RESUMO
Microfluidics is revolutionizing the production of microparticles and nanoparticles, offering precise control over dimensions and internal structure. This technology facilitates the creation of colloidal delivery systems capable of encapsulating and releasing nutraceuticals. Nutraceuticals, often derived from food-grade ingredients, can be used for developing functional foods. This review focuses on the principles and applications of microfluidic systems in crafting colloidal delivery systems for nutraceuticals. It explores the foundational principles behind the development of microfluidic devices for nutraceutical encapsulation and delivery. Additionally, it examines the prospects and challenges with using microfluidics for functional food development. Microfluidic systems can be employed to form emulsions, liposomes, microgels and microspheres, by manipulating minute volumes of fluids flowing within microchannels. This versatility can enhance the dispersibility, stability, and bioavailability of nutraceuticals. However, challenges as scaling up production, fabrication complexity, and microchannel clogging hinder the widespread application of microfluidic technologies. In conclusion, this review highlights the potential role of microfluidics in design and fabrication of nutraceutical delivery systems. At present, this technology is most suitable for exploring the role of specific delivery system features (such as particle size, composition and morphology) on the stability and bioavailability of nutraceuticals, rather than for large-scale production of nutraceutical delivery systems.
RESUMO
BACKGROUND: Urolithin B (UB), the antioxidant polyphenol has a protective impact on several organs against oxidative stress. However, its bioactivity is limited by its hydrophobic structure. In the current study, UB was encapsulated into a liposomal structure to improve its bioactivities anticancer, and antimicrobial potential. METHOD: The UB nano-emulsions (UB-NE) were synthesized and characterized utilizing FESEM, DLS, FTIR, and Zeta-potential analysis. The UB-NMs' selective toxicity was studied by conducting an MTT assay on MCF-7, PANC, AGS, and ASPC1 cells. The AO/PI analysis verified the UB-NMs' cytotoxicity on ASPC1 cell lines and approved the MTT results. Finally, the antibacterial activity of the UB-NMs was studied on both gram-positive (B. subtilis, S. aureus) and gram-negative (E. Coli, P. aeruginosa) bacteria by conducting MIC and MBC analysis. RESULT: The 68.15 nm UB-NMs did not reduce the normal HDF cells' survival. However, they reduced the cancer cells' (PANC and AGS cell lines) survival at high treatment concentrations (> 250 µg/mL) compared with normal HDF and cancer MCF-7 cells. Moreover, the IC50 doses of UB-NMs for the ASPC1 and PANC cancer cells were measured at 44.87, and 221.02 µg/mL, respectively. The UB-NMs selectively exhibited apoptotic-mediated cytotoxicity on the human pancreatic tumor cell line (ASPC1) by down-regulating BCL2 and NFKB gene expression. Also, the BAX gene expression was up-regulated in the ASPC1-treated cells. Moreover, they exhibited significant anti-bactericidal activity against the E. coli (MIC = 50 µg/mL, MBC = 150 µg/mL), P. aeruginosa (MIC = 75 µg/mL, MBC = 275 µg/mL), B. subtilis (MIC = 125 µg/mL, MBC = 450 µg/mL), and S. aureus (MIC = 50 µg/mL, MBC = 200 µg/mL) strains. CONCLUSION: The significant selective cytotoxic impact of the UB-NMs on the human pancreatic tumor cell line makes it an applicable anti-pancreatic cancer compound. Moreover, the antibacterial activity of UB-NMs has the potential to decrease bacterial-mediated pancreatic cancer. However, several bacterial strains and further cancer cell lines are required to verify the UB-NMs' anticancer potential.
Assuntos
Escherichia coli , Neoplasias Pancreáticas , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Células MCF-7RESUMO
Nano-emulsions are receiving great attention in various industries, especially in the food sector. Peculiar properties of nano-sized droplets and high surface area are most suited for the development and delivery of functional ingredients. Nano-emulsions systems are suitable for encapsulation, protection, improving bioavailability, and target release of sensitive functional compounds. Nano-emulsions have promising potential for the delivery of nutraceuticals, probiotics, flavors, and colors. Nano-emulsions with active ingredients (antimicrobials) have a key part in ensuring food safety, nutrition, and quality of food. Nanoemulsions can also be used for biodegradable coating, packaging, antimicrobial coating, and quality and shelf life enhancement of different foods. The current review includes an overview of nanotechnology nano-emulsions, materials, techniques for formulation & production of nano-emulsions for food and nutrition. Furthermore, the analytical approaches used for the characterization of nano-emulsions and finally, the applications and limitations of nano-emulsions in the food industry are discussed in detail. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05387-3.
RESUMO
Skin, largest organ of human, is directly exposed to environment and hence is prone to high rates of injuries and microbial infections. Over the passage of time these microbes have developed resistance to antibiotics making them ineffective especially in lower doses and hence, higher dosages or new drugs are required. The current study deals with designing of nano-emulsion (NE) formulations composed of garlic and ginger oils (0.1 %) with neomycin sulphate used in different ratios (0.001, 0.01 and 0.1 %) and combinations. The resulting NEs were characterized for droplet size (145-304 nm), zetapotential (-3.0-0.9 mV), refractive index (1.331-1.344), viscosity (1.10-1.23cP), transmittance (96-99 %), FT-IR and HPLC and found stable over a period of three months. All NEs were also found effective against both gram positive and negative bacterial strains i.e., B. spizizenii, S. aureus, E. coli and S. enterica as compared to pure neomycin sulphate (NS) used as control with highest activity recorded for NE-2 and NE-4 against all strains showing zone of inhibition in range of 22-30 mm and 21-19 mm, respectively. NEs were also tested using rabbit skin excision wound model which potentiates that all the NEs resulted in early recovery with 86-100 % wound healing achieved in 9 days as compared to NS ointment (71 %). The studies confirmed that essential oils when used in combination with traditional drug can lead to much higher efficacies as compared to pure drugs.
RESUMO
Polyurea (PU) nano-capsules have received voluminous interest in various fields due to their biocompatibility, high mechanical properties, and surface functionality. By incorporating magnetic nanoparticle (MNPs) into the polyurea system, the attributes of both PU and MNPs can be combined. In this work, we describe a facile and quick method for preparing magnetic polyurea nano-capsules. Encapsulation of ionic liquid-modified magnetite nanoparticles (MNPs), with polyurea nano-capsules (PU NCs) having an average size of 5-20 nm was carried out through interfacial polycondensation between amine and isocyanate monomers in inverse nano-emulsion (water-in-oil). The desired magnetic PU NCs were obtained utilizing toluene and triple-distilled water as continuous and dispersed phases respectively, polymeric non-ionic surfactant cetyl polyethyleneglycol/polypropyleneglycol-10/1 dimethicone (ABIL EM 90), diethylenetriamine, ethylenediamine diphenylmethane-4,4'-diisocyanate, and various percentages of the ionic liquid-modified MNPs. High loading of the ionic liquid-modified MNPs up to 11 wt% with respect to the dispersed aqueous phase was encapsulated. The magnetic PU NCs were probed using various analytical instruments including electron microscopy, infrared spectroscopy, X-ray diffraction, and nuclear magnetic spectroscopy. This unequivocally manifested the successful synthesis of core-shell polyurea nano-capsules even without utilizing osmotic pressure agents, and confirmed the presence of high loading of MNPs in the core.
Assuntos
Composição de Medicamentos/métodos , Nanopartículas de Magnetita/química , Nanocápsulas/química , Polímeros/química , DEET/química , Emulsões , Isocianatos/química , Nanopartículas de Magnetita/ultraestrutura , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Poliaminas/química , Polimerização , Tolueno/química , Compostos de Trimetilsilil/químicaRESUMO
PURPOSE: The aim of this study was to formulate nano-emulsions comprising natural oils and the active pharmaceutical ingredients (APIs) clofazimine (CLF), artemisone (ATM) and decoquinate (DQ) in order to determine effectiveness of the nano-emulsions for topical delivery of the APIs. The APIs alone do not possess suitable physicochemical properties for topical drug delivery. METHODS: Nano-emulsions were formulated with olive and safflower oils encapsulating the APIs. Skin diffusion and tape stripping studies were performed. By using the lactate dehydrogenase (LDH) assay, in vitro toxicity studies were carried out on immortalized human keratinocytes (HaCaT) cell line to determine cytotoxicities due to the APIs and the nano-emulsions incorporating the APIs. RESULTS: The nano-emulsions were effective in delivering the APIs within the stratum corneum-epidermis and the epidermis-dermis, were non-cytotoxic towards HaCaT cell lines (p < 0.05) and inhibited Mycobacterium tuberculosis in vitro. CONCLUSION: Natural oil nano-emulsions successfully deliver CLF, ATM and DQ and in principle could be used as supplementary topical treatment of cutaneous tuberculosis (CTB). Graphical Abstract á .
Assuntos
Artemisininas/administração & dosagem , Clofazimina/administração & dosagem , Decoquinato/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Azeite de Oliva/química , Administração Tópica , Artemisininas/química , Linhagem Celular , Clofazimina/química , Decoquinato/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Emulsões , HumanosRESUMO
Currently, the biomimetic approach of drawing inspiration from nature has frequently been employed in designing drug nanocarriers (NCs) of actively target various diseases, ranging from cancer to neuronal and inflammation pathologies. The cell-membrane coating can confer upon the inner nanomaterials a biological identity and the functions exhibited by the cells from which the membrane is derived. Monocyte- and macrophage-membrane-coated nanomaterials have emerged as an ideal delivery system to target inflamed vasculature. Herein, we developed two biomimetic NCs using a human-derived leukaemia monocytic cell line (THP-1), either undifferentiated or differentiated by phorbol 12-myristate 13-acetate (PMA) into adherent macrophage-like cells as membrane sources for NC coating. We employed a secondary oil-in-water nano-emulsion (SNE) as the inner core, which served as an optimal NC for high payloads of lipophilic compounds. Two different biomimetic systems were produced, combining the biomimetic features of biological membranes with the physicochemical and nano-sized characteristics of SNEs. These systems were named Monocyte NEsoSome (M-NEsoSome) and Macrophage NEsoSome (M0-NEsoSome). Their uptake ability was investigated in tumour necrosis factor alfa (TNFα)-treated human umbilical vein endothelial cells (HUVECs), selected as a model of inflamed endothelial cells. The M0 membrane coating demonstrated accelerated internalisation compared with the monocyte coating and notably surpassed the uptake rate of bare NCs. In conclusion, M0-NEsoSome NCs could be a therapeutic system for targeting inflamed endothelial cells and potentially delivering anti-inflammatory drugs in vascular inflammation.
RESUMO
As a natural flavoring agent, vanilla essential oil has a special aroma and flavor, but its volatility and instability limit its value. Therefore, in this study, vanilla essential oil was compounded with cinnamon essential oil to prepare nano-emulsions (composite nano-emulsions called C/VT and C/VM), and the stability of the composite essential oil emulsions was investigated. Transmission electron microscopy (TEM) images showed that the nano-emulsions were spherical in shape and some flocs were observed in C/VM and C/VT. The results showed that the average droplet sizes of C/VM and C/VT increased only by 14.99% and 15.01% after heating at 100 °C for 20 min, and the average droplet sizes were less than 120 nm after 24 days of storage at 25 °C. Possibly due to the presence of reticulated flocs, which have a hindering effect on the movement of individual droplets, the instability indices of C/VM and C/VT were reduced by 34.9% and 39.08%, respectively, in comparison to the instability indices of C/VM and C/VT. In addition, the results of antioxidant experimental studies showed that the presence of composite essential oil flocs had no significant effect on the antioxidant capacity. These results indicate that the improved stability of the composite essential oil nano-emulsions is conducive to broadening the application of vanilla essential oil emulsions.
RESUMO
The use of soy protein isolate (SPI) nanoparticles as a stabilizer in nano-emulsion systems has garnered significant interest. While metal-phenolic networks (MPNs) have been explored for their multifunctional surface modification capabilities, their integration with food protein-based delivery systems remains less explored. In this study, we attempt to develop a novel strategy to encapsulate cinnamaldehyde using MPNs (EGCG-Fe3+) with self-assembling soy protein nanoparticles (SE-Fe NPs) as a stabilizer for nano-emulsions. UV, Raman, and X-ray photoelectron spectroscopy analyses demonstrated that SE-Fe NPs were generated through metal-phenolic coordination and covalent interactions. SE-Fe NPs had a narrower particle size distribution and enhanced radical scavenging (up to 3.35-fold), as well as thermal stability. Furthermore, the smaller droplet size, higher modulus, higher cinnamaldehyde encapsulation efficiency (from 63.5% to 84.2%), and improved bio-accessibility of SE-Fe NPs stabilized nano-emulsions delivery system demonstrated in this study shows promising future applications in the food industry.
RESUMO
Rheumatoid arthritis (RA) is a chronic autoimmune inflammation. Excessive proliferation and inadequate apoptosis of synovial macrophages are the crucial events of RA. Therefore, delivering therapeutic molecules to synovial macrophages specifically to tackle apoptotic insufficiency probably can be an efficient way to reduce joint inflammation and bone erosion. Based on the characteristics of dextran sulphate (DS) specifically binding scavenger receptor A (SR-A) on macrophage and celastrol (CLT) inducing apoptosis, we designed synovial macrophage-targeted nano-emulsions encapsulated with CLT (SR-CLTNEs) and explored their anti-RA effect. After intravenous injection, fluorescence-labelled SR-CLTNEs successfully targeted inflammatory joints and synovial macrophages in a mouse model of RA, with the macrophage targeting efficiency of SR-CLTNEs, CLTNEs and free DID was 20.53%, 13.93% and 9.8%, respectively. In vivo and in vitro studies showed that SR-CLTNEs effectively promoted the apoptosis of macrophages, reshaped the balance between apoptosis and proliferation, and ultimately treated RA in a high efficiency and low toxicity manner. Overall, our work demonstrates the efficacy of using SR-CLTNEs as a novel nanotherapeutic approach for RA therapy and the great translational potential of SR-CLTNEs.
Assuntos
Apoptose , Artrite Reumatoide , Emulsões , Macrófagos , Triterpenos Pentacíclicos , Animais , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/administração & dosagem , Artrite Reumatoide/tratamento farmacológico , Apoptose/efeitos dos fármacos , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas/química , Masculino , Triterpenos/farmacologia , Triterpenos/administração & dosagem , Membrana Sinovial/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Proliferação de Células/efeitos dos fármacos , Sulfato de DextranaRESUMO
In this study, resveratrol-loaded nano-emulsions were added to yogurts, improving the physicochemical properties and functional factors and realizing the development of nutrient-fortified yogurt. Yogurts added with free resveratrol (Y-R), resveratrol-loaded emulsions stabilized by sodium caseinate (Y-NN), decaglycerol monooleate (Y-DN), and sodium caseinate-decaglycerol monooleate (Y-DND) were evaluated for their physicochemical properties, including pH, titratable acidity, syneresis, and textural parameters, with 5-day intervals for 15-day storage. The resveratrol retention rate was analyzed in the Y-R, Y-NN, Y-DN, and Y-NDN groups during 15 days of storage. The dynamic bioaccessibility of resveratrol and the NMR-based nutritional profile of yogurt in the Y-R, Y-NN, Y-DN, and the Y-NDN group were investigated after in vitro digestion. The results demonstrated that the addition of resveratrol emulsion decreased the hardness of yogurt while evaluating its titratable acidity and water-holding capacity, which were characterized by high stability. The stability of resveratrol added in the form of an emulsion was significantly higher than that of the free form. Compared with the other groups, the yogurt formulated with sodium caseinate/decaglycerol monooleate (NaCas/DGMO) emulsion showed the highest resveratrol retention rate, about 70%. In vitro digestion showed that encapsulation effectively and persistently improved the dynamic bioaccessibility of resveratrol. Additionally, NMR-based nutritional profile analysis before and after in vitro digestion demonstrated that resveratrol emulsion nutritional fortification promoted the release of nutrients, improving the nutritional value of yogurt. These findings offered theoretical guidance and technical support for the use of resveratrol nano-emulsions in yogurt.
RESUMO
The present research investigates the effectiveness of nano-emulsified coatings (C-1, C-2, and C-3) in preserving the kiwifruit at a temperature of 10 ± 2 °C with 90-95 % relative humidity (RH) for 30 days. The nano-emulsions were prepared from varied carboxymethyl cellulose (CMC) concentrations with different combinations of essential oils such as thyme, clove, and cardamom. Dynamic light scattering investigation with Zeta Sizer revealed that C-1, C-2, and C-3 nano-emulsions have nano sizes of 81.3 ± 2.3, 115.3 ± 4.2, and 63.2 ± 3.2 nm, respectively. The scanning electron microscopy images showed that the nanoemulsion of C-1 had homogenous spherical globules, C-2 had voids, and C-3 showed a non-porous structure with uniform dispersion. The X-ray diffraction analysis indicated that C-1, C-2, and C-3 nano-emulsion exhibited distinct crystallinity and peaks. The nano-emulsion C-1 had reduced crystallinity, while C-2 had lower intensity peaks, and C-3 had increased crystallinity. The results documented that compared to control kiwifruit samples, the samples coated with C-3 nano-emulsion have decreased weight loss, decay incidence, soluble solids, maturity index activity, ethylene production, total bacterial count, and increased titratable acid, and firmness attributes. The results of current research are promising and would be applicable in utilization in industrial applications.
Assuntos
Filmes Comestíveis , Óleos Voláteis , Conservação de Alimentos/métodos , Carboximetilcelulose Sódica/química , Temperatura , Emulsões/químicaRESUMO
To improve the stability of pollock bone broth, compound emulsifiers were employed and evaluated in nano-emulsions from pollock bones (PBNs). The microstructure, creaming index, particle size, zeta potential, and viscosity of PBNs were characterized and the stability of PBNs was investigated. It revealed that the concentration of compound emulsifiers is one of the principal factors for particle size, zeta potential, and viscosity of PBNs, and 0.9% of sodium caseinate and sucrose fatty acid ester (CS-SE) can make the PBN display good stability. Its particle size changed from 81.17 ± 1.33 nm to 19.62 ± 0.21 nm when the temperature ranged from 40 °C to 80 °C, and its creaming index could reach a maximum (90.83%) among all PBNs in 4 months of freeze-thaw assays. PBN stability could be improved by the compound emulsifier (CS-SE), which offers a theoretical basis for the application of pollock bone broth.
Assuntos
Emulsificantes , Emulsões , Tamanho da Partícula , Emulsificantes/química , Emulsões/química , Animais , Viscosidade , Osso e Ossos/química , Osso e Ossos/efeitos dos fármacosRESUMO
The current global epidemic of hypertension is not a disease in and of itself but rather a significant risk factor for serious cardiovascular conditions such as peripheral artery disease, heart failure, myocardial infarction, and stroke. Although many medications that work through various mechanisms of action are available on the market in conventional formulations to treat hypertension, these medications face significant difficulties with their bioavailability, dosing, and associated side effects, which significantly reduces the effectiveness of their therapeutic interventions. Numerous studies have shown that nanocarriers and nanoformulations can minimize the toxicity associated with high doses of the drug while greatly increasing the drug's bioavailability and reducing the frequency of dosing.
This review sheds light on the difficulties posed by traditional antihypertensive formulations and highlights the necessity of oral nanoparticulate systems to solve these issues. Because hypertension has a circadian blood pressure pattern, chronotherapeutics can be very important in treating the condition. On the other hand, nanoparticulate systems can be very important in managing hypertension.
RESUMO
In recent years, bioactive constituents from plants have been investigated as an alternative to synthetic approaches of therapeutics. Mangiferin (MGF) is a xanthone glycoside extracted from Mangifera indica and has shown numerous medicinal properties, such as antimicrobial, anti-diarrhoeal, antiviral, anti-inflammatory, antihypertensive, anti-tumours, and anti-diabetic effects. However, there are numerous challenges to its effective therapeutic usage, including its low water solubility, limited absorption, and poor bioavailability. Nano formulation approaches in recent years exhibited potential for the delivery of phytoconstituents with key benefits of high entrapment, sustained release, enhanced solubility, stability, improved pharmacokinetics, and site-specific drug delivery. Numerous techniques have been employed for the fabrication of MGF-loaded Nano formulations, and each technique has its advantages and limitations. The nanocarriers that have been employed to fabricate MGF nanoformulations for various therapeutic purposes include; polymeric nanoparticles, nanostructure, lipid carriers, polymeric micelles, Nano emulsions, microemulsion & self-microemulsifying drug delivery system, solid lipid nanoparticles, gold nanoparticles, carbon nanotubes, transfersomes, nanoliposomes, ethosomes & transethosomes, and glycethosomes. Different biopharmaceutical characteristics (size, shape, entrapment efficiency, zeta potential, in vitro drug release, ex vivo drug permeation,, and in vivo studies) of the mentioned MGF-loaded nanocarriers have been methodically discussed. Patent reports are also included to further strengthen the potential of MGF in the management of diseases.
RESUMO
Mosquito borne diseases are impeding to human health due to their uncontrolled proliferation. Various commercial insecticides currently used become ineffective due to the resistance acquired by mosquitoes. It is necessary and a priority to combat mosquito population. Plant-based products are gaining interest over the past few decades due to their environment friendliness and their effectiveness in controlling mosquitoes along with their lack of toxicity. Essential oil nanoemulsions are found to be highly effective when compared to their bulk counterparts. Due to their nano size, they can effectively interact and yield 100 % mortality with the mosquito larvae and encounter with minimal concentrations. This is the main advantage of the nano-sized particles due to which they find application in various disciplines and have also received the attention of researchers globally. There are various components present in essential oils that have been analysed using GC-MS. These findings reflect the challenge to mosquitoes to gain resistance against each component and therefore it requires time. Commercially used repellants are synthesised using materials like DEET are not advisable for topical application on human skin and essential oil nanoemulsions could be an ideal non toxic candidate that can be used against mosquito adults and larvae. However, there are other synthesis, optimisation parameters, and toxicity towards non-target organisms that have to be taken into account when essential oil nanoemulsions are considered for commercial applications. Here we review the strategies used by the nanoemulsions against the mosquito population. Apart from the positive effects, their minor drawbacks also have to be scrutinised in the future.
Assuntos
Culicidae , Emulsões , Inseticidas , Controle de Mosquitos , Óleos Voláteis , Óleos Voláteis/farmacologia , Controle de Mosquitos/métodos , Animais , Emulsões/química , Culicidae/efeitos dos fármacos , Humanos , Nanopartículas/química , Larva/efeitos dos fármacosRESUMO
The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.
RESUMO
Citrus essential oils are natural products with various bioactive properties (e.g., antimicrobial, antioxidant, and antimutagenic activities), that are generally recognized as safe (GRAS) by Food and Drug Administration (FDA) to be used as flavorings and food additives. Nonetheless, due to their high volatility, low solubility in water, low thermal stability, susceptibility to oxidation, and strong flavor, their applications in the food industry are limited. Nanotechnology allows the incorporation of citrus essential oils into nano-emulsion systems, thus protecting them from the deterioration caused by external factors and maintaining or even improving their functional properties. This study aims to summarize the antioxidant, antimicrobial, and antimutagenic effects of the nano-emulsions based on essential oils from citrus peels with emphasis on their mechanisms of action and potential applications in, e.g., foods, pharmaceuticals, and cosmetics.
RESUMO
Fresh fruits and vegetables are important sources of minerals, vitamins, fibers, and antioxidants, essential for human well-being. However, some fruits and vegetables are highly perishable with a very short shelf life during storage. Serious consumer concern over the use of chemical preservatives for this purpose has led to a green revolution and a sustainable era where the design and fabrication of edible coatings have attracted considerable interest. In recent years, scientific communities have paid great attention to the development of bio-based edible coatings to extend the postharvest shelf life of fruits and vegetables. Furthermore, nanotechnology has been distinguished as a great strategy for improving coating properties, including a better water barrier and better mechanical, optical, and microstructural properties, as well as gradual and controlled release of bioactive compounds. In this work, patent articles on plant-based nano-emulsions as edible coatings in the extension of fruit and vegetable shelf life were reviewed. The Patentscope search service and Espacenet portal were used, applying a query strategy composed of mesh terms and inclusion criteria. Through database searching, a total of 16 patent documents met the inclusion criteria. Further, to demonstrate the innovation trends in this topic, all relevant patents are described at the end of the study, along with the components, technology, application, and advantages of developed preparations.
RESUMO
Strawberry fruit is highly susceptible to decay by fungi. The objective of this study was to determine if essential oils (EOs) or nano-emulsions (Nano-EM) of EOs from Thymus vulgaris (Th), Matricaria chamomilla (Mc), Pistacia atlantica (Pa), or Mentha longifolia (Me) could inhibit growth of strawberry spoilage fungi Botrytis cinerea and their effect, if any, on strawberry quality parameters. An In vitro study showed that Th and Me EOs had the same minimal inhibitory concentrations (MIC) of 0.021 % while the MICs for Mc and Pa EOs were 0.9 % and 1.5 %, respectively. Th and Me EOs were used for subsequent experiments. In the second experiment, the application of Th and Me EOs and their nano-EM at 0.021, 0.1, 0.5 and 1 % were studied to control B. cinerea growth on the fruit surface. Nano-EM of EOs had higher antifungal activity in the control of B. cinerea than EOs on fruit surface. Generally, antifungal activity was increased at higher concentrations of Nano-EM, but in the case of EOs, their antifungal activity was not increased by increasing concentration. Nano-EM of EOs with 0.5 % was selected for further study. Finally, the quality changes and postharvest losses of fruit treated with Nano-EM of EOs of Th and Me at 4 °C were studied. The results of third experiment showed that Nano-EM of both EOs reduced microbial load, decay index, weight loss and induced greater firmness, vitamin C, total flavonoid and antioxidant activity in strawberry during storage. NanoEM-ThEO 0.5 % was more effective than NanoEM-MeEO 0.5 % to retain strawberry firmness, vitamin C and total flavonoid.