 complex interacts with NSP3 at ROs and promotes viral replication. The significance of our research is identifying virus-host interactions that may be targeted for therapeutic intervention.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus , Interações entre Hospedeiro e Microrganismos , Glicoproteínas de Membrana , Proteínas de Membrana , Proteínas de Membrana Transportadoras , SARS-CoV-2 , Replicação Viral , Humanos , COVID-19/virologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo
6.
Virol J ; 21(1): 55, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449001

RESUMO

Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Paquistão/epidemiologia , Pandemias , Virulência/genética , Aminoácidos , Poliproteínas , Variação Genética
7.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543042

RESUMO

SARS-CoV, an RNA virus, is contagious and displays a remarkable degree of adaptability, resulting in intricate disease presentations marked by frequent genetic mutations that can ultimately give rise to drug resistance. Targeting its viral replication cycle could be a potential therapeutic option to counter its viral growth in the human body leading to the severe infectious stage. The Mpro of SARS-CoV-2 is a promising target for therapeutic development as it is crucial for viral transcription and replication. The derivatives of ß-diketone and coumarin have already been reported for their antiviral potential and, thus, are considered as a potential scaffold in the current study for the computational design of potential analogs for targeting the viral replication of SARS-CoV-2. In our study, we used novel diketone-hinged coumarin derivatives against the SARS-CoV-2 MPro to develop a broad-spectrum antiviral agent targeting SARS-CoV-2. Through an analysis of pharmacokinetics and docking studies, we identified a list of the top 10 compounds that demonstrated effectiveness in inhibiting the SARS-CoV-2 MPro virus. On the basis of the pharmacokinetics and docking analyses, the top 5 novel coumarin analogs were synthesized and characterized. The thermodynamic stability of compounds KS82 and KS94 was confirmed by their molecular dynamics, and the stability of the simulated system indicated their inhibitory nature. Molecules KS82 and KS94 were further evaluated for their anti-viral potential using Vero E6 cells followed by RT-PCR assay against SARS-CoV-2. The test compound KS82 was the most active with the potential to inhibit SARS-CoV-2 replication in Vero E6 cells. These data indicate that KS82 prevents the attack of the virus and emerges as the primary candidate with promising antiviral properties.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cumarínicos/farmacologia , Bioensaio , Cetonas , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases , Simulação de Dinâmica Molecular
8.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37862073

RESUMO

Chikungunya virus (CHIKV) is an alphavirus, transmitted by Aedes species mosquitoes. The CHIKV single-stranded positive-sense RNA genome contains two open reading frames, coding for the non-structural (nsP) and structural proteins of the virus. The non-structural polyprotein precursor is proteolytically cleaved to generate nsP1-4. Intriguingly, most isolates of CHIKV (and other alphaviruses) possess an opal stop codon close to the 3' end of the nsP3 coding sequence and translational readthrough is necessary to produce full-length nsP3 and the nsP4 RNA polymerase. Here we investigate the role of this stop codon by replacing the arginine codon with each of the three stop codons in the context of both a subgenomic replicon and infectious CHIKV. Both opal and amber stop codons were tolerated in mammalian cells, but the ochre was not. In mosquito cells all three stop codons were tolerated. Using SHAPE analysis we interrogated the structure of a putative stem loop 3' of the stop codon and used mutagenesis to probe the importance of a short base-paired region at the base of this structure. Our data reveal that this stem is not required for stop codon translational readthrough, and we conclude that other factors must facilitate this process to permit productive CHIKV replication.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Vírus Chikungunya/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Febre de Chikungunya/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Mamíferos/genética , Mamíferos/metabolismo
9.
J Virol ; 96(14): e0048822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758692

RESUMO

Species A rotavirus (RVA) vaccines based on live attenuated viruses are used worldwide in humans. The recent establishment of a reverse genetics system for rotoviruses (RVs) has opened the possibility of engineering chimeric viruses expressing heterologous peptides from other viral or microbial species in order to develop polyvalent vaccines. We tested the feasibility of this concept by two approaches. First, we inserted short SARS-CoV-2 spike peptides into the hypervariable region of the simian RV SA11 strain viral protein (VP) 4. Second, we fused the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, or the shorter receptor binding motif (RBM) nested within the RBD, to the C terminus of nonstructural protein (NSP) 3 of the bovine RV RF strain, with or without an intervening Thosea asigna virus 2A (T2A) peptide. Mutating the hypervariable region of SA11 VP4 impeded viral replication, and for these mutants, no cross-reactivity with spike antibodies was detected. To rescue NSP3 mutants, we established a plasmid-based reverse genetics system for the bovine RV RF strain. Except for the RBD mutant that demonstrated a rescue defect, all NSP3 mutants delivered endpoint infectivity titers and exhibited replication kinetics comparable to that of the wild-type virus. In ELISAs, cell lysates of an NSP3 mutant expressing the RBD peptide showed cross-reactivity with a SARS-CoV-2 RBD antibody. 3D bovine gut enteroids were susceptible to infection by all NSP3 mutants, but cross-reactivity with SARS-CoV-2 RBD antibody was only detected for the RBM mutant. The tolerance of large SARS-CoV-2 peptide insertions at the C terminus of NSP3 in the presence of T2A element highlights the potential of this approach for the development of vaccine vectors targeting multiple enteric pathogens simultaneously. IMPORTANCE We explored the use of rotaviruses (RVs) to express heterologous peptides, using SARS-CoV-2 as an example. Small SARS-CoV-2 peptide insertions (<34 amino acids) into the hypervariable region of the viral protein 4 (VP4) of RV SA11 strain resulted in reduced viral titer and replication, demonstrating a limited tolerance for peptide insertions at this site. To test the RV RF strain for its tolerance for peptide insertions, we constructed a reverse genetics system. NSP3 was C-terminally tagged with SARS-CoV-2 spike peptides of up to 193 amino acids in length. With a T2A-separated 193 amino acid tag on NSP3, there was no significant effect on the viral rescue efficiency, endpoint titer, and replication kinetics. Tagged NSP3 elicited cross-reactivity with SARS-CoV-2 spike antibodies in ELISA. We highlight the potential for development of RV vaccine vectors targeting multiple enteric pathogens simultaneously.


Assuntos
Genética Reversa , Rotavirus , Glicoproteína da Espícula de Coronavírus , Desenvolvimento de Vacinas , Aminoácidos/metabolismo , Animais , Anticorpos Antivirais/metabolismo , COVID-19/virologia , Epitopos/genética , Epitopos/metabolismo , Humanos , Microrganismos Geneticamente Modificados , Rotavirus/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Desenvolvimento de Vacinas/métodos
10.
J Virol ; 96(21): e0127822, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36226983

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. In infected cells, its positive-sense RNA genome is translated into polyproteins that are subsequently processed into four nonstructural proteins (nsP1 to 4), the virus-encoded subunits of the RNA replicase. However, for RNA replication, interactions between nsPs and host proteins are also needed. These interactions are mostly mediated through the intrinsically disordered C-terminal hypervariable domain (HVD) in nsP3. Duplicate FGDF motifs in the HVD are required for interaction with mammalian RasGAP SH3-binding proteins (G3BPs) and their mosquito homolog Rin; these interactions are crucial for CHIKV RNA replication. In this study, we inactivated G3BP/Rin-binding motifs in the HVD and inserted peptides containing either native or inactivated G3BP/Rin-binding motifs into flexible regions of nsP1, nsP2, or nsP4. Insertion of native motifs into nsP1 or nsP2 but not into the C terminus of nsP4 activated CHIKV RNA replication in human cells in a G3BP-dependent manner. In mosquito cells, activation also resulted from the insertion of inactive motifs after residue 8 or 466 in nsP2; however, the effect was significantly larger when the inserted sequence contained native motifs. Nonetheless, CHIKV mutants harboring mutations in the HVD and containing insertions of native motifs in nsP2 were not viable in mosquito cells. In contrast, mutant genomes containing native motifs after residue 466 or 618 in nsP2 replicated in BHK-21 cells, with the latter mutant forming infectious progeny. Thus, the binding of G3BPs to nsP2 can support CHIKV RNA replication and restore the infectivity of viruses lacking G3BP-binding motifs in the HVD of nsP3. IMPORTANCE CHIKV is a reemerging alphavirus that has spread throughout more than 60 countries and is the causative agent of chikungunya fever. No approved drugs or vaccines are available for the treatment or prevention of CHIKV infection. CHIKV replication depends on the ability of its replicase proteins to interact with host cell factors, and a better understanding of host cell factor roles in viral infection will increase our understanding of CHIKV RNA replication and provide new strategies for viral infection attenuation. Here, we demonstrate that the motifs required for the binding of host G3BP/Rin proteins remain functional when transferred from their natural location in nsP3 to different replicase proteins and may enable mutant viruses to complete a full replication cycle. To our knowledge, this is the first demonstration of interaction motifs for crucial host factors being successfully transferred from one replicase protein to another subunit of alphavirus replicase.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Culicidae , Animais , Humanos , Vírus Chikungunya/fisiologia , Culicidae/metabolismo , Mamíferos/genética , RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Sítios de Ligação
11.
J Med Virol ; 95(6): e28832, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37264691

RESUMO

The protein activator of protein kinase R (PKR) (PACT) has been shown to play a crucial role in stimulating the host antiviral response through the activation of PKR, retinoic acid-inducible gene I, and melanoma differentiation-associated protein 5. Whether PACT can inhibit viral replication independent of known mechanisms is still unrevealed. In this study, we show that, like many viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks GSK-3ß to facilitate its replication. GSK-3ß-induced phosphorylation on N protein increased the interaction between N protein and nsp3. Thus, GSK-3ß-N-nsp3 cascade promotes viral replication. Although SARS-CoV-2 can sabotage the activation of AKT, the upstream proteins suppressing the activation of GSK-3ß, we found that the host can use PACT, another protein kinase, instead of AKT to decrease the activity of GSK-3ß and the interaction between PACT and GSK-3ß is enhanced upon viral infection. Moreover, PACT inhibited the activity of GSK-3ß independent of its well-studied double-stranded RNA binding and PKR activating ability. In summary, this study identified an unknown function of PACT in inhibiting SARS-CoV-2 replication through the blockage of GSK-3ß-N-nsp3 cascade.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , SARS-CoV-2/metabolismo , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação
12.
Mol Divers ; 27(2): 635-649, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35538380

RESUMO

The coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is affecting human life in an unprecedented manner and has become a global public health emergency. Identification of novel inhibitors of viral infection/replication is the utmost priority to curtail COVID-19 progression. A pre-requisite for such inhibitors is good bioavailability, non-toxicity and serum stability. Computational studies have shown that curcumin can be a candidate inhibitor of certain SARS-CoV-2 proteins; however, poor bio-availability of curcumin limits its possible therapeutic application. To circumvent this limitation, we have used mitocurcumin (MC), a triphenyl phosphonium conjugated curcumin derivative, to study the ability to inhibit SARS-CoV-2 infection using molecular docking and molecular dynamics (MD) simulation. MC is serum stable and several fold more potent as compared to curcumin. Molecular docking studies revealed that MC can bind at active site of SARS-CoV-2 ADP Ribose Phosphatase (NSP3) and SARS-CoV-2 methyltransferase (NSP10-NSP16 complex) with a high binding energy of - 10.3 kcal/mol and - 10.4 kcal/mol, respectively. MD simulation (100 ns) studies revealed that binding of MC to NSP3 and NSP16 resulted in a stable complex. MC interacted with critical residues of NSP3 macro-domain and NSP10-NSP16 complex and occupied their active sites. NSP3 is known to suppress host immune responses whereas NSP10-NSP16 complex is known to prevent immune recognition of viral mRNA. Our study suggests that MC can potentially inhibit the activity of NSP3 and NSP10-NSP16 complex, resulting in compromised viral immune evasion mechanism, and thereby accentuate the innate immune mediated clearance of viral load.


Assuntos
COVID-19 , Curcumina , Humanos , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Curcumina/farmacologia , Simulação de Acoplamento Molecular , Evasão da Resposta Imune , Proteínas não Estruturais Virais
13.
Mol Cell Proteomics ; 20: 100120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34186245

RESUMO

Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold-like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, nonstructural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) data set for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance, nuclear protein import for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , SARS-CoV-2/patogenicidade , Coronavirus Humano 229E/metabolismo , Coronavirus Humano 229E/patogenicidade , Coronavirus Humano OC43/metabolismo , Coronavirus Humano OC43/patogenicidade , Proteases Semelhantes à Papaína de Coronavírus/genética , Degradação Associada com o Retículo Endoplasmático , Células HEK293 , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Mapas de Interação de Proteínas , SARS-CoV-2/metabolismo , Resposta a Proteínas não Dobradas , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
14.
Bull Exp Biol Med ; 174(4): 527-532, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36899205

RESUMO

RNA interference in vertebrates acts as an antiviral mechanism only in undifferentiated embryonic stem cells and is mediated by microRNAs. In somatic cells, host microRNAs also bind to the genomes of RNA viruses, regulating their translation and replication. It has been shown that viral (+)RNA can evolve under the influence of host cell miRNAs. In more than two years of the pandemic, the SARS-CoV-2 virus has mutated significantly. It is quite possible that some mutations could be retained in the virus genome under the influence of miRNAs produced by alveolar cells. We demonstrated that microRNAs in human lung tissue exert evolutionary pressure on the SARS-CoV-2 genome. Moreover, a significant number of sites of host microRNA binding with the virus genome are located in the NSP3-NSP5 region responsible for autoproteolysis of viral polypeptides.


Assuntos
Células Epiteliais Alveolares , COVID-19 , MicroRNAs , SARS-CoV-2 , Humanos , Células Epiteliais Alveolares/metabolismo , COVID-19/genética , Interações entre Hospedeiro e Microrganismos/genética , Pulmão/metabolismo , Pulmão/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , SARS-CoV-2/genética
15.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568506

RESUMO

Chikungunya virus (CHIKV, family Togaviridae) is a mosquito-transmitted alphavirus. The positive-sense RNA genome of CHIKV encodes four nonstructural proteins (nsP1 to nsP4) that are virus-specific subunits of the RNA replicase. Among nsP functions, those of nsP3 are the least understood. The C-terminal hypervariable domain (HVD) in nsP3 is disordered and serves as a platform for interactions with multiple host proteins. For Sindbis virus (SINV) and Semliki Forest virus (SFV), the nsP3 HVD has been shown to be phosphorylated. Deletion of phosphorylated regions has a mild effect on the growth of SFV and SINV in vertebrate cells. Using radiolabeling, we demonstrated that nsP3 in CHIKV and o'nyong-nyong virus is also phosphorylated. We showed that the phosphorylated residues in CHIKV nsP3 are not clustered at the beginning of the HVD. The substitution of 20 Ser/Thr residues located in the N-terminal half of the HVD or 26 Ser/Thr residues located in its C-terminal half with Ala residues reduced the activity of the CHIKV replicase and the infectivity of CHIKV in mammalian cells. Furthermore, the substitution of all 46 potentially phosphorylated residues resulted in the complete loss of viral RNA synthesis and infectivity. The mutations did not affect the interaction of the HVD in nsP3 with the host G3BP1 protein; interactions with CD2AP, BIN1, and FHL1 proteins were significantly reduced but not abolished. Thus, CHIKV differs from SFV and SINV both in the location of the phosphorylated residues in the HVD in nsP3 and, significantly, in their effect on replicase activity and virus infectivity.IMPORTANCE CHIKV outbreaks have affected millions of people, creating a need for the development of antiviral approaches. nsP3 is a component of the CHIKV RNA replicase and is involved in interactions with host proteins and signaling cascades. Phosphorylation of the HVD in nsP3 is important for the virulent alphavirus phenotype. Here, we demonstrate that nsP3 in CHIKV is phosphorylated and that the phosphorylation sites in the HVD are distributed in a unique pattern. Furthermore, the abrogation of some of the phosphorylation sites results in the attenuation of CHIKV, while abolishing all the phosphorylation sites completely blocked its replicase activity. Thus, the phosphorylation of nsP3 and/or the phosphorylation sites in nsP3 have a major impact on CHIKV infectivity. Therefore, they represent promising targets for antiviral compounds and CHIKV attenuation. In addition, this new information offers valuable insight into the vast network of virus-host interactions.


Assuntos
Infecções por Alphavirus/virologia , Vírus Chikungunya , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais , Replicação Viral/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Vírus Chikungunya/patogenicidade , Vírus Chikungunya/fisiologia , Cricetinae , DNA Helicases/metabolismo , Fibroblastos , Humanos , Vírus O'nyong-nyong/patogenicidade , Vírus O'nyong-nyong/fisiologia , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Viral/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/fisiologia
16.
J Virol ; 95(16): e0083621, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34076483

RESUMO

Chikungunya virus (CHIKV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Within the last 2 decades, CHIKV has expanded its presence to both hemispheres and is currently circulating in both Old and New Worlds. Despite the severity and persistence of the arthritis it causes in humans, no approved vaccines or therapeutic means have been developed for CHIKV infection. Replication of alphaviruses, including CHIKV, is determined not only by their nonstructural proteins but also by a wide range of host factors, which are indispensable components of viral replication complexes (vRCs). Alphavirus nsP3s contain hypervariable domains (HVDs), which encode multiple motifs that drive recruitment of cell- and virus-specific host proteins into vRCs. Our previous data suggested that NAP1 family members are a group of host factors that may interact with CHIKV nsP3 HVD. In this study, we performed a detailed investigation of the NAP1 function in CHIKV replication in vertebrate cells. Our data demonstrate that (i) the NAP1-HVD interactions have strong stimulatory effects on CHIKV replication, (ii) both NAP1L1 and NAP1L4 interact with the CHIKV HVD, (iii) NAP1 family members interact with two motifs, which are located upstream and downstream of the G3BP-binding motifs of CHIKV HVD, (iv) NAP1 proteins interact only with a phosphorylated form of CHIKV HVD, and HVD phosphorylation is mediated by CK2 kinase, and (v) NAP1 and other families of host factors redundantly promote CHIKV replication and their bindings have additive stimulatory effects on viral replication. IMPORTANCE Cellular proteins play critical roles in the assembly of alphavirus replication complexes (vRCs). Their recruitment is determined by the viral nonstructural protein 3 (nsP3). This protein contains a long, disordered hypervariable domain (HVD), which encodes virus-specific combinations of short linear motifs interacting with host factors during vRC assembly. Our study defined the binding mechanism of NAP1 family members to CHIKV HVD and demonstrated a stimulatory effect of this interaction on viral replication. We show that interaction with NAP1L1 is mediated by two HVD motifs and requires phosphorylation of HVD by CK2 kinase. Based on the accumulated data, we present a map of the binding motifs of the critical host factors currently known to interact with CHIKV HVD. It can be used to manipulate cell specificity of viral replication and pathogenesis, and to develop a new generation of vaccine candidates.


Assuntos
Vírus Chikungunya/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Mutação , Células NIH 3T3 , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
17.
Bioorg Med Chem ; 67: 116788, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35597097

RESUMO

A series of amino acid based 7H-pyrrolo[2,3-d]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp22 and the amide backbone NH of Ile23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe157 and Asp156, part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low µM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Adenosina Difosfato Ribose/metabolismo , Amidas , Humanos , Domínios Proteicos
18.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232993

RESUMO

Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Interferon Tipo I , Helicase IFIH1 Induzida por Interferon , SARS-CoV-2 , Proteínas não Estruturais Virais , COVID-19 , Infecções por Coronavirus/imunologia , Humanos , Vírus da Bronquite Infecciosa/metabolismo , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Proteínas Ubiquitinadas , Proteínas não Estruturais Virais/metabolismo
19.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614163

RESUMO

During coronavirus infection, three non-structural proteins, nsp3, nsp4, and nsp6, are of great importance as they induce the formation of double-membrane vesicles where the replication and transcription of viral gRNA takes place, and the interaction of nsp3 and nsp4 lumenal regions triggers membrane pairing. However, their structural states are not well-understood. We investigated the interactions between nsp3 and nsp4 by predicting the structures of their lumenal regions individually and in complex using AlphaFold2 as implemented in ColabFold. The ColabFold prediction accuracy of the nsp3-nsp4 complex was increased compared to nsp3 alone and nsp4 alone. All cysteine residues in both lumenal regions were modelled to be involved in intramolecular disulphide bonds. A linker region in the nsp4 lumenal region emerged as crucial for the interaction, transitioning to a structured state when predicted in complex. The key interactions modelled between nsp3 and nsp4 appeared stable when the transmembrane regions of nsp3 and nsp4 were added to the modelling either alone or together. While molecular dynamics simulations (MD) demonstrated that the proposed model of the nsp3 lumenal region on its own is not stable, key interactions between nsp and nsp4 in the proposed complex model appeared stable after MD. Together, these observations suggest that the interaction is robust to different modelling conditions. Understanding the functional importance of the nsp4 linker region may have implications for the targeting of double membrane vesicle formation in controlling coronavirus infection.


Assuntos
SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Conformação Proteica
20.
Chem Zvesti ; 76(10): 6271-6285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757111

RESUMO

The world is now facing intolerable damage in all sectors of life because of the deadly COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2. The discovery and development of anti-SARS-CoV-2 drugs have become pragmatic in the time needed to fight against this pandemic. The non-structural protein 3 is essential for the replication of transcriptase complex (RTC) and may be regarded as a possible target against SARS-CoV-2. Here, we have used a comprehensive in silico technique to find potent drug molecules against the NSP3 receptor of SARS-CoV-2. Virtual screening of 150 Isatin derivatives taken from PubChem was performed based on their binding affinity estimated by docking simulations, resulting in the selection of 46 ligands having binding energy greater than -7.1 kcal/mol. Moreover, the molecular interactions of the nine best-docked ligands having a binding energy of ≥ -8.5 kcal/mol were analyzed. The molecular interactions showed that the three ligands (S5, S16, and S42) were stabilized by forming hydrogen bonds and other significant interactions. Molecular dynamic simulations were performed to mimic an in vitro protein-like aqueous environment and to check the stability of the best three ligands and NSP3 complexes in an aqueous environment. The binding energy of the S5, S16, and S42 systems obtained from the molecular mechanics Poisson-Boltzmann surface area also favor the system's stability. The MD and MM/PBSA results explore that S5, S16, and S42 are more stable and can be considered more potent drug candidates against COVID-19 disease. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-022-02298-7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA