Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2220852120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155895

RESUMO

Many photonic and electronic molecular properties, as well as chemical and biochemical reactivities are controlled by fast intramolecular vibrational energy redistribution (IVR). This fundamental ultrafast process limits coherence time in applications from photochemistry to single quantum level control. While time-resolved multidimensional IR-spectroscopy can resolve the underlying vibrational interaction dynamics, as a nonlinear optical technique it has been challenging to extend its sensitivity to probe small molecular ensembles, achieve nanoscale spatial resolution, and control intramolecular dynamics. Here, we demonstrate a concept how mode-selective coupling of vibrational resonances to IR nanoantennas can reveal intramolecular vibrational energy transfer. In time-resolved infrared vibrational nanospectroscopy, we measure the Purcell-enhanced decrease of vibrational lifetimes of molecular vibrations while tuning the IR nanoantenna across coupled vibrations. At the example of a Re-carbonyl complex monolayer, we derive an IVR rate of (25±8) cm-1 corresponding to (450±150) fs, as is typical for the fast initial equilibration between symmetric and antisymmetric carbonyl vibrations. We model the enhancement of the cross-vibrational relaxation based on intrinsic intramolecular coupling and extrinsic antenna-enhanced vibrational energy relaxation. The model further suggests an anti-Purcell effect based on antenna and laser-field-driven vibrational mode interference which can counteract IVR-induced relaxation. Nanooptical spectroscopy of antenna-coupled vibrational dynamics thus provides for an approach to probe intramolecular vibrational dynamics with a perspective for vibrational coherent control of small molecular ensembles.

2.
Nano Lett ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089683

RESUMO

Static electric fields play a considerable role in a variety of molecular nanosystems as diverse as single-molecule junctions, molecules supporting electrostatic catalysis, and biological cell membranes incorporating proteins. External electric fields can be applied to nanoscale samples with a conductive atomic force microscopy (AFM) probe in contact mode, but typically, no structural information is retrieved. Here we combine photothermal expansion infrared (IR) nanospectroscopy with electrostatic AFM probes to measure nanometric volumes where the IR field enhancement and the static electric field overlap spatially. We leverage the vibrational Stark effect in the polymer poly(methyl methacrylate) for calibrating the local electric field strength. In the relevant case of membrane protein bacteriorhodopsin, we observe electric-field-induced changes of the protein backbone conformation and residue protonation state. The proposed technique also has the potential to measure DC currents and IR spectra simultaneously, insofar enabling the monitoring of the possible interplay between charge transport and other effects.

3.
Nano Lett ; 24(1): 279-286, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117534

RESUMO

Emerging light-matter interactions in metal-semiconductor hybrid platforms have attracted considerable attention due to their potential applications in optoelectronic devices. Here, we demonstrate plasmon-induced near-field manipulation of trionic responses in a MoSe2 monolayer using tip-enhanced cavity-spectroscopy (TECS). The surface plasmon-polariton mode on the Au nanowire can locally manipulate the exciton (X0) and trion (X-) populations of MoSe2. Furthermore, we reveal that surface charges significantly influence the emission and interconversion processes of X0 and X-. In the TECS configuration, the localized plasmon significantly affects the distributions of X0 and X- due to the modified radiative decay rate. Additionally, within the TECS cavity, the electric doping effect and hot electron generation enable dynamic interconversion between X0 and X- at the nanoscale. This work advances our understanding of plasmon-exciton-hot electron interactions in metal-semiconductor-metal hybrid structures, providing a foundation for an optimal trion-based nano-optoelectronic platform.

4.
J Synchrotron Radiat ; 31(Pt 3): 613-621, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652580

RESUMO

The infrared beamline at BESSY II storage ring was upgraded recently to extend the capabilities of infrared microscopy. The endstations available at the beamline are now facilitating improved characterization of molecules and materials at different length scales and time resolutions. Here, the current outline of the beamline is reported and an overview of the endstations available is given. In particular, the first results obtained by using a new microscope for nano-spectroscopy that was implemented are presented. The capabilities of the scattering-type near-field optical microscope (s-SNOM) are demonstrated by investigating cellulose microfibrils, representing nanoscopic objects of a hierarchical structure. It is shown that the s-SNOM coupled to the beamline allows imaging to be performed with a spatial resolution of less than 30 nm and infrared spectra to be collected from an effective volume of less than 30 nm × 30 nm × 12 nm. Potential steps for further optimization of the beamline performance are discussed.

5.
J Synchrotron Radiat ; 31(Pt 3): 430-431, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682275

RESUMO

With several fourth-generation, or diffraction-limited, storage rings and multiple beamlines in operation, the missing range of the spectrum was infrared…until recently.

6.
J Synchrotron Radiat ; 31(Pt 3): 547-556, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630437

RESUMO

Fourth-generation synchrotron storage rings represent a significant milestone in synchrotron technology, offering outstandingly bright and tightly focused X-ray beams for a wide range of scientific applications. However, due to their inherently tight magnetic lattices, these storage rings have posed critical challenges for accessing lower-energy radiation, such as infrared (IR) and THz. Here the first-ever IR beamline to be installed and to operate at a fourth-generation synchrotron storage ring is introduced. This work encompasses several notable advancements, including a thorough examination of the new IR source at Sirius, a detailed description of the radiation extraction scheme, and the successful validation of our optical concept through both measurements and simulations. This optimal optical setup has enabled us to achieve an exceptionally wide frequency range for our nanospectroscopy experiments. Through the utilization of synchrotron IR nanospectroscopy on biological and hard matter samples, the practicality and effectiveness of this beamline has been successfully demonstrated. The advantages of fourth-generation synchrotron IR sources, which can now operate with unparalleled stability as a result of the stringent requirements for producing low-emittance X-rays, are emphasized.

7.
Nano Lett ; 23(12): 5437-5444, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327381

RESUMO

Analysis of the influence of dissimilar facets on the adsorption, stability, mobility, and reactivity of surface ligands is essential for designing ligand-coated nanocrystals with optimal functionality. Herein, para-nitrothiophenol and nitronaphthalene were chemisorbed and physisorbed, respectively, on Au nanocrystals, and the influence of different facets within a single Au nanocrystal on ligands properties were identified by IR nanospectroscopy measurements. Preferred adsorption was probed on (001) facets for both ligands, with a lower density on (111) facets. Exposure to reducing conditions led to nitro reduction and diffusion of both ligands toward the top (111) facet. Nitrothiophenol was characterized with a diffusivity higher than that of nitronaphthalene. Moreover, the strong thiol-Au interaction led to the diffusion of Au atoms and the formation of thiol-coated Au nanoparticles on the silicon surface. It is identified that the adsorption and reactivity of surface ligands were mainly influenced by the atomic properties of each facet, while diffusion was controlled by ligand-metal interactions.

8.
Nano Lett ; 23(19): 9114-9118, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751571

RESUMO

Our knowledge of the electromagnetic fields that power modern nanoscale optical measurements, including (non)linear tip-enhanced Raman and photoluminescence, chiefly stems from numerical simulations. Aside from idealized in silico vs heterogeneous (nano)structures in the laboratory, challenges in quantitative descriptions of nanoscale light-matter interactions more generally stem from the very nature of the problem, which lies at the interface of classical and quantum theories. This is particularly the case in ultrahigh spatial resolution measurements that are sensitive to local optical field variations that take place on subnanometer length scales. This work approaches this challenge through extinction-based spectral nanoimaging experiments. We demonstrate <1 nm spatial resolution in hyperspectral extinction measurements that track spatially varying plasmon resonances. We describe the principles behind our experiments and highlight more general implications of our observations.

9.
Nano Lett ; 23(9): 3939-3946, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37096805

RESUMO

Noninvasive and label-free analysis of cell membranes at the nanoscale is essential to comprehend vital cellular processes. However, conventional analytical tools generally fail to meet this challenge due to the lack of required sensitivity and/or spatial resolution. Herein, we demonstrate that tip-enhanced Raman spectroscopy (TERS) is a powerful nanoanalytical tool to analyze dipalmitoylphosphatidylcholine (DPPC) bilayers and human cell membranes with submolecular resolution in the vertical direction. Unlike the far-field Raman measurements, TERS spectra of the DPPC bilayers reproducibly exhibited a uniquely shaped C-H band. These unique spectral features were also reproducibly observed in the TERS spectrum of human pancreatic cancer cells. Spectral deconvolution and DFT simulations confirmed that the TERS signal primarily originated from vibrations of the CH3 groups in the choline headgroup of the lipids. The reproducible TERS results obtained in this study unequivocally demonstrate the ultrahigh sensitivity of TERS for nanoanalysis of lipid membranes under ambient conditions.


Assuntos
Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Membrana Celular , Membranas
10.
Annu Rev Phys Chem ; 72: 213-234, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33400554

RESUMO

Revealing the intrinsic relationships between the structure, properties, and performance of the electrochemical interface is a long-term goal in the electrochemistry and surface science communities because it could facilitate the rational design of electrochemical devices. Achieving this goal requires in situ characterization techniques that provide rich chemical information and high spatial resolution. Electrochemical tip-enhanced Raman spectroscopy (EC-TERS), which provides molecular fingerprint information with nanometer-scale spatial resolution, is a promising technique for achieving this goal. Since the first demonstration of this technique in 2015, EC-TERS has been developed for characterizing various electrochemical processes at the nanoscale and molecular level. Here, we review the development of EC-TERS over the past 5 years. We discuss progress in addressing the technical challenges, including optimizing the EC-TERS setup and solving tip-related issues, and provide experimental guidelines. We also survey the important applications of EC-TERS for probing molecular protonation, molecular adsorption, electrochemical reactions, and photoelectrochemical reactions. Finally, we discuss the opportunities and challenges in the future development of this young technique.

11.
Nano Lett ; 21(21): 9052-9060, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34724612

RESUMO

We investigate transient nanotextured heterogeneity in vanadium dioxide (VO2) thin films during a light-induced insulator-to-metal transition (IMT). Time-resolved scanning near-field optical microscopy (Tr-SNOM) is used to study VO2 across a wide parameter space of infrared frequencies, picosecond time scales, and elevated steady-state temperatures with nanoscale spatial resolution. Room temperature, steady-state, phonon enhanced nano-optical contrast reveals preexisting "hidden" disorder. The observed contrast is associated with inequivalent twin domain structures. Upon thermal or optical initiation of the IMT, coexisting metallic and insulating regions are observed. Correlations between the transient and steady-state nano-optical textures reveal that heterogeneous nucleation is partially anchored to twin domain interfaces and grain boundaries. Ultrafast nanoscopic dynamics enable quantification of the growth rate and bound the nucleation rate. Finally, we deterministically anchor photoinduced nucleation to predefined nanoscopic regions by locally enhancing the electric field of pump radiation using nanoantennas and monitor the on-demand emergent metallicity in space and time.

12.
Int J Cosmet Sci ; 44(1): 42-55, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34820858

RESUMO

OBJECTIVE: The use of conventional microscopy and vibrational spectroscopy in the optical region to investigate the chemical nature of hair fibres on a nanometre scale is frustrated by the diffraction limit of light, prohibiting the spectral elucidation of nanoscale sub-structures that contribute to the bulk properties of hair. The aim of this work was to overcome this limitation and gain unprecedented chemical resolution of cortical cell nano-structure of hair. METHODS: The hybrid technique of AFM-IR, combining atomic force microscopy with an IR laser, circumvents the diffraction limit of light and achieves nanoscale chemical resolution down to the AFM tip radius. In this work, AFM-IR was employed on ultra-thin microtomed cross-sections of human hair fibres to spectrally distinguish and characterize the specific protein structures and environments within the nanoscale components of cortical cells. RESULTS: At first, a topographical and chemical distinction between the macrofibrils and the surrounding intermacrofibillar matrix was achieved based on 2.5 × 2.5 µm maps of cortical cell cross-sections. It was found that the intermacrofibrillar matrix has a large protein content and specific cysteine-related residues, whereas the macrofibrils showed bigger contributions from aliphatic amino acid residues and acidic-/ester-containing species (e.g. lipids). Localized spectra recorded at a spatial resolution of the order of the AFM tip radius enabled the chemical composition of each region to be determined following deconvolution of the Amide-I and Amide-II bands. This provided specific evidence for a greater proportion of α-helices in the macrofibrils and correspondingly larger contributions of ß-sheet secondary structures in the intermacrofibrillar matrix, as inferred in earlier studies. Analysis of the parallel and antiparallel ß-sheet structures, and of selected dominant amino acid residues, yielded further novel composition and conformation results for both regions. CONCLUSION: In this work, we overcome the diffraction limit of light using atomic force microscopy integrated with IR laser spectroscopy (AFM-IR) to characterize sub-micron features of the hair cortex at ultra-high spatial resolution. The resulting spectral analysis shows clear distinctions in the Amide bands in the macrofibrils and surrounding intermacrofibrillar matrix, yielding novel insight into the molecular structure and intermolecular stabilization interactions of the constituent proteins within each cortical component.


OBJECTIF: L'utilisation de la microscopie conventionnelle et de la spectroscopie vibratoire dans la région optique pour étudier la nature chimique des fibres capillaires à l'échelle nanométrique est limitée par la limite de diffraction de la lumière, interdisant l'élucidation spectrale des sous-structures à l'échelle nanométrique qui contribuent aux propriétés des cheveux en général. L'objectif de ce travail était de surmonter cette limitation et d'obtenir une résolution chimique sans précédent de la nanostructure cellulaire corticale des cheveux. MÉTHODES: La technique hybride de l'AFM-IR, combinant la microscopie à force atomique avec un laser IR, contourne la limite de diffraction de la lumière et permet d'obtenir une résolution chimique à l'échelle nanométrique jusqu'au rayon de l'extrémité de l'AFM. Dans ce travail, l'AFM-IR a été employée sur des coupes transversales microtomes ultrafines de fibres de cheveux humains pour distinguer et caractériser sur le plan spectral les structures et environnements protéiques spécifiques au sein des composants à l'échelle nanométrique des cellules corticales. RÉSULTATS: Tout d'abord, une distinction topographique et chimique entre les macrofibrilles et la matrice intermacrofibrillaire environnante a été obtenue à partir de cartes de 2,5 × 2,5 micromètres des coupes transversales des cellules corticales. Il a été constaté que la matrice intermacrofibrillaire avait une grande teneur en protéines et des résidus spécifiques liés à la cystéine, tandis que les macrofibrilles présentaient des contributions plus importantes provenant de résidus d'acides aminés aliphatiques et d'espèces acides/contenant des esters (p. ex. lipides). Les spectres localisés enregistrés à une résolution spatiale de l'ordre du rayon de l'extrémité AFM ont permis de déterminer la composition chimique de chaque région suite à la déconvolution des bandes Amide-I et Amide-II. Cela a apporté des preuves spécifiques pour une plus grande proportion des hélices alpha des macrofibrilles, de même que des contributions plus importantes des structures secondaires à feuillet bêta dans la matrice intermacrofibrillaire, déduites dans des études antérieures. L'analyse des structures parallèles et antiparallèles des feuillets bêta, et des résidus d'acides aminés dominants sélectionnés a donné des résultats inédits de composition et de conformation pour les deux régions. CONCLUSION: Dans ce travail, nous avons surmonté la limite de diffraction de la lumière en utilisant la microscopie à force atomique intégrée à la spectroscopie laser IR (IR-AFM) pour caractériser les caractéristiques submicroniques du cortex capillaire à une résolution spatiale ultra-élevée. L'analyse spectrale qui en résulte montre des distinctions nettes dans les bandes d'amide dans les macrofibrilles et la matrice intermacrofibrillaire environnante, ce qui apporte un éclairage nouveau sur la structure moléculaire et les interactions de stabilisation intermoléculaire des protéines constitutives dans chaque composant cortical.


Assuntos
Cabelo , Proteínas , Cabelo/química , Humanos , Microscopia de Força Atômica/métodos , Estrutura Secundária de Proteína , Proteínas/análise , Espectrofotometria Infravermelho/métodos
13.
Angew Chem Int Ed Engl ; 61(43): e202210288, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36057139

RESUMO

Lack of appropriate tools for visualizing cell membrane molecules at the nanoscale in a non-invasive and label-free fashion limits our understanding of many vital cellular processes. Here, we use tip-enhanced Raman spectroscopy (TERS) to visualize the molecular distribution in pancreatic cancer cell (BxPC-3) membranes in ambient conditions without labelling, with a spatial resolution down to ca. 2.5 nm. TERS imaging reveals segregation of phenylalanine-, histidine-, phosphatidylcholine-, protein-, and cholesterol-rich BxPC-3 cell membrane domains at the nm length-scale. TERS imaging also showed a cell membrane region where cholesterol is mixed with protein. Interestingly, the higher resolution TERS imaging revealed that the molecular domains observed on the BxPC-3 cell membrane are not chemically "pure" but also contain other biomolecules. These results demonstrate the potential of TERS for non-destructive and label-free imaging of cell membranes with nanoscale resolution.


Assuntos
Histidina , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Microscopia de Força Atômica/métodos , Proteínas , Fosfatidilcolinas , Membrana Celular , Fenilalanina
14.
Macromol Rapid Commun ; 42(3): e2000435, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33196127

RESUMO

The heat-induced self-assembly of silk fibroin (SF) is studied by combing fluorescence assessment, infrared nanospectroscopy, wide-angle X-ray scattering, and Derjaguin-Muller-Toporov coupled with atomic force microscopy. Several fundamental issues regarding the formation, structure, and mechanical performance of silk nanofibrils (SNFs) under heat-induced self-assembly are discussed. Accordingly, SF in aqueous solution is rod-like in shape and not micellar. The formation of SNFs occurs through nucleation-dependent aggregation, but the assembly period is variable and irregular. SF shows inherent fractal growth, and this trend is critical for the short-term assembly. The long-term assembly of SF, however, mainly involves an elongation growth process. SNFs produced by different methods, such as ethanol treatment and heat incubation, have similar secondary structure and mechanical properties. These investigations improve the in-depth understanding of fundamental issues related to self-assembly of SNFs, and thus provide inspiration and guidance in designing of silk nanomaterials.


Assuntos
Fibroínas , Seda , Temperatura Alta , Microscopia de Força Atômica , Estrutura Secundária de Proteína
15.
Nano Lett ; 20(6): 4497-4504, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32356991

RESUMO

Imaging biological systems with simultaneous intrinsic chemical specificity and nanometer spatial resolution in their typical native liquid environment has remained a long-standing challenge. Here, we demonstrate a general approach of chemical nanoimaging in liquid based on infrared scattering scanning near-field optical microscopy (IR s-SNOM). It is enabled by combining AFM operation in a fluid cell with evanescent IR illumination via total internal reflection, which provides spatially confined excitation for minimized IR water absorption, reduced far-field background, and enhanced directional signal emission and sensitivity. We demonstrate in-liquid IR s-SNOM vibrational nanoimaging and conformational identification of catalase nanocrystals and spatio-spectral analysis of biomimetic peptoid sheets with monolayer sensitivity and chemical specificity at the few zeptomole level. This work establishes the principles of in-liquid and in situ IR s-SNOM spectroscopic chemical nanoimaging and its general applicability to biomolecular, cellular, catalytic, electrochemical, or other interfaces and nanosystems in liquids or solutions.


Assuntos
Microscopia de Força Atômica , Nanopartículas , Nanotecnologia , Espectrofotometria Infravermelho , Vibração
16.
Nano Lett ; 20(10): 7446-7454, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32870694

RESUMO

Metal-organic frameworks (MOFs) can provide exceptional porosity for molecular guest encapsulation useful for emergent applications in sensing, gas storage, drug delivery, and optoelectronics. Central to the realization of such applications, however, is the successful incorporation of a functional guest confined within the host framework. Here, we demonstrate, for the first time, the feasibility of scattering-type scanning near-field optical microscopy (s-SNOM) and nano-Fourier transform infrared (nanoFTIR) spectroscopy, in concert with density functional theory (DFT) calculations to reveal the vibrational characteristics of the Guest@MOF systems. Probing individual MOF crystals, we pinpoint the local molecular vibrations and, thus, shed new light on the host-guest interactions at the nanoscale. Our strategy not only confirms the successful encapsulation of luminescent guest molecules in the porous host framework in single crystals but also further provides a new methodology for nanoscale-resolved physical and chemical identification of wide-ranging framework materials and designer porous systems for advanced applications.

17.
Angew Chem Int Ed Engl ; 60(3): 1620-1624, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33007124

RESUMO

Despite technological advancements, probing gas-solid interfaces at the nanoscale is still a formidable challenge. New nano-spectroscopic methods are needed to understand the guest-host interactions of functional materials during gas sorption, separation, and conversion. Herein, we introduce in situ Photoinduced Force Microscopy (PiFM) to evidence site-specific interaction between Metal-Organic Frameworks (MOFs) and water. To this end, we developed amphiphilic Surface-anchored MOF (SURMOF) model systems using self-assembly for the side-by-side hetero-growth of nanodomains of hydrophilic HKUST-1 and hydrophobic ZIF-8. PiFM was used to probe local uptake kinetics and to show D2 O sorption isotherms on (defective) HKUST-1 paddlewheels. By monitoring defect vibrations, we visualized in real-time the saturation of existing defects and the creation of D2 O-induced defects. This work shows the potential of in situ PiFM to unravel gas sorption mechanisms and map active sites on functional (MOF) materials.

18.
Nano Lett ; 19(11): 8066-8073, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31574225

RESUMO

Infrared nanospectroscopy based on Fourier transform infrared near-field spectroscopy (nano-FTIR) is an emerging nanoanalytical tool with large application potential for label-free mapping and identification of organic and inorganic materials with nanoscale spatial resolution. However, the detection of thin molecular layers and nanostructures on standard substrates is still challenged by weak signals. Here, we demonstrate a significant enhancement of nano-FTIR signals of a thin organic layer by exploiting polariton-resonant tip-substrate coupling and surface polariton illumination of the probing tip. When the molecular vibration matches the tip-substrate resonance, we achieve up to nearly one order of magnitude signal enhancement on a phonon-polaritonic quartz (c-SiO2) substrate, as compared to nano-FTIR spectra obtained on metal (Au) substrates, and up to two orders of magnitude when compared to the standard infrared spectroscopy substrate CaF2. Our results will be of critical importance for boosting nano-FTIR spectroscopy toward the routine detection of monolayers and single molecules.

19.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599698

RESUMO

Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillar structure with a higher ß-sheet content than in their native structure. To characterize them, we used an innovative tool that coupled infrared spectroscopy with atomic force microscopy (AFM-IR). With this method, we show that we can detect different individual aggregated species from oligomers to fibrils and study their morphologies by AFM and their secondary structures based on their IR spectra. AFM-IR overcomes the weak spatial resolution of usual infrared spectroscopy and achieves a resolution of ten nanometers, the size of isolated fibrils. We characterized oligomers, amyloid fibrils of Aß42 and fibrils of α-synuclein. To our surprise, we figured out that the nature of some surfaces (ZnSe) used to study the samples induces destructuring of amyloid samples, leading to amorphous aggregates. We strongly suggest taking this into consideration in future experiments with amyloid fibrils. More importantly, we demonstrate the advantages of AFM-IR, with a high spatial resolution (≤ 10 nm) allowing spectrum recording on individual aggregated supramolecular entities selected thanks to the AFM images or on thin layers of proteins.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Espectrofotometria Infravermelho/métodos , Amiloide/química , Benzotiazóis/química , Fluorescência , Microscopia de Força Atômica/métodos , Estrutura Secundária de Proteína , Compostos de Selênio/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Zinco/química , alfa-Sinucleína/química
20.
Molecules ; 25(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471300

RESUMO

Abnormal protein aggregation has been intensively studied for over 40 years and broadly discussed in the literature due to its significant role in neurodegenerative diseases etiology. Structural reorganization and conformational changes of the secondary structure upon the aggregation determine aggregation pathways and cytotoxicity of the aggregates, and therefore, numerous analytical techniques are employed for a deep investigation into the secondary structure of abnormal protein aggregates. Molecular spectroscopies, including Raman and infrared ones, are routinely applied in such studies. Recently, the nanoscale spatial resolution of tip-enhanced Raman and infrared nanospectroscopies, as well as the high sensitivity of the surface-enhanced Raman spectroscopy, have brought new insights into our knowledge of abnormal protein aggregation. In this review, we order and summarize all nano- and micro-spectroscopic marker bands related to abnormal aggregation. Each part presents the physical principles of each particular spectroscopic technique listed above and a concise description of all spectral markers detected with these techniques in the spectra of neurodegenerative proteins and their model systems. Finally, a section concerning the application of multivariate data analysis for extraction of the spectral marker bands is included.


Assuntos
Agregados Proteicos/fisiologia , Amiloide/química , Animais , Humanos , Análise Multivariada , Análise de Componente Principal , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA