Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 202(2): 170-174, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29317278

RESUMO

We have developed a self-blotting TEM grid for use with a novel instrument for vitrifying samples for cryo-electron microscopy (cryoEM). Nanowires are grown on the copper surface of the grid using a simple chemical reaction and the opposite smooth side is used to adhere to a holey sample substrate support, for example carbon or gold. When small volumes of sample are applied to the nanowire grids the wires effectively act as blotting paper to rapidly wick away the liquid, leaving behind a thin film. In this technical note, we present a detailed description of how we make these grids using a variety of substrates fenestrated with either lacey or regularly spaced holes. We explain how we characterize the quality of the grids and we describe their behavior under a variety of conditions.


Assuntos
Microscopia Crioeletrônica/instrumentação , Nanofios/química , Vitrificação , Ação Capilar , Carbono/química , Cobre , Ouro/química , Manejo de Espécimes
2.
J Struct Biol ; 202(2): 161-169, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29366716

RESUMO

We present an update describing new features and applications of Spotiton, a novel instrument for vitrifying samples for cryoEM. We have used Spotiton to prepare several test specimens that can be reconstructed using routine single particle analysis to ∼3 Šresolution, indicating that the process has no apparent deleterious effect on the sample integrity. The system is now in routine and continuous use in our lab and has been used to successfully vitrify a wide variety of samples.


Assuntos
Microscopia Crioeletrônica/instrumentação , Pinças Ópticas , Manejo de Espécimes/métodos , Vitrificação , Nanofios/química , Robótica/instrumentação
3.
ACS Appl Mater Interfaces ; 15(3): 4835-4844, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642925

RESUMO

Three-dimensional (3D) woven Ag nanowire (AgNW) grids have great potential for enhancing the mechanical stabilities, conductivity, and transmittance of flexible transparent electrodes (FTEs). However, it is a great challenge to control the formation of 3D woven AgNW grids on various substrates, especially the poly(dimethylsiloxane) (PDMS) substrate. This work presents a microtransfer-printing method for preparing a high-wettability poly(dimethylsiloxane) (PDMS) substrate to control the formation of 3D woven AgNW grids. The as-prepared PDMS substrate shows a high wettability performance. The surface structures of the PDMS substrate can control the sharp shrinkage of the ink membrane to give rise to a uniform liquid membrane evaporation behavior, which is the key factor for preparing a uniform 3D woven nanowire network. A thin uniform 3D woven AgNW network with a low sheet resistance of 24.3 Ω/□ and high transmittance of 92% was coated on the PDMS substrate. The networks directly coated the surface of the replicated PDMS, which simplified the peeling process and protected the networks from peeling strain and mechanical deformations. Moreover, the increment of resistance retained a small value (∼5%) when bending cycles reached 9,000. An alternating current electroluminescent (ACEL) device was prepared, and the uniform electroluminescence implies that a defect-free electrode has been fabricated. These results indicate that the as-prepared FTEs have excellent mechanical performance and great potential for flexible optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA