Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764377

RESUMO

Na2MoO4 and Na2WO4 are isostructural semiconductors, belonging to the spinel class. They have interesting properties and find applications in numerous sectors. These properties can be tuned by controlling the composition of their solid solutions. Here, different methods to obtain these compounds are presented, both wet and solid-state synthesis. The obtained results show a possible dependence of the material properties on the chosen synthesis method. The pure compounds and their mixtures were characterized by Raman spectroscopy, scanning electron microscopy, and X-ray diffraction.

2.
Angew Chem Int Ed Engl ; 61(18): e202117201, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35181983

RESUMO

Oxidative coupling of methane (OCM) catalyzed by MnOx -Na2 WO4 /SiO2 has great industrial promise to convert methane directly to C2-3 products, but its high light-off temperature is the most challenging obstacle to commercialization and its working mechanism is still a mystery. We report the discovery of a low-temperature active and selective MnOx -Na2 WO4 /SiO2 catalyst enriched with Q2 units in the SiO2 carrier, being capable of converting 23 % CH4 with 72 % C2-3 selectivity at 660 °C. From experiments and theoretical calculations, a large number of Q2 units in the MnOx -Na2 WO4 /SiO2 catalyst is a trigger for markedly lowering the light-off temperature of the Mn3+ ↔Mn2+ redox cycle involved in the OCM reaction because of the easy formation of MnSiO3 . Notably, the MnSiO3 formation proceeds merely through the SiO2 -involved reaction in the presence of Na2 WO4 : Mn7 SiO12 +6 SiO2 ↔7 MnSiO3 +1.5 O2 . The Na2 WO4 not only drives the light-off of this cycle but also gets it working with substantial selectivity toward C2-3 products. Our findings shine a light on the rational design of more advanced MnOx -Na2 WO4 based OCM catalysts through establishing new Mn3+ ↔Mn2+ redox cycles with lowered light-off temperature.

3.
Angew Chem Int Ed Engl ; 60(39): 21502-21511, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34339591

RESUMO

The complex structure of the catalytic active phase, and surface-gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2 WO4 /SiO2 catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2 -TPR, TAP and steady-state kinetics) experiments, that the long speculated crystalline Na2 WO4 active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na-WOx sites. Kinetic analysis via temporal analysis of products (TAP) and steady-state OCM reaction studies demonstrate that (i) surface Na-WOx sites are responsible for selectively activating CH4 to C2 Hx and over-oxidizing CHy to CO and (ii) molten Na2 WO4 phase is mainly responsible for over-oxidation of CH4 to CO2 and also assists in oxidative dehydrogenation of C2 H6 to C2 H4 . These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2 WO4 /SiO2 catalysts.

4.
Sci Technol Adv Mater ; 16(5): 055003, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877838

RESUMO

Water-soluble and biocompatible D-glucuronic acid coated Na2WO4 and BaCO3 nanoparticles were synthesized for the first time to be used as x-ray computed tomography (CT) contrast agents. Their average particle diameters were 3.2 ± 0.1 and 2.8 ± 0.1 nm for D-glucuronic acid coated Na2WO4 and BaCO3 nanoparticles, respectively. All the nanoparticles exhibited a strong x-ray attenuation. In vivo CT images were obtained after intravenous injection of an aqueous sample suspension of D-glucuronic acid coated Na2WO4 nanoparticles, and positive contrast enhancements in the kidney were clearly shown. These findings indicate that the nanoparticles reported in this study may be promising CT contrast agents.

5.
ACS Appl Mater Interfaces ; 14(6): 7962-7971, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119820

RESUMO

Tin oxide (SnO2) has been commonly used as an electron transport layer (ETL) in planar perovskite solar cells (p-PSCs) because it can be prepared by a low-temperature solution-processed method. However, the device performance has been restricted due to the limited electrical performance of SnO2 and its mismatched energy level alignment with the perovskite absorber. Considering these problems, sodium tungstate (Na2WO4) has been employed to modify the SnO2 ETL. The conduction band minimum of SnO2 increases and the defects at the ETL/perovskite interface decrease by the modification of the SnO2 ETL with Na2WO4, thus reducing the energy barrier between the ETL and perovskite. In addition, the electron extraction ability has been enhanced and the interface recombination between the ETL and perovskite has also been inhibited. As a result, the photovoltaic performance of p-PSCs based on the modified ETL has been improved, and a champion power conversion efficiency of 21.16% has been achieved compared with the control device of 17.30% with an open circuit voltage increased from 1.075 to 1.162 V.

6.
Ying Yong Sheng Tai Xue Bao ; 31(1): 182-188, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-31957395

RESUMO

Pot culture and field experiments were carried out with one-year-old apple rootstock M9T337 seedlings and five-year-old 'Yanfu3'/SH6/M. hupehensis Rehd. as test materials respectively. Combined with 15N and 13C isotope tracer technology, we examined the effects of different concentrations of NR inhibitor Na2WO4(0, 0.5, 1, 1.5 mmol·L-1, expressed by CK, T1, T2 and T3 respectively) on 15N absorption and 13C accumulation of seedling and apple quality. The results showed that 0.5-1.0 mmol·L-1 Na2WO4 significantly inhibited shoot growth but not root growth of seedling in the pot experiment. Root growth was significantly inhibited when the concentration of Na2WO4 reached 1.5 mmol·L-1. The NR activity of each treatment was negatively correlated with the concentrations of Na2WO4 in the same period, with an order of CK>T1>T2>T3. The content of nitrate in leaves showed the trend of first rising and then decreasing with the extension of processing time. Nitrate content was positively correlated with Na2WO4 concentration in the same period, with an order of T3>T2>T1>CK. Spraying Na2WO4 reduced the 15N absorption of each organ and 15N utilization rate, with such effects increasing with the amount of spraying. With the increases of Na2WO4 concentration, 13C accumulation on the ground increased first and then decreased, with highest value in T2 treatment. The 13C accumulation of whole plant showed a similar pattern. The results of field experiment showed that Na2WO4 application reduced nitrogen contents of leaves and fruits at maturity stage, and increased the anthocyanin content in peel, soluble solids, soluble sugar content and sugar acid ratio in fruits. The T2 treatment showed the best effect. In summary, T2 treatment (1.0 mmol·L-1 Na2WO4) could inhibit shoot growth of seedlings, reduce 15N absorption and utilization, improve 13C accumulation, which would improve apple quality.


Assuntos
Malus , Frutas , Nitrogênio , Folhas de Planta , Plântula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA