Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cancer ; 23(1): 139, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970106

RESUMO

BACKGROUND: Radioresistance is the leading cause of death in advanced cervical cancer (CC). Dysregulation of RNA modification has recently emerged as a regulatory mechanism in radiation and drug resistance. We aimed to explore the biological function and clinical significance of 5-methylcytosine (m5C) in cervical cancer radiosensitivity. METHODS: The abundance of RNA modification in radiotherapy-resistant and sensitive CC specimens was quantified by liquid chromatography-tandem mass spectrometry. The essential RNA modification-related genes involved in CC radiosensitivity were screened via RNA sequencing. The effect of NSUN6 on radiosensitivity was verified in CC cell lines, cell-derived xenograft (CDX), and 3D bioprinted patient-derived organoid (PDO). The mechanisms of NSUN6 in regulating CC radiosensitivity were investigated by integrative m5C sequencing, mRNA sequencing, and RNA immunoprecipitation. RESULTS: We found a higher abundance of m5C modification in resistant CC samples, and NSUN6 was the essential m5C-regulating gene concerning radiosensitivity. NSUN6 overexpression was clinically correlated with radioresistance and poor prognosis in cervical cancer. Functionally, higher NSUN6 expression was associated with radioresistance in the 3D PDO model of cervical cancer. Moreover, silencing NSUN6 increased CC radiosensitivity in vivo and in vitro. Mechanistically, NDRG1 was one of the downstream target genes of NSUN6 identified by integrated m5C-seq, mRNA-seq, and functional validation. NSUN6 promoted the m5C modification of NDRG1 mRNA, and the m5C reader ALYREF bound explicitly to the m5C-labeled NDRG1 mRNA and enhanced NDRG1 mRNA stability. NDRG1 overexpression promoted homologous recombination-mediated DNA repair, which in turn led to radioresistance in cervical cancer. CONCLUSIONS: Aberrant m5C hypermethylation and NSUN6 overexpression drive resistance to radiotherapy in cervical cancer. Elevated NSUN6 expression promotes radioresistance in cervical cancer by activating the NSUN6/ALYREF-m5C-NDRG1 pathway. The low expression of NSUN6 in cervical cancer indicates sensitivity to radiotherapy and a better prognosis.


Assuntos
5-Metilcitosina , Proteínas de Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , RNA Mensageiro , Tolerância a Radiação , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia , Humanos , Feminino , Tolerância a Radiação/genética , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto , Metiltransferases/genética , Metiltransferases/metabolismo
2.
Trends Genet ; 37(6): 498-500, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33622495

RESUMO

Recent studies have unequivocally confirmed the presence of 5-methylcytosine (m5C) in mammalian mRNAs while indicating significant functional roles for this internal base modification type. Here, a brief history of m5C epitranscriptome research and a discussion of the important ways in which the field may now progress is presented.


Assuntos
5-Metilcitosina/metabolismo , Técnicas Genéticas , RNA Mensageiro/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Códon de Terminação , Humanos , Mamíferos/genética , Metilação , Transcriptoma
3.
J Biochem Mol Toxicol ; 38(6): e23749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800929

RESUMO

Colon adenocarcinoma (COAD) is a common and fatal malignant tumor of digestive system with complex etiology. 5-Methylcytosine (m5C) modification of RNA by the NSUN gene family (NSUN1-NSUN7) and DNMT2 reshape cell biology and regulate tumor development. However, the expression profile, prognostic significance and function of these m5C modifiers in COAD remain largely unclear. By mining multiple integrated tumor databases, we found that NSUN1, NSUN2, NSUN5, and NSUN6 were overexpressed in COAD tumor samples relative to normal samples. Clinically, high expression of NSUN6 was significantly associated with shorter survival (including both disease-free survival and overall survival) in COAD patients. NSUN6 was further confirmed to be upregulated at both tissue and cellular levels of COAD, suggesting that NSUN6 plays a critical role in disease progression. Through comprehensive gene enrichment analysis and cell-based functional validation, it was revealed that NSUN6 promoted the cell cycle progression and cell proliferation of COAD. Mechanistically, NSUN6 upregulates the expression of oncogenic METTL3 and catalyzes its m5C modification in COAD cells. Overexpression of METTL3 significantly relieved the cell cycle inhibition of COAD caused by NSUN6 deficiency. Furthermore, NSUN6 was negatively associated with the abundance of infiltrating immune cells in COAD tumors, such as activated B cells, natural killer cells, effector memory CD8 T cells, and regulatory T cells. Importantly, pan-cancer analysis further uncovered that NSUN6 was dysregulated and heterogeneous in various tumors. Thus our findings extend the role of m5C transferase in COAD and suggest that NSUN6 is a potential biomarker and target for this malignancy.


Assuntos
5-Metilcitosina , Adenocarcinoma , Neoplasias do Colo , Progressão da Doença , Metiltransferases , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
4.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047081

RESUMO

Targeting RNA methyltransferases with small molecules as inhibitors or tool compounds is an emerging field of interest in epitranscriptomics and medicinal chemistry. For two challenging RNA methyltransferases that introduce the 5-methylcytosine (m5C) modification in different tRNAs, namely DNMT2 and NSUN6, an ultra-large commercially available chemical space was virtually screened by physicochemical property filtering, molecular docking, and clustering to identify new ligands for those enzymes. Novel chemotypes binding to DNMT2 and NSUN6 with affinities down to KD,app = 37 µM and KD,app = 12 µM, respectively, were identified using a microscale thermophoresis (MST) binding assay. These compounds represent the first molecules with a distinct structure from the cofactor SAM and have the potential to be developed into activity-based probes for these enzymes. Additionally, the challenges and strategies of chemical space docking screens with special emphasis on library focusing and diversification are discussed.


Assuntos
Metiltransferases , RNA , Simulação de Acoplamento Molecular , RNA de Transferência/química , DNA (Citosina-5-)-Metiltransferases , tRNA Metiltransferases
5.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743028

RESUMO

The 5-methylcytosine (m5C) modification on an mRNA molecule is deposited by Nsun2 and its paralog Nsun6. While the physiological functions of Nsun2 have been carefully studied using gene knockout (KO) mice, the physiological functions of Nsun6 remain elusive. In this study, we generated an Nsun6-KO mouse strain, which exhibited no apparent phenotype in both the development and adult stages as compared to wild-type mice. Taking advantage of this mouse strain, we identified 80 high-confident Nsun6-dependent m5C sites by mRNA bisulfite sequencing in five different tissues and systematically analyzed the transcriptomic phenotypes of Nsun6-KO tissues by mRNA sequencing. Our data indicated that Nsun6 is not required for the homeostasis of these organs under laboratory housing conditions, but its loss may affect immune response in the spleen and oxidoreductive reaction in the liver under certain conditions. Additionally, we further investigated T-cell-dependent B cell activation in KO mice and found that Nsun6 is not essential for the germinal center B cell formation but is associated with the formation of antibody-secreting plasma cells. Finally, we found that Nsun6-mediated m5C modification does not have any evident influence on the stability of Nsun6 target mRNAs, suggesting that Nsun6-KO-induced phenotypes may be associated with other functions of the m5C modification or Nsun6 protein.


Assuntos
5-Metilcitosina , 5-Metilcitosina/metabolismo , Animais , Técnicas de Inativação de Genes , Metilação , Camundongos , Camundongos Knockout , RNA Mensageiro/genética
6.
Mol Syst Biol ; 16(11): e10025, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33251765

RESUMO

Cellular RNA is decorated with over 170 types of chemical modifications. Many modifications in mRNA, including m6 A and m5 C, have been associated with critical cellular functions under physiological and/or pathological conditions. To understand the biological functions of these modifications, it is vital to identify the regulators that modulate the modification rate. However, a high-throughput method for unbiased screening of these regulators is so far lacking. Here, we report such a method combining pooled CRISPR screen and reporters with RNA modification readout, termed CRISPR integrated gRNA and reporter sequencing (CIGAR-seq). Using CIGAR-seq, we discovered NSUN6 as a novel mRNA m5 C methyltransferase. Subsequent mRNA bisulfite sequencing in HAP1 cells without or with NSUN6 and/or NSUN2 knockout showed that NSUN6 and NSUN2 worked on non-overlapping subsets of mRNA m5 C sites and together contributed to almost all the m5 C modification in mRNA. Finally, using m1 A as an example, we demonstrated that CIGAR-seq can be easily adapted for identifying regulators of other mRNA modification.


Assuntos
Sistemas CRISPR-Cas/genética , Metiltransferases/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Vetores Genéticos/genética , Células HEK293 , Humanos , Metilação , Metiltransferases/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/análise , tRNA Metiltransferases/genética
7.
Mol Neurobiol ; 60(4): 2223-2235, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36646969

RESUMO

Epigenetic processes have become increasingly relevant in understanding disease-modifying mechanisms. 5-Methylcytosine methylations of DNA (5mC) and RNA (m5C) have functional transcriptional and RNA translational consequences and are tightly regulated by writer, reader and eraser effector proteins. To investigate the involvement of 5mC/5hmC and m5C effector proteins contributing to the development of dementia neuropathology, RNA sequencing data of 31 effector proteins across four brain regions was examined in 56 aged non-affected and 51 Alzheimer's disease (AD) individuals obtained from the Aging, Dementia and Traumatic Brain Injury Study. Gene expression profiles were compared between AD and controls, between neuropathological Braak and CERAD scores and in individuals with a history of traumatic brain injury (TBI). We found an increase in the DNA methylation writers DNMT1, DNMT3A and DNMT3B messenger RNA (mRNA) and a decrease in the reader UHRF1 mRNA in AD samples across three brain regions whilst the DNA erasers GADD45B and AICDA showed changes in mRNA abundance within neuropathological load groupings. RNA methylation writers NSUN6 and NSUN7 showed significant expression differences with AD and, along with the reader ALYREF, differences in expression for neuropathologic ranking. A history of TBI was associated with a significant increase in the DNA readers ZBTB4 and MeCP2 (p < 0.05) and a decrease in NSUN6 (p < 0.001) mRNA. These findings implicate regulation of protein pathways disrupted in AD and TBI via multiple pre- and post-transcriptional mechanisms including potentially acting upon transfer RNAs, enhancer RNAs as well as nuclear-cytoplasmic shuttling and cytoplasmic translational control. The targeting of such processes provides new therapeutic avenues for neurodegenerative brain conditions.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Humanos , Idoso , Doença de Alzheimer/patologia , RNA/metabolismo , Lesões Encefálicas Traumáticas/patologia , Metilação de DNA , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
8.
EBioMedicine ; 63: 103195, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33418496

RESUMO

BACKGROUND: Pancreatic cancer (PC) is one of the most lethal solid malignancies in the world due to its excessive cell proliferation and aggressive metastatic features. Emerging evidences revealed the importance of posttranscriptional modifications of RNAs in PC progression. However, knowledge about the 5-methylcytosine (m5C) RNA modification in PC is still extremely limited. In this study, we attempted to explore the expression changes and clinical significances of 12 known m5C-related genes among PC patients. METHODS: A total of 362 normal and 382 tumor specimens from PC patients were examined for candidate m5C-related gene and protein expression by using quantitative PCR (qPCR) and immunohistochemistry (IHC). The proliferation rate of PC cells was detected by MTS assay. Xenograft mouse models were used to assess the role of NSUN6 in PC tumor formation. FINDINGS: Through analyzing the four Gene Expression Omnibus (GEO) databases, six m5C-related genes shown significant and consistent alterations were selected for further examination in our 3 independent PC cohorts. Finally, we identified the reduction of NSUN6 as a common feature of all PC sample sets examined. NSUN6 expression correlated with clinicopathologic parameters including T stage, and Ki67+ cell rate. Further assessing the transcriptional profiles of 50 PC tissues, we found biological processes associated with cell proliferation like cell cycle and G2M checkpoint were enriched in NSUN6 lower expression group. Helped by in vitro PC cell lines and in vivo xenograft mouse models, we confirmed the role of NSUN6 in regulating cell proliferation and PC tumor growth. Last but also importantly, we also show the good performance of NSUN6 in evaluating tumor recurrence and survival among PC patients. INTERPRETATION: Our data suggested that NSUN6 is an important factor involved in regulating cell proliferation of PC, and highlights the potential of novel m5C-based clinical modalities as a therapeutic approach in PC patients. FUNDING: This study was supported by the National Natural Science Foundation of China (Grant Nos. 81803014, 81802424, and 81802911).


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Suscetibilidade a Doenças , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , tRNA Metiltransferases/genética , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional/métodos , Bases de Dados Genéticas , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/mortalidade , Prognóstico , Curva ROC , tRNA Metiltransferases/metabolismo
9.
Natl Sci Rev ; 8(6): nwaa273, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34691665

RESUMO

mRNA m5C, which has recently been implicated in the regulation of mRNA mobility, metabolism and translation, plays important regulatory roles in various biological events. Two types of m5C sites are found in mRNAs. Type I m5C sites, which contain a downstream G-rich triplet motif and are computationally predicted to be located at the 5' end of putative hairpin structures, are methylated by NSUN2. Type II m5C sites contain a downstream UCCA motif and are computationally predicted to be located in the loops of putative hairpin structures. However, their biogenesis remains unknown. Here we identified NSUN6, a methyltransferase that is known to methylate C72 of tRNAThr and tRNACys, as an mRNA methyltransferase that targets Type II m5C sites. Combining the RNA secondary structure prediction, miCLIP, and results from a high-throughput mutagenesis analysis, we determined the RNA sequence and structural features governing the specificity of NSUN6-mediated mRNA methylation. Integrating these features into an NSUN6-RNA structural model, we identified an NSUN6 variant that largely loses tRNA methylation but retains mRNA methylation ability. Finally, we revealed a weak negative correlation between m5C methylation and translation efficiency. Our findings uncover that mRNA m5C is tightly controlled by an elaborate two-enzyme system, and the protein-RNA structure analysis strategy established may be applied to other RNA modification writers to distinguish the functions of different RNA substrates of a writer protein.

10.
Front Cell Dev Biol ; 9: 657547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928086

RESUMO

PURPOSE: The m5C RNA methylation regulators are closely related to tumor proliferation, occurrence, and metastasis. This study aimed to investigate the gene expression, clinicopathological characteristics, and prognostic value of m5C regulators in triple-negative breast cancer (TNBC) and their correlation with the tumor immune microenvironment (TIM). METHODS: The TNBC data, Luminal BC data and HER2 positive BC data set were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, and 11 m5C RNA methylation regulators were analyzed. Univariate Cox regression and the least absolute shrinkage and selection operator regression models were used to develop a prognostic risk signature. The UALCAN and cBioportal databases were used to analyze the gene characteristics and gene alteration frequency of prognosis-related m5C RNA methylation regulators. Gene set enrichment analysis was used to analyze cellular pathways enriched by prognostic factors. The Tumor Immune Single Cell Hub (TISCH) and Timer online databases were used to explore the relationship between prognosis-related genes and the TIM. RESULTS: Most of the 11 m5C RNA methylation regulators were differentially expressed in TNBC and normal samples. The prognostic risk signature showed good reliability and an independent prognostic value. Prognosis-related gene mutations were mainly amplified. Concurrently, the NOP2/Sun domain family member 2 (NSUN2) upregulation was closely related to spliceosome, RNA degradation, cell cycle signaling pathways, and RNA polymerase. Meanwhile, NSUN6 downregulation was related to extracellular matrix receptor interaction, metabolism, and cell adhesion. Analysis of the TISCH and Timer databases showed that prognosis-related genes affected the TIM, and the subtypes of immune-infiltrating cells differed between NSUN2 and NSUN6. CONCLUSION: Regulatory factors of m5C RNA methylation can predict the clinical prognostic risk of TNBC patients and affect tumor development and the TIM. Thus, they have the potential to be a novel prognostic marker of TNBC, providing clues for understanding the RNA epigenetic modification of TNBC.

11.
Cancer Biol Ther ; 22(10-12): 587-597, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34705606

RESUMO

Nop2/Sun RNA methyltransferase (NSUN6) is an RNA 5-methyl cytosine (5mC) transferase with little information known of its function in cancer and response to cancer therapy. Here, we show that NSUN6 methylates both large and small RNA in glioblastoma and controls glioblastoma response to temozolomide with or without influence of the MGMT promoter status, with high NSUN6 expression conferring survival benefit to glioblastoma patients and in other cancers. Mechanistically, our results show that NSUN6 controls response to TMZ therapy via 5mC-mediated regulation of NELFB and RPS6BK2. Taken together, we present evidence that show that NSUN6-mediated 5mC deposition regulates transcriptional pause by accumulation of NELFB and the general transcription factor complexes (POLR2A, TBP, TFIIA, and TFIIE) on the preinitiation complex at the TATA binding site to control translation machinery in glioblastoma response to alkylating agents. Our findings open a new frontier into controlling of transcriptional regulation by RNA methyltransferase and 5mC.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Quinases S6 Ribossômicas 70-kDa , Temozolomida , Fatores de Transcrição , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Metilases de Modificação do DNA , Enzimas Reparadoras do DNA , Glioblastoma/tratamento farmacológico , Humanos , Metiltransferases/uso terapêutico , RNA , Temozolomida/uso terapêutico , tRNA Metiltransferases
12.
Contact (Thousand Oaks) ; 2: 1-21, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31777772

RESUMO

The endoplasmic reticulum (ER), the most pervasive organelle, exchanges information and material with many other organelles, but the extent of its inter-organelle connections and the proteins that form bridges are not well known. The integral ER membrane protein VAMP-associated protein (VAP) is found in multiple bridges, interacting with many proteins that contain a short linear motif consisting of "two phenylalanines in an acidic tract" (FFAT). The VAP-FFAT interaction is the most common mechanism by which cytoplasmic proteins, particularly inter-organelle bridges, target the ER. Therefore, predicting new FFAT motifs may both find new individual peripheral ER proteins and identify new routes of communication involving the ER. Here we searched for FFAT motifs across whole proteomes. The excess of eukaryotic proteins with FFAT motifs over background was ≥0.8%, suggesting this is the minimum number of peripheral ER proteins. In yeast, where VAP was previously known to bind 4 proteins with FFAT motifs, a detailed analysis of a subset of proteins predicted 20 FFAT motifs. Extrapolating these findings to the whole proteome estimated the number of FFAT motifs in yeast at approximately 50-55 (0.9% of proteome). Among these previously unstudied FFAT motifs, most have known functions outside the ER, so could be involved in inter-organelle communication. Many of these can target well-characterised membrane contact sites, however some are in nucleoli and eisosomes, organelles previously unknown to have molecular bridges to the ER. We speculate that the nucleolar and eisosomal proteins with predicted motifs may function while bridging to the ER, indicating novel ER-nucleolus and ER-eisosome routes of inter-organelle communication.

13.
FEBS J ; 281(1): 74-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24393395

RESUMO

Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.


Assuntos
Pentosiltransferases/metabolismo , Poli U/química , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Filogenia , Proteínas de Ligação a RNA/química , Homologia de Sequência de Aminoácidos , tRNA Metiltransferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA