Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(1): e2303688, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670541

RESUMO

Metal nanoparticles (MNPs) are synthesized using various techniques on diverse substrates that significantly impact their properties. However, among the substrate materials investigated, the major challenge is the stability of MNPs due to their poor adhesion to the substrate. Herein, it is demonstrated how a newly developed H-glass can concurrently stabilize plasmonic gold nanoislands (GNIs) and offer multifunctional applications. The GNIs on the H-glass are synthesized using a simple yet, robust thermal dewetting process. The H-glass embedded with GNIs demonstrates versatility in its applications, such as i) acting as a room temperature chemiresistive gas sensor (70% response for NO2 gas); ii) serving as substrates for surface-enhanced Raman spectroscopy for the identifications of Nile blue (dye) and picric acid (explosive) analytes down to nanomolar concentrations with enhancement factors of 4.8 × 106 and 6.1 × 105 , respectively; and iii) functioning as a nonlinear optical saturable absorber with a saturation intensity of 18.36 × 1015 W m-2 at 600 nm, and the performance characteristics are on par with those of materials reported in the existing literature. This work establishes a facile strategy to develop advanced materials by depositing metal nanoislands on glass for various functional applications.

2.
Small ; : e2306990, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084443

RESUMO

High-performance electromagnetic wave (EMW) absorbers are essential for addressing electromagnetic pollution and military security. However, challenges remain in realizing cost-effectiveness and modulating absorbing properties. In this study, heterogeneous Co/nanoporous carbon (NPC) nano-islands are prepared by efficient method co-precipitation combined with in situ pyrolysis. The multi-regulation strategy of morphology, graphitization, and defect density is achieved by modulating the pyrolysis temperature. Adjusting the pyrolysis temperature can effectively balance the conductivity and defect density, optimizing the impedance matching and enhancing the attenuation. Furthermore, it facilitates obtaining the appropriate shape and size of Co magnetic nanoparticles (Co-MNPs), triggering strong surface plasmon resonance. This resonance, in turn, bolsters the synergy of dielectric and magnetic loss. The incorporation of porous nanostructures not only optimizes impedance matching and enhances multiple reflections but also improves interfacial polarization. Additionally, the presence of enriched defects and heteroatom doping significantly enhances dipole polarization. Notably, the absorber exhibits an impressive minimum reflection loss (RLmin ) of -73.87 dB and a maximum effective absorption bandwidth (EABmax ) of 6.64 GHz. The combination of efficient fabrication methods, a performance regulation strategy through pyrolysis temperature modulation, and radar cross section (RCS) simulation provides a high-performance EMW absorber and can pave the way for large-scale applications.

3.
Small ; 19(14): e2207177, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36703535

RESUMO

2D molybdenum disulfide (MoS2 ) is developed as a potential alternative non-precious metal electrocatalyst for energy conversion. It is well known that 2D MoS2 has three main phases 2H, 1T, and 1T'. However, the most stable 2H-phase shows poor electrocatalysis in its basal plane, compared with its edge sites. In this work, a facile one-step hydrothermal-driven in situ porousizing of MoS2 into self-supporting nano islands to maximally expose the edges of MoS2 grains for efficient utilization of the active stable sites at the edges of MoS2 is reported. The results show that such active, aggregation-free nano islands greatly enhance MoS2 's hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) bifunctional electrocatalytic activities. At a low overpotential of 248 and 300 mV, the porous MoS2 nano islands can generate a current density of 10 mA cm-2 in HER and OER, which is much better than typical nanosheet morphology. Surprisingly, the porous MoS2 nano islands even exhibit better performance than the current commercial RuO2 catalyst in OER. This discovery will be another effective strategy to promote robust 2H-phase, instead of 1T/1T'-phase, MoS2 to achieve efficient endurable bifunctional HER/OER, which is expected to further replace precious metal catalysts in industry.

4.
Molecules ; 25(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066088

RESUMO

Nano-islands are entities (droplets or other shapes) that are formed by spontaneous dewetting (agglomeration, in the early literature) of thin and very thin metallic (especially gold) films on a substrate, done by post-deposition heating or by using other sources of energy. In addition to thermally generated nano-islands, more recently, nanoparticle films have also been dewetted, in order to form nano-islands. The localized surface plasmon resonance (LSPR) band of gold nano-islands was found to be sensitive to changes in the surrounding environment, making it a suitable platform for sensing and biosensing applications. In this review, we revisit the development of the concept of nano-island(s), the thermodynamics of dewetting of thin metal films, and the effect of the substrate on the morphology and optical properties of nano-islands. A special emphasis is made on nanoparticle films and their applications to biosensing, with ample examples from the authors' work.


Assuntos
Ouro/química , Nanocompostos/química , Sistemas Automatizados de Assistência Junto ao Leito , Ressonância de Plasmônio de Superfície/instrumentação , Animais , Técnicas Biossensoriais/instrumentação , Hormônio do Crescimento/análise , Humanos , Dispositivos Lab-On-A-Chip , Leite/química , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos
5.
Sensors (Basel) ; 19(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591677

RESUMO

This study reports the fast hydrogenation and dehydrogenation of ultra-thin discrete platinum/palladium (Pt/Pd) bimetal over nano-structured Ag islands grown on rough alumina substrate by a RF magnetron sputtering technique. The morphology of Ag nanoislands was optimized by RF magnetron sputtering and rapid thermal annealing process. Later, Pt/Pd bimetal (10/10) nm were deposited by RF magnetron sputtering on the nanostructured Ag islands. After the surface morphological optimization of Ag nanoislands, the resultant structure Pt/Pd@Ag nanoislands at alumina substrate showed a fast and enhanced hydrogenation and dehydrogenation (20/25 s), response magnitude of 2.3% (10,000 ppm), and a broad detection range of 500 to 40,000 ppm at the operating temperature of 120 °C. The superior hydrogenation and dehydrogenation features can be attributed to the hydrogen induced changes in the work function of Pt/Pd bimetal which enhances the coulomb scattering of percolated Pt/Pd@Ag nanoislands. More importantly, the atomic arrangements and synergetic effects of complex metal alloy interfacial structure on Ag nanoislands, supported by rough alumina substrate incorporate the vital role in accelerating the H2 absorption and desorption properties.

6.
J Colloid Interface Sci ; 658: 301-312, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38109817

RESUMO

Ultrasmall platinum (Pt) nanozymes are used for catalytic therapy and oxygen (O2)-dependent photodynamic therapy (PDT) by harnessing the dual-enzyme activities of catalase (CAT) and peroxidase (POD). However, their applications as nanocatalysts are limited due to their low catalytic activity. Herein, we constructed a photothermal-promoted bimetallic nanoplatform (AuNTP@Pt-IR808) by depositing ultrasmall Pt nano-islands and modifying 1-(5-Carboxypentyl)-2-(2-(3-(2-(1-(5-carboxypentyl)-3,3-dimethylindolin-2-ylidene)ethylidene)-2-chlorocyclohex-1-en-1-yl)vinyl)-3,3-dimethyl-3H-indol-1-ium bromide (IR808) on gold nanotetrapod (AuNTP) with CAT/POD activities to enhance PDT/catalytic therapy. In the tumor microenvironment, the ultrasmall Pt can catalyze endogenous hydrogen peroxide (H2O2) to produce O2, relieving tumor hypoxia and enhancing the PDT performance. Moreover, AuNTP integration into the bimetallic nanoplatform showed good electron transfer properties and promoted the POD activity of ultrasmall Pt. Importantly, AuNTP@Pt-IR808 possessed higher photothermal conversion performance than single AuNTPs, which enhanced photothermal therapy (PTT). It also accelerated the CAT/POD dual-enzyme activities, and promoted the generation of singlet oxygen (1O2) and hydroxyl radical (OH). By enhancing the performances of PTT/PDT/catalytic therapy, the developed AuNTP@Pt-IR808 nanoplatform demonstrated good antitumor efficacy against breast cancer.


Assuntos
Nanopartículas Metálicas , Neoplasias , Fotoquimioterapia , Humanos , Linhagem Celular Tumoral , Ouro/farmacologia , Ouro/uso terapêutico , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Oxigênio , Platina/farmacologia , Microambiente Tumoral , Nanopartículas/química
7.
J Colloid Interface Sci ; 652(Pt A): 952-962, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634368

RESUMO

Rare earth (RE) composite fluorescent materials are favored by researchers in the field of anti-counterfeiting and ion sensing due to their fascinating optical properties. Ultra-small RE fluorescent nanoparticles are anchored on inorganic carriers by a simple preparation method to improve luminous intensity and hydrophilicity, which has not been explored yet. Herein, LaVO4: Eu3+ nano-islands anchored on silica with high fluorescence intensity and easy formation of stable colloidal solution is designed. Through a simple and mild hydrothermal approach, ultra-small LaVO4: Eu3+ nano-islands are highly dispersed on the surface of hierarchical hollow silica sphere (HHSS) to expose more luminescent centers. Remarkably, the stable HHSS@LaVO4: Eu3+ colloidal solution displayed highly sensitive and selective sensor for Fe3+ ions. The "island-sea synergy" structure formed by the LaVO4: Eu3+ nano-islands and the surrounding silica surface makes HHSS@LaVO4: Eu3+ to be an outstanding sensor for the effective detection of iron ions in water. In addition, HHSS@LaVO4: Eu3+ phosphor exhibit unique properties for anti-counterfeiting and encryption applications. These findings provide a promising strategy for the carrierisation of RE luminescent materials to improve optical properties and enable broader applications.

8.
Adv Mater ; 35(20): e2211103, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36967534

RESUMO

Academician Tao Zhang from China and co-workers designed the first Pt1 /FeOx single-atom catalysts (SACs) in 2011, and they proposed the concept of "single-atom catalysis" in the field of heterogeneous catalysis. Generally, it is easy for active metal single-atom sites on a carrier to migrate and aggregate, which results in poor performance; or the chemical bond between the metal atom and carrier is too strong (immovable), which results in passivation of the active site. Recently, "nano-island" type SACs were designed, in which the active metal atoms are isolated on the "islands", and can move within the respective "island", but the migration across the "island" is blocked, to achieve a dynamic confinement design of single atoms (that is, a "moving but not aggregating" design philosophy). Herein, a new concept of "single-atom nano-islands (SANIs)" is proposed to describe these congeneric "atomic-nano" systems in heterogeneous catalysis fields. Particularly, the SANIs are divided into three categories: "one-island-one-atom", "one-island-multi-atoms", and "island-sea synergism" architectures. The scientific significance and application principles of SANIs in versatile heterogeneous catalysis fields (i.e., thermocatalysis, electrocatalysis, and photocatalysis) are summarized. The challenges and proposals of SANIs are also provided.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123045, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37356391

RESUMO

To control the spread of the disease, the Zika virus (ZIKV), a flavivirus infection spread by mosquitoes and common in across the world, needs to be accurately and promptly diagnosed. This endeavour gets challenging when early-stage illnesses have low viral loads. As a result, we have created a biosensor based on surface-enhanced Raman scattering (SERS) for the quick, accurate, and timely diagnosis of the Zika virus. In this study, a glass coverslip was coated with silver nanoislands, which were then utilized as the surface for creating the sensing platform. Silver nanoislands exhibit strong plasmonic activity and good conductive characteristics. It enhances the Raman signals as a result and gives the SERS platform an appropriate surface. The created platform has been applied to Zika virus detection. With a limit of detection (LOD) of 0.11 ng/mL, the constructed sensor exhibits a linear range from 5 ng/mL to 1000 ng/mL. Hence, even at the nanogram scale, this technique may be a major improvement over clinical diagnosis approaches for making proper, precise, and accurate Zika virus detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Infecção por Zika virus , Zika virus , Animais , Humanos , Infecção por Zika virus/diagnóstico , Prata , Técnicas Biossensoriais/métodos , Análise Espectral Raman/métodos
10.
Nanomaterials (Basel) ; 13(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37887901

RESUMO

Organic-inorganic hybrid perovskite materials continue to attract significant interest due to their optoelectronic application. However, the degradation phenomenon associated with hybrid structures remains a challenging aspect of commercialization. To overcome the stability issue, we have assembled the methylammonium lead bromide nano islands (MNIs) on the backbone of poly-3-dodecyl-thiophene (PDT) for the first time. The structural and morphological properties of the MNI-PDT composite were confirmed with the aid of X-ray diffraction (XRD) studies, Field emission scanning electron microscope (FESEM), and X-ray photoelectron spectroscopy (XPS). The optical properties, namely absorption studies, were carried out by ultraviolet-visible spectroscopy. The fluorescent behavior is determined by photoluminescence (PL) spectroscopy. The emission peak for the MNI-PDT was observed at 536 nm. The morphology studies supported by FESEM indicated that the nano islands are completely covered on the surface of the polymer backbone, making the hybrid (MNI-PDT) stable under environmental conditions for three months. The interfacial interaction strategy developed in the present work will provide a new approach for the stabilization of hybrids for a longer time duration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA