Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 17(1): 774, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27716126

RESUMO

BACKGROUND: Drought stress tolerance for crop improvement is an important goal worldwide. Drought is a complex trait, and it is vital to understand the complex physiological, biochemical, and molecular mechanisms of drought tolerance to tackle it effectively. Osmotic adjustment, oxidative stress management (OSM), and cell membrane stability (CMS) are major components of cellular tolerance under drought stress. In the current study, we explored the molecular basis of OSM in the drought tolerant rice variety, Nagina 22 and compared it with the popular drought sensitive rice variety, IR 64, under drought imposed at the reproductive stage, to understand how the parental polymorphisms correlate with the superiority of Nagina 22 and tolerant bulk populations under drought. RESULTS: We generated recombinant inbred lines (RIL) from contrasting parents Nagina 22 and IR 64 and focussed on spikelet fertility (SF), in terms of its correlation with OSM, which is an important component of drought tolerance in Nagina 22. Based on SF under drought stress and its correlations with other yield related traits, we used superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) activity assays to establish the relationship between SF and OSM genes in the tolerant and sensitive lines. Among the OSM enzymes studied, GR had a significant and positive correlation with single plant yield (SPY) under drought stress. GR was also positively correlated with APX but negatively so with SOD. Interestingly, none of the enzyme-morphology correlations were significant under irrigated control (IC). Through genome-wide SNP analysis of the 21 genes encoding for OSM enzymes, we identified the functional polymorphisms between the parents and identified superior alleles. By using network analysis of OSM genes in rice, we identified the genes that are central to the OSM network. CONCLUSIONS: From the biochemical and morphological data and the SNP analysis, the superiority of Nagina 22 in spikelet fertility under drought stress is because of its superior alleles for SOD (SOD2, SODCC1, SODA) and GR (GRCP2) rather than for APX, for which IR 64 had the superior allele (APX8). Nagina 22 can bypass APX8 by directly interacting with SODA. For nine of the 11 genes present in the central network, Nagina 22 had the superior alleles. We propose that Nagina 22 tolerance could mainly be because of SODA which is a reactive oxygen scavenger in mitochondria which is directly associated with spikelet fertility.


Assuntos
Adaptação Biológica/genética , Secas , Genótipo , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Endogamia , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
2.
Plants (Basel) ; 8(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561513

RESUMO

Three Ethyl methansulphonate (EMS)-induced stay-green mutants (SGM-1, SGM-2 and SGM-3) and their wild-type (WT), were tested for their Stay-Green (SG) and drought tolerance nature as the relation between these two attributes is not yet established in rice. In the dark induced senescence assay, SGM-3 showed delayed senescence while SGM-1 and SGM-2 showed complete lack of senescence. Mutants showed stable transcript abundance over time, for 15 candidate genes (CGs) associated with senescence, compared to the WT. SGM-3 however showed moderately increasing transcript abundance over time for ATG6a, ATG4a, NYC1, NOL and NYC3. Only SGM-3 performed better than the WT for yield and harvest index under well irrigated as well as drought conditions, though all the mutants showed better performance for other agronomic traits under both the conditions and ascorbate peroxidase activity under drought. Thus, SG trait showed positive correlation with drought tolerance though only SGM-3 could convert this into higher harvest index. Sequence analysis of 80 senescence-associated genes including the 15 CGs showed non-synonymous mutations in four and six genes in SGM-1 and SGM-2 respectively, while no SNPs were found in SGM-3. Analysis of the earlier reported Quantitative Trait Loci (QTL) regions in SGM-3 revealed negligible variations from WT, suggesting it to be a novel SG mutant.

3.
Front Plant Sci ; 9: 1179, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233603

RESUMO

The Indian initiative, in creating mutant resources for the functional genomics in rice, has been instrumental in the development of 87,000 ethylmethanesulfonate (EMS)-induced mutants, of which 7,000 are in advanced generations. The mutants have been created in the background of Nagina 22, a popular drought- and heat-tolerant upland cultivar. As it is a pregreen revolution cultivar, as many as 573 dwarf mutants identified from this resource could be useful as an alternate source of dwarfing. A total of 541 mutants, including the macromutants and the trait-specific ones, obtained after appropriate screening, are being maintained in the mutant garden. Here, we report on the detailed characterizations of the 541 mutants based on the distinctness, uniformity, and stability (DUS) descriptors at two different locations. About 90% of the mutants were found to be similar to the wild type (WT) with high similarity index (>0.6) at both the locations. All 541 mutants were characterized for chlorophyll and epicuticular wax contents, while a subset of 84 mutants were characterized for their ionomes, namely, phosphorous, silicon, and chloride contents. Genotyping of these mutants with 54 genomewide simple sequence repeat (SSR) markers revealed 93% of the mutants to be either completely identical to WT or nearly identical with just one polymorphic locus. Whole genome resequencing (WGS) of four mutants, which have minimal differences in the SSR fingerprint pattern and DUS characters from the WT, revealed a staggeringly high number of single nucleotide polymorphisms (SNPs) on an average (16,453 per mutant) in the genic sequences. Of these, nearly 50% of the SNPs led to non-synonymous codons, while 30% resulted in synonymous codons. The number of insertions and deletions (InDels) varied from 898 to 2,595, with more than 80% of them being 1-2 bp long. Such a high number of SNPs could pose a serious challenge in identifying gene(s) governing the mutant phenotype by next generation sequencing-based mapping approaches such as Mutmap. From the WGS data of the WT and the mutants, we developed a genic resource of the WT with a novel analysis pipeline. The entire information about this resource along with the panicle architecture of the 493 mutants is made available in a mutant database EMSgardeN22 (http://14.139.229.201/EMSgardeN22).

4.
Front Plant Sci ; 9: 1578, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443261

RESUMO

Productivity of rice, world's most important cereal is threatened by high temperature stress, intensified by climate change. Development of heat stress-tolerant varieties is one of the best strategies to maintain its productivity. However, heat stress tolerance is a multigenic trait and the candidate genes are poorly known. Therefore, we aimed to identify quantitative trait loci (QTL) for vegetative stage tolerance to heat stress in rice and the corresponding candidate genes. We used genotyping-by-sequencing to generate single nucleotide polymorphic (SNP) markers and genotype 150 F8 recombinant inbred lines (RILs) obtained by crossing heat tolerant "N22" and heat susceptible "IR64" varieties. A linkage map was constructed using 4,074 high quality SNP markers that corresponded to 1,638 recombinationally unique events in this mapping population. Six QTL for root length and two for shoot length under control conditions with 2.1-12% effect were identified. One QTL rlht5.1 was identified for "root length under heat stress," with 20.4% effect. Four QTL were identified for "root length under heat stress as percent of control" that explained the total phenotypic variation from 5.2 to 8.6%. Three QTL with 5.3-10.2% effect were identified for "shoot length under heat stress," and seven QTL with 6.6-19% effect were identified for "shoot length under heat stress expressed as percentage of control." Among the QTL identified six were overlapping between those identified using shoot traits and root traits: two were overlapping between QTL identified for "shoot length under heat stress" and "root length expressed as percentage of control" and two QTL for "shoot length as percentage of control" were overlapping a QTL each for "root length as percentage of control" and "shoot length under heat stress." Genes coding 1,037 potential transcripts were identified based on their location in 10 QTL regions for vegetative stage heat stress tolerance. Among these, 213 transcript annotations were reported to be connected to stress tolerance in previous research in the literature. These putative candidate genes included transcription factors, chaperone proteins (e.g., alpha-crystallin family heat shock protein 20 and DNAJ homolog heat shock protein), proteases, protein kinases, phospholipases, and proteins related to disease resistance and defense and several novel proteins currently annotated as expressed and hypothetical proteins.

5.
Rice (N Y) ; 10(1): 28, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28584974

RESUMO

BACKGROUND: Heat stress is one of the major abiotic threats to rice production, next to drought and salinity stress. Incidence of heat stress at reproductive phase of the crop results in abnormal pollination leading to floret sterility, low seed set and poor grain quality. Identification of QTLs and causal genes for heat stress tolerance at flowering will facilitate breeding for improved heat tolerance in rice. In the present study, we used 272 F8 recombinant inbred lines derived from a cross between Nagina22, a well-known heat tolerant Aus cultivar and IR64, a heat sensitive popular Indica rice variety to map the QTLs for heat tolerance. RESULTS: To enable precise phenotyping for heat stress tolerance, we used a controlled phenotyping facility available at ICAR-Indian Institute of Wheat and Barley Research, Karnal, India. Based on 'days to 50% flowering' data of the RILs, we followed staggered sowing to synchronize flowering to impose heat stress at uniform stage. Using the Illumina infinium 5K SNP array for genotyping the parents and the RILs, and stress susceptibility and stress tolerance indices (SSI and STI) of percent spikelet sterility and yield per plant (g), we identified five QTLs on chromosomes 3, 5, 9 and 12. The identified QTLs explained phenotypic variation in the range of 6.27 to 21. 29%. Of these five QTLs, two high effect QTLs, one novel (qSTIPSS9.1) and one known (qSTIY5.1/qSSIY5.2), were mapped in less than 400 Kbp genomic regions, comprising of 65 and 54 genes, respectively. CONCLUSIONS: The present study identified two major QTLs for heat tolerance in rice in narrow physical intervals, which can be employed for crop improvement by marker assisted selection (MAS) after development of suitable scorable markers for breeding of high yielding heat tolerant rice varieties. This is the first report of a major QTL for heat tolerance on chromosome 9 of rice. Further, a known QTL for heat tolerance on chromosome 5 was narrowed down from 23 Mb to 331 Kbp in this study.

6.
Mitochondrial DNA B Resour ; 2(2): 819-820, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33473995

RESUMO

Rice (Oryza sativa) is the predominant staple food crop belonging to the Poaceae family. In this study, complete chloroplast genome sequence of O. sativa aus-type variety Nagina-22 was characterized through de novo assembly. The genome is a circular DNA molecule of 134,503 bp and has typical quadripartite structures including large single copy region (80,548 bp), small single copy region (12,347 bp), and a pair of inverted repeats (20,804 bp). A total of 120 genes were predicted in the genome, including 77 protein-coding genes, 8 open reading frame genes, 31 tRNA genes, and 4 rRNA genes. Phylogenetic analysis confirmed a close taxonomical relationship with O. sativa ssp. Indica species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA