Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Cell Sci ; 137(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39258309

RESUMO

Non-excitable cells express sodium voltage-gated channel alpha subunit 1 gene and protein (known as SCN1A and NaV1.1, respectively); however, the functions of NaV1.1 are unclear. In this study, we investigated the role of SCN1A and NaV1.1 in human mesenchymal stem cells (MSCs). We found that SCN1A was expressed in MSCs, and abundant expression of NaV1.1 was observed in the endoplasmic reticulum; however, this expression was not found to be related to Na+ currents. SCN1A-silencing reduced MSC proliferation and delayed the cell cycle in the S phase. SCN1A silencing also suppressed the protein levels of CDK2 and AKT (herein referring to total AKT), despite similar mRNA expression, and inhibited AKT phosphorylation in MSCs. A cycloheximide-chase assay showed that SCN1A-silencing induced CDK2 but not AKT protein degradation in MSCs. A proteolysis inhibition assay using epoxomicin, bafilomycin A1 and NH4Cl revealed that both the ubiquitin-proteasome system and the autophagy and endo-lysosome system were irrelevant to CDK2 and AKT protein reduction in SCN1A-silenced MSCs. The AKT inhibitor LY294002 did not affect the degradation and nuclear localization of CDK2 in MSCs. Likewise, the AKT activator SC79 did not attenuate the SCN1A-silencing effects on CDK2 in MSCs. These results suggest that NaV1.1 contributes to the cell cycle of MSCs by regulating the post-translational control of AKT and CDK2.


Assuntos
Ciclo Celular , Quinase 2 Dependente de Ciclina , Células-Tronco Mesenquimais , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas Proto-Oncogênicas c-akt , Dente Decíduo , Quinase 2 Dependente de Ciclina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dente Decíduo/citologia , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Lisossomos/metabolismo , Proteólise , Transporte Ativo do Núcleo Celular , Humanos
2.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38443186

RESUMO

Dravet syndrome (DS) is a neurodevelopmental disorder characterized by epilepsy, developmental delay/intellectual disability, and features of autism spectrum disorder, caused by heterozygous loss-of-function variants in SCN1A encoding the voltage-gated sodium channel α subunit Nav1.1. The dominant model of DS pathogenesis is the "interneuron hypothesis," whereby GABAergic interneurons (INs) express and preferentially rely on Nav1.1-containing sodium channels for action potential (AP) generation. This has been shown for three of the major subclasses of cerebral cortex GABAergic INs: those expressing parvalbumin (PV), somatostatin, and vasoactive intestinal peptide. Here, we define the function of a fourth major subclass of INs expressing neuron-derived neurotrophic factor (Ndnf) in male and female DS (Scn1a+/-) mice. Patch-clamp electrophysiological recordings of Ndnf-INs in brain slices from Scn1a+/â mice and WT controls reveal normal intrinsic membrane properties, properties of AP generation and repetitive firing, and synaptic transmission across development. Immunohistochemistry shows that Nav1.1 is strongly expressed at the axon initial segment (AIS) of PV-expressing INs but is absent at the Ndnf-IN AIS. In vivo two-photon calcium imaging demonstrates that Ndnf-INs in Scn1a+/â mice are recruited similarly to WT controls during arousal. These results suggest that Ndnf-INs are the only major IN subclass that does not prominently rely on Nav1.1 for AP generation and thus retain their excitability in DS. The discovery of a major IN subclass with preserved function in the Scn1a+/â mouse model adds further complexity to the "interneuron hypothesis" and highlights the importance of considering cell-type heterogeneity when investigating mechanisms underlying neurodevelopmental disorders.


Assuntos
Modelos Animais de Doenças , Epilepsias Mioclônicas , Interneurônios , Canal de Sódio Disparado por Voltagem NAV1.1 , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/patologia , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Feminino , Masculino , Potenciais de Ação/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Brain ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769595

RESUMO

Altered development and function of the prefrontal cortex (PFC) during adolescence is implicated in the origin of mental disorders. Deficits in the GABAergic system prominently contribute to these alterations. Nav1.1 is a voltage-gated Na+ channel critical for normal GABAergic activity. Here, we studied the role of Nav1.1 in PFC function and its potential relationship with the aetiology of mental disorders. Dysfunction of Nav1.1 activity in the medial PFC (mPFC) of adolescent mice enhanced the local excitation/inhibition ratio, resulting in epileptic activity, cognitive deficits and depressive-like behaviour in adulthood, along with a gene expression profile linked to major depressive disorder (MDD). Additionally, it reduced extracellular serotonin concentration in the dorsal raphe nucleus and brain-derived neurotrophic factor expression in the hippocampus, two MDD-related brain areas beyond the PFC. We also observed alterations in oscillatory activity and impaired hippocampal-mPFC coherence during sleep. Finally, we found reduced expression levels of SCN1A, the gene encoding Nav1.1, in post-mortem PFC samples from human MDD subjects. Collectively, our results provide a novel mechanistic framework linking adolescence-specific alterations in Nav1.1 function in the PFC to the pathogenesis of epilepsy and comorbidities such as cognitive impairment and depressive disorders.

4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33712547

RESUMO

Among the nine subtypes of human voltage-gated sodium (Nav) channels, the brain and cardiac isoforms, Nav1.1 and Nav1.5, each carry more than 400 missense mutations respectively associated with epilepsy and cardiac disorders. High-resolution structures are required for structure-function relationship dissection of the disease variants. We report the cryo-EM structures of the full-length human Nav1.1-ß4 complex at 3.3 Å resolution here and the Nav1.5-E1784K variant in the accompanying paper. Up to 341 and 261 disease-related missense mutations in Nav1.1 and Nav1.5, respectively, are resolved. Comparative structural analysis reveals several clusters of disease mutations that are common to both Nav1.1 and Nav1.5. Among these, the majority of mutations on the extracellular loops above the pore domain and the supporting segments for the selectivity filter may impair structural integrity, while those on the pore domain and the voltage-sensing domains mostly interfere with electromechanical coupling and fast inactivation. Our systematic structural delineation of these mutations provides important insight into their pathogenic mechanism, which will facilitate the development of precise therapeutic interventions against various sodium channelopathies.


Assuntos
Canalopatias/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/química , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Conformação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade
5.
J Neurochem ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594756

RESUMO

Nowadays, particularly in countries with high incomes, individual mutations in people affected by genetic epilepsies are identified, and genetic therapies are being developed. In addition, drugs are being screened to directly target specific mutations, and personalised medicine is possible. However, people with epilepsy do not yet benefit from these advances, and many types of epilepsies are medication-resistant, including Dravet syndrome. Thus, in the meantime, alternative and effective treatment options are needed. There is increasing evidence that metabolic deficits contribute to epileptic seizures and that such metabolic impairments may be amenable to treatment, with metabolic treatment options like the ketogenic diet being employed with some success. However, the brain metabolic alterations that occur in ion channel epilepsies are not well-understood, nor how these may differ from epilepsies that are of acquired and unknown origins. Here, we provide an overview of studies investigating metabolic alterations in epilepsies caused by mutations in the SCN1A and KCNA1 genes, which are currently the most studied ion channel epilepsies in animal models. The metabolic changes found in these models are likely to contribute to seizures. A metabolic basis of these ion channel epilepsies is supported by human and/or animal studies that show beneficial effects of the ketogenic diet, which may be mediated by the provision of auxiliary brain fuel in the form of ketone bodies. Other potentially more preferred dietary therapies including medium-chain triglycerides and triheptanoin have also been tested in a limited number of studies, but their efficacies remain to be clearly established. The extent to which brain metabolism is affected in people with Dravet syndrome, KCNA1 epilepsy and the models thereof still requires clarification. This requires more experiments that yield functional insight into metabolism.

6.
Epilepsia ; 64(5): 1318-1330, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36287100

RESUMO

OBJECTIVE: Loss-of-function variants in SCN1A cause Dravet syndrome, the most common genetic developmental and epileptic encephalopathy (DEE). However, emerging evidence suggests separate entities of SCN1A-related disorders due to gain-of-function variants. Here, we aim to refine the clinical, genetic, and functional electrophysiological features of a recurrent p.R1636Q gain-of-function variant, identified in four individuals at a single center. METHODS: Individuals carrying the recurrent SCN1A p.R1636Q variant were identified through diagnostic testing. Whole cell voltage-clamp electrophysiological recording in HEK-293 T cells was performed to compare the properties of sodium channels containing wild-type Nav 1.1 or Nav 1.1-R1636Q along with both Nav ß1 and Nav ß2 subunits, including response to oxcarbazepine. To delineate differences from other SCN1A-related epilepsies, we analyzed electronic medical records. RESULTS: All four individuals had an early onset DEE characterized by focal tonic seizures and additional seizure types starting in the first few weeks of life. Electrophysiological analysis showed a mixed gain-of-function effect with normal current density, a leftward (hyperpolarized) shift of steady-state inactivation, and slower inactivation kinetics leading to a prominent late sodium current. The observed functional changes closely paralleled effects of pathogenic variants in SCN3A and SCN8A at corresponding positions. Both wild type and variant exhibited sensitivity to block by oxcarbazepine, partially correcting electrophysiological abnormalities of the SCN1A p.R1636Q variant. Clinically, a single individual responded to treatment with oxcarbazepine. Across 51 individuals with SCN1A-related epilepsies, those with the recurrent p.R1636Q variants had the earliest ages at onset. SIGNIFICANCE: The recurrent SCN1A p.R1636Q variant causes a clinical entity with a wider clinical spectrum than previously reported, characterized by neonatal onset epilepsy and absence of prominent movement disorder. Functional consequences of this variant lead to mixed loss and gain of function that is partially corrected by oxcarbazepine. The recurrent p.R1636Q variant represents one of the most common causes of early onset SCN1A-related epilepsies with separate treatment and prognosis implications.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.1 , Humanos , Recém-Nascido , Epilepsias Mioclônicas/genética , Epilepsia/genética , Mutação com Ganho de Função/genética , Células HEK293 , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Oxcarbazepina
7.
J Neurosci ; 41(3): 524-537, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33234612

RESUMO

Dravet syndrome (DS) is an epileptic encephalopathy that still lacks biomarkers for epileptogenesis and its treatment. Dysfunction of NaV1.1 sodium channels, which are chiefly expressed in inhibitory interneurons, explains the epileptic phenotype. Understanding the network effects of these cellular deficits may help predict epileptogenesis. Here, we studied θ-γ coupling as a potential marker for altered inhibitory functioning and epileptogenesis in a DS mouse model. We found that cortical θ-γ coupling was reduced in both male and female juvenile DS mice and persisted only if spontaneous seizures occurred. θ-γ Coupling was partly restored by cannabidiol (CBD). Locally disrupting NaV1.1 expression in the hippocampus or cortex yielded early attenuation of θ-γ coupling, which in the hippocampus associated with fast ripples, and which was replicated in a computational model when voltage-gated sodium currents were impaired in basket cells (BCs). Our results indicate attenuated θ-γ coupling as a promising early indicator of inhibitory dysfunction and seizure risk in DS.


Assuntos
Epilepsias Mioclônicas/fisiopatologia , Epilepsia/fisiopatologia , Ritmo Gama , Convulsões/fisiopatologia , Ritmo Teta , Animais , Anticonvulsivantes/uso terapêutico , Biomarcadores , Canabidiol/uso terapêutico , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Simulação por Computador , Eletroencefalografia , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsia/tratamento farmacológico , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Convulsões/tratamento farmacológico
8.
Proc Natl Acad Sci U S A ; 116(33): 16571-16576, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346088

RESUMO

Dravet Syndrome is a severe childhood epileptic disorder caused by haploinsufficiency of the SCN1A gene encoding brain voltage-gated sodium channel NaV1.1. Symptoms include treatment-refractory epilepsy, cognitive impairment, autistic-like behavior, and premature death. The specific loci of NaV1.1 function in the brain that underlie these global deficits remain unknown. Here we specifically deleted Scn1a in the hippocampus using the Cre-Lox method in weanling mice. Local gene deletion caused selective reduction of inhibitory neurotransmission measured in dentate granule cells. Mice with local NaV1.1 reduction had thermally evoked seizures and spatial learning deficits, but they did not have abnormalities of locomotor activity or social interaction. Our results show that local gene deletion in the hippocampus can induce two of the most severe dysfunctions of Dravet Syndrome: Epilepsy and cognitive deficit. Considering these results, the hippocampus may be a potential target for future gene therapy for Dravet Syndrome.


Assuntos
Disfunção Cognitiva/complicações , Epilepsias Mioclônicas/complicações , Deleção de Genes , Hipocampo/patologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões/complicações , Temperatura , Animais , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Condicionamento Clássico , Giro Denteado/metabolismo , Giro Denteado/fisiopatologia , Dependovirus/metabolismo , Medo , Hipocampo/fisiopatologia , Potenciais Pós-Sinápticos Inibidores , Integrases/metabolismo , Relações Interpessoais , Memória , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptores de GABA/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia , Aprendizagem Espacial
9.
J Neurosci ; 40(13): 2764-2775, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32102923

RESUMO

Recurrent seizures, which define epilepsy, are transient abnormalities in the electrical activity of the brain. The mechanistic basis of seizure initiation, and the contribution of defined neuronal subtypes to seizure pathophysiology, remains poorly understood. We performed in vivo two-photon calcium imaging in neocortex during temperature-induced seizures in male and female Dravet syndrome (Scn1a+/-) mice, a neurodevelopmental disorder with prominent temperature-sensitive epilepsy. Mean activity of both putative principal cells and parvalbumin-positive interneurons (PV-INs) was higher in Scn1a+/- relative to wild-type controls during quiet wakefulness at baseline and at elevated core body temperature. However, wild-type PV-INs showed a progressive synchronization in response to temperature elevation that was absent in PV-INs from Scn1a+/- mice. Hence, PV-IN activity remains intact interictally in Scn1a+/- mice, yet exhibits decreased synchrony immediately before seizure onset. We suggest that impaired PV-IN synchronization may contribute to the transition to the ictal state during temperature-induced seizures in Dravet syndrome.SIGNIFICANCE STATEMENT Epilepsy is a common neurological disorder defined by recurrent, unprovoked seizures. However, basic mechanisms of seizure initiation and propagation remain poorly understood. We performed in vivo two-photon calcium imaging in an experimental model of Dravet syndrome (Scn1a+/- mice)-a severe neurodevelopmental disorder defined by temperature-sensitive, treatment-resistant epilepsy-and record activity of putative excitatory neurons and parvalbumin-positive GABAergic neocortical interneurons (PV-INs) during naturalistic seizures induced by increased core body temperature. PV-IN activity was higher in Scn1a+/- relative to wild-type controls during quiet wakefulness. However, wild-type PV-INs showed progressive synchronization in response to temperature elevation that was absent in PV-INs from Scn1a+/- mice before seizure onset. Hence, impaired PV-IN synchronization may contribute to transition to seizure in Dravet syndrome.


Assuntos
Epilepsias Mioclônicas/fisiopatologia , Interneurônios/fisiologia , Convulsões/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Epilepsias Mioclônicas/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões/genética
10.
Epilepsia ; 62(11): 2845-2857, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510432

RESUMO

OBJECTIVE: Dravet syndrome is a severe developmental and epileptic encephalopathy (DEE) most often caused by de novo pathogenic variants in SCN1A. Individuals with Dravet syndrome rarely achieve seizure control and have significantly elevated risk for sudden unexplained death in epilepsy (SUDEP). Heterozygous deletion of Scn1a in mice (Scn1a+/- ) recapitulates several core phenotypes, including temperature-dependent and spontaneous seizures, SUDEP, and behavioral abnormalities. Furthermore, Scn1a+/- mice exhibit a similar clinical response to standard anticonvulsants. Cholesterol 24-hydroxlase (CH24H) is a brain-specific enzyme responsible for cholesterol catabolism. Recent research has indicated the therapeutic potential of CH24H inhibition for diseases associated with neural excitation, including seizures. METHODS: In this study, the novel compound soticlestat, a CH24H inhibitor, was administered to Scn1a+/- mice to investigate its ability to improve Dravet-like phenotypes in this preclinical model. RESULTS: Soticlestat treatment reduced seizure burden, protected against hyperthermia-induced seizures, and completely prevented SUDEP in Scn1a+/- mice. Video-electroencephalography (EEG) analysis confirmed the ability of soticlestat to reduce occurrence of electroclinical seizures. SIGNIFICANCE: This study demonstrates that soticlestat-mediated inhibition of CH24H provides therapeutic benefit for the treatment of Dravet syndrome in mice and has the potential for treatment of DEEs.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Piperidinas , Piridinas , Convulsões Febris , Morte Súbita Inesperada na Epilepsia , Animais , Colesterol 24-Hidroxilase/antagonistas & inibidores , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsia/genética , Síndromes Epilépticas , Camundongos , Mortalidade Prematura , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Piperidinas/farmacologia , Piridinas/farmacologia , Convulsões/etiologia , Convulsões/genética , Convulsões Febris/tratamento farmacológico , Morte Súbita Inesperada na Epilepsia/etiologia
11.
Cereb Cortex ; 30(9): 5049-5066, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32377688

RESUMO

Alterations in the voltage-gated sodium channel Nav.1.1 are implicated in various neurological disorders, including epilepsy, Alzheimer's disease, and autism spectrum disorders. Previous studies suggest that the reduction of Nav1.1 expression leads to a decrease of fast spiking activity in inhibitory neurons. Because interneurons (INs) play a critical role in the temporal organization of neuronal discharge, we hypothesize that Nav1.1 dysfunction will negatively impact neuronal coordination in vivo. Using shRNA interference, we induced a focal Nav1.1 knock-down (KD) in the dorsal region of the right hippocampus of adult rats. Focal, unilateral Nav1.1 KD decreases the performance in a spatial novelty recognition task and the firing rate in INs, but not in pyramidal cells. It reduced theta/gamma coupling of hippocampal oscillations and induced a shift in pyramidal cell theta phase preference. Nav1.1 KD degraded spatial accuracy and temporal coding properties of place cells, such as theta phase precession and compression of ongoing sequences. Aken together, these data demonstrate that a deficit in Nav1.1 alters the temporal coordination of neuronal firing in CA1 and impairs behaviors that rely on the integrity of this network. They highlight the potential contribution of local inhibition in neuronal coordination and its impact on behavior in pathological conditions.


Assuntos
Hipocampo/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Células de Lugar/fisiologia , Comportamento Espacial/fisiologia , Animais , Técnicas de Silenciamento de Genes , Masculino , Ratos , Ratos Long-Evans
12.
Eur J Neurosci ; 52(10): 4370-4374, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32394465

RESUMO

Mutations in the SCN1A gene encoding the Nav1.1 sodium channel cause several forms of epilepsy, the most severe is Dravet syndrome (DS). DS patients are at high risk for sudden death and seizures are often triggered by fever or hyperthermia. To improve understanding of how serotonergic ligands might influence DS in this study, we tested several drugs for their effect on hyperthermia-induced seizure using a mouse model of DS consisting of a heterozygous loss of function of Scn1A. We found that a mixed 5-HT2A/2C receptor agonist had no effect while a mixed 5-HT1B/D receptor agonist had a modest effect reducing the severity of seizures. Hypothesizing selective agonists may be more effective, we tested selective 5-HT1B and 5-HT1D receptor agonists, CP-93129 and GR-46611, respectively. Of these GR-46611 significantly increased the threshold of hyperthermia-induced seizure and lowered seizure severity. Given chronically at 1 mg kg-1  day-1 , GR-46611 also significantly improved survival of DS mice. Thus, 5-HT1D -receptors may represent a meaningful target for pharmacotherapy for DS with potential relevance for related forms of epilepsy, particularly those with a known sensory trigger such as heat.


Assuntos
Epilepsias Mioclônicas , Preparações Farmacêuticas , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões/tratamento farmacológico , Serotonina
13.
Proc Natl Acad Sci U S A ; 114(26): 6836-6841, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607094

RESUMO

The Nav1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Nav) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Nav1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Nav channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Nav1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Nav1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Nav1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Nav1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Nav channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Nav1.1 function.


Assuntos
Acetamidas/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Venenos de Aranha/farmacologia , Aranhas/química , Tiazóis/farmacologia , Animais , Humanos , Ativação do Canal Iônico/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Domínios Proteicos , Venenos de Aranha/química , Xenopus laevis
14.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709127

RESUMO

BACKGROUND: Genetic variants in voltage-gated sodium channels (Nav) encoded by SCNXA genes, responsible for INa, and Kv4.3 channels encoded by KCND3, responsible for the transient outward current (Ito), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that Kv4.3 and Nav variants regulate each other's function, thus modulating INa/Ito balance in cardiomyocytes and INa/I(A) balance in neurons. METHODS: Bicistronic and other constructs were used to express WT or variant Nav1.5 and Kv4.3 channels in HEK293 cells. INa and Ito were recorded. RESULTS: SCN5A variants associated with BrS reduced INa, but increased Ito. Moreover, BrS and SCA19/22 KCND3 variants associated with a gain of function of Ito, significantly reduced INa, whereas the SCA19/22 KCND3 variants associated with a loss of function (LOF) of Ito significantly increased INa. Auxiliary subunits Navß1, MiRP3 and KChIP2 also modulated INa/Ito balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF SCN5A variants can increase Kv4.3 cell-surface expression. CONCLUSION: Nav and Kv4.3 channels modulate each other's function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes.


Assuntos
Síndrome de Brugada/metabolismo , Canalopatias/metabolismo , Canais de Potássio Shal/metabolismo , Ataxias Espinocerebelares/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Síndrome de Brugada/genética , Canalopatias/genética , Variação Genética , Células HEK293 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Mutação Puntual , Canais de Potássio Shal/genética , Ataxias Espinocerebelares/genética , Canais de Sódio Disparados por Voltagem/genética
15.
J Neurosci ; 38(36): 7912-7927, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30104343

RESUMO

Dravet syndrome is a severe, childhood-onset epilepsy largely due to heterozygous loss-of-function mutation of the gene SCN1A, which encodes the type 1 neuronal voltage-gated sodium (Na+) channel α subunit Nav1.1. Prior studies in mouse models of Dravet syndrome (Scn1a+/- mice) indicate that, in cerebral cortex, Nav1.1 is predominantly expressed in GABAergic interneurons, in particular in parvalbumin-positive fast-spiking basket cell interneurons (PVINs). This has led to a model of Dravet syndrome pathogenesis in which Nav1.1 mutation leads to preferential dysfunction of interneurons, decreased synaptic inhibition, hyperexcitability, and epilepsy. However, such studies have been implemented at early developmental time points. Here, we performed electrophysiological recordings in acute brain slices prepared from male and female Scn1a+/- mice as well as age-matched wild-type littermate controls and found that, later in development, the excitability of PVINs had normalized. Analysis of action potential waveforms indirectly suggests a reorganization of axonal Na+ channels in PVINs from Scn1a+/- mice, a finding supported by immunohistochemical data showing elongation of the axon initial segment. Our results imply that transient impairment of action potential generation by PVINs may contribute to the initial appearance of epilepsy, but is not the mechanism of ongoing, chronic epilepsy in Dravet syndrome.SIGNIFICANCE STATEMENT Dravet syndrome is characterized by normal early development, temperature-sensitive seizures in infancy, progression to treatment-resistant epilepsy, developmental delay, autism, and sudden unexplained death due to mutation in SCN1A encoding the Na+ channel subunit Nav1.1. Prior work has revealed a preferential impact of Nav1.1 loss on the function of GABAergic inhibitory interneurons. However, such data derive exclusively from recordings of neurons in young Scn1a+/- mice. Here, we show that impaired action potential generation observed in parvalbumin-positive fast-spiking interneurons (PVINs) in Scn1a+/- mice during early development has normalized by postnatal day 35. This work suggests that a transient impairment of PVINs contributes to epilepsy onset, but is not the mechanism of ongoing, chronic epilepsy in Dravet syndrome.


Assuntos
Potenciais de Ação/fisiologia , Epilepsias Mioclônicas/fisiopatologia , Interneurônios/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Córtex Somatossensorial/fisiopatologia , Animais , Segmento Inicial do Axônio/fisiologia , Modelos Animais de Doenças , Epilepsias Mioclônicas/genética , Camundongos Knockout , Convulsões/genética , Convulsões/fisiopatologia
16.
J Neurophysiol ; 122(5): 1975-1980, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31533007

RESUMO

Dravet syndrome is a severe form of childhood epilepsy characterized by frequent temperature-sensitive seizures and delays in cognitive development. In the majority (80%) of cases, Dravet syndrome is caused by mutations in the SCN1A gene, encoding the voltage-gated sodium channel NaV1.1, which is abundant in the central nervous system. Dravet syndrome can be caused by either gain-of-function mutation or loss of function in NaV1.1, making it necessary to characterize each novel mutation. Here we use a combination of patch-clamp recordings and immunocytochemistry to characterize the first known NH2-terminal amino acid duplication mutation found in a patient with Dravet syndrome, M72dup. M72dup does not significantly alter rate of fast inactivation recovery or rate of fast inactivation onset at any measured membrane potential. M72dup significantly shifts the midpoint of the conductance voltage relationship to more hyperpolarized potentials. Most interestingly, M72dup significantly reduces peak current of NaV1.1 and reduces membrane expression. This suggests that M72dup acts as a loss-of-function mutation primarily by impacting the ability of the channel to localize to the plasma membrane.NEW & NOTEWORTHY Genetic screening of a patient with Dravet syndrome revealed a novel mutation in SCN1A. Of over 700 SCN1A mutations known to cause Dravet syndrome, M72dup is the first to be identified in the NH2-terminus of NaV1.1. We studied M72dup using patch-clamp electrophysiology and immunocytochemistry. M72dup causes a decrease in membrane expression of NaV1.1 and overall loss of function, consistent with the role of the NH2-terminal region in membrane trafficking of NaV1.1.


Assuntos
Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/fisiopatologia , Feminino , Humanos , Imuno-Histoquímica , Lactente , Neurociências/métodos , Técnicas de Patch-Clamp
17.
Cephalalgia ; 39(4): 477-488, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29986598

RESUMO

INTRODUCTION: Familial hemiplegic migraine 3 is an autosomal dominant headache disorder associated with aura and transient hemiparesis, caused by mutations of the neuronal voltage-gated sodium channel Nav1.1. While a gain-of function phenotype is generally assumed to underlie familial hemiplegic migraine, this has not been fully explored. Indeed, a major obstacle in studying in vitro neuronal sodium channels is the difficulty in propagating and mutagenizing expression plasmids containing their cDNAs. The aim of this work was to study the functional effect of two previously uncharacterized hemiplegic migraine causing mutations, Leu1670Trp (L1670W) and Phe1774Ser (F1774S). METHODS: A novel SCN1A containing-plasmid was designed in silico and synthesized, and migraine mutations were inserted in this background. Whole-cell patch clamp was performed to investigate the functional properties of mutant Nav1.1 transiently expressed in Human Embryonic Kidney 293 cells. RESULTS AND CONCLUSIONS: We generated an optimized Nav1.1 expression plasmid that was extremely simple to handle and used the novel plasmid to study the functional effects of two migraine mutations. We observed that L1670W, but not F1774S, reduced current density and that both mutations led to a dramatic increase in persistent sodium currents, a depolarizing shift of the steady state-inactivation voltage-dependence, and a faster recovery from inactivation. The results are consistent with a major gain-of function effect underlying familial hemiplegic migraine 3. Our optimization strategy will help to characterize in an efficient manner the effect in vitro of mutations of neuronal voltage-gated sodium channels.


Assuntos
DNA Complementar/genética , Mutação com Ganho de Função/genética , Enxaqueca com Aura/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Células HEK293 , Humanos , Enxaqueca com Aura/diagnóstico , Estrutura Secundária de Proteína
18.
Mar Drugs ; 16(2)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29470418

RESUMO

Tetrodotoxin (TTX), the mode of action of which has been known since the 1960s, is widely used in pharmacology as a specific inhibitor of voltage-gated sodium channels (Nav channels). This toxin has contributed to the characterization of the allosteric model of the Nav channel, and to discriminating TTX-sensitive and TTX-resistant subtypes. In addition to its role as a pharmacological tool, TTX is now considered a therapeutic molecule, and its development should lead to its use in certain pathologies involving Nav channels, particularly in the field of pain. Specifically, the blockade of Nav channels expressed in nociceptive fibres is one strategy for alleviating pain and its deleterious consequences on health. Recent work has identified, in addition to the Nav1.7, 1.8 and 1.9 channels, the Nav1.1 subtype on dorsal root ganglion (DRG) neurons as a crucial player in mechanical and non-thermal pain. The sensitivity of Nav1.1 to TTX could be exploited at the therapeutic level, especially in chronic pain conditions.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Tetrodotoxina/farmacologia , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Humanos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo
19.
Int J Mol Sci ; 19(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142967

RESUMO

Calmodulin (CaM) is well known as an activator of calcium/calmodulin-dependent protein kinase II (CaMKII). Voltage-gated sodium channels (VGSCs) are basic signaling molecules in excitable cells and are crucial molecular targets for nervous system agents. However, the way in which Ca2+/CaM/CaMKII cascade modulates NaV1.1 IQ (isoleucine and glutamine) domain of VGSCs remains obscure. In this study, the binding of CaM, its mutants at calcium binding sites (CaM12, CaM34, and CaM1234), and truncated proteins (N-lobe and C-lobe) to NaV1.1 IQ domain were detected by pull-down assay. Our data showed that the binding of Ca2+/CaM to the NaV1.1 IQ was concentration-dependent. ApoCaM (Ca2+-free form of calmodulin) bound to NaV1.1 IQ domain preferentially more than Ca2+/CaM. Additionally, the C-lobe of CaM was the predominant domain involved in apoCaM binding to NaV1.1 IQ domain. By contrast, the N-lobe of CaM was predominant in the binding of Ca2+/CaM to NaV1.1 IQ domain. Moreover, CaMKII-mediated phosphorylation increased the binding of Ca2+/CaM to NaV1.1 IQ domain due to one or several phosphorylation sites in T1909, S1918, and T1934 of NaV1.1 IQ domain. This study provides novel mechanisms for the modulation of NaV1.1 by the Ca2+/CaM/CaMKII axis. For the first time, we uncover the effect of Ca2+, lobe-specificity and CaMKII on CaM binding to NaV1.1.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Cálcio/química , Calmodulina/química , Canal de Sódio Disparado por Voltagem NAV1.1/química , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HEK293 , Humanos , Cinética , Simulação de Acoplamento Molecular , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Termodinâmica
20.
J Neurosci ; 36(38): 9933-6, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27656030

RESUMO

UNLABELLED: Intraneuronal calcium stimulates the calpain-dependent conversion of p35 to p25, a CDK5 activator. It is widely believed that amyloid ß peptide (Aß) induces this conversion that, in turn, has an essential role in Alzheimer's disease pathogenesis. However, in vivo studies on p25 generation used transgenic mice overexpressing mutant amyloid precursor protein (APP) and presenilin (PS). Here, using single App knock-in mice, we show that p25 generation is an artifact caused by membrane protein overexpression. We show that massive Aß42 accumulation without overexpression of APP or presenilin does not produce p25, whereas p25 generation occurred with APP/PS overexpression and in postmortem mouse brain. We further support this finding using mice deficient for calpastatin, the sole calpain-specific inhibitor protein. Thus, the intracerebral environment of the APP/PS mouse brain and postmortem brain is an unphysiological state. SIGNIFICANCE STATEMENT: We recently estimated using single App knock-in mice that accumulate amyloid ß peptide without transgene overexpression that 60% of the phenotypes observed in Alzheimer's model mice overexpressing mutant amyloid precursor protein (APP) or APP and presenilin are artifacts (Saito et al., 2014). The current study further supports this estimate by invalidating key results from papers that were published in Cell These findings suggest that more than 3000 publications based on APP and APP/PS overexpression must be reevaluated.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Presenilina-1/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Fragmentos de Peptídeos/metabolismo , Presenilina-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA