Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35470521

RESUMO

Mangrove forests are important carbon sinks and this is especially true for Indonesia where about 24% of the world's mangroves exist. Unfortunately, vast expanses of these mangroves have been deforested, degraded or converted to other uses resulting in significant greenhouse gas emissions. The objective of this study was to quantify the climate change mitigation potential of mangrove conservation and restoration in Indonesia. We calculated the emission factors from the dominant land uses in mangroves, determined mangrove deforestation rates and quantified the total emissions and the potential emission reductions that could be achieved from mangrove conservation and restoration. Based upon our analysis of the carbon stocks and emissions from land use in mangroves we found: (1) Indonesia's mangrove ecosystem carbon stocks are amongst the highest of any tropical forest type; (2) mangrove deforestation results in greenhouse gas emissions that far exceed that of upland tropical deforestation; (3) in the last decade the rates of deforestation in Indonesian mangroves have remained high; and (4) conservation and restoration of mangroves promise to sequester significant quantities of carbon. While mangroves comprise only ≈2.6% of Indonesia's total forest area, their degradation and deforestation accounted for ≈10% of total greenhouse gas emissions arising from the forestry sector. The large source of greenhouse gas emissions from a relatively small proportion of the forest area underscores the value for inclusion of mangroves as a natural climate solution (NCS). Mangrove conservation is far more effective than mangrove restoration in carbon emissions reductions and an efficient pathway to achieve Indonesia's nationally determined contribution (NDC) targets. The potential emission reduction from halting deforestation of primary and secondary mangroves coupled with restoration activities could result in an emission reduction equivalent to 8% of Indonesia's 2030 NDC emission reduction targets from the forestry sector.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33802347

RESUMO

Anthropogenic climate change is adversely impacting people and contributing to suffering and increased costs from climate-related diseases and injuries. In responding to this urgent and growing public health crisis, mitigation strategies are in place to reduce future greenhouse gas emissions (GHGE) while adaptation strategies exist to reduce and/or alleviate the adverse effects of climate change by increasing systems' resilience to future impacts. While these strategies have numerous positive benefits on climate change itself, they also often have other positive externalities or health co-benefits. This knowledge can be harnessed to promote and improve global public health, particularly for the most vulnerable populations. Previous conceptual models in mitigation and adaptation studies such as the shared socioeconomic pathways (SSPs) considered health in the thinking, but health outcomes were not their primary intention. Additionally, existing guidance documents such as the World Health Organization (WHO) Guidance for Climate Resilient and Environmentally Sustainable Health Care Facilities is designed primarily for public health professionals or healthcare managers in hospital settings with a primary focus on resilience. However, a detailed cross sectoral and multidisciplinary conceptual framework, which links mitigation and adaptation strategies with health outcomes as a primary end point, has not yet been developed to guide research in this area. In this paper, we briefly summarize the burden of climate change on global public health, describe important mitigation and adaptation strategies, and present key health benefits by giving context specific examples from high, middle, and low-income settings. We then provide a conceptual framework to inform future global public health research and preparedness across sectors and disciplines and outline key stakeholders recommendations in promoting climate resilient systems and advancing health equity.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Saúde Global , Humanos , Saúde Pública , Organização Mundial da Saúde
3.
Renew Sustain Energy Rev ; 133: 110343, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34234618

RESUMO

This paper offers perspectives on the development of low-carbon energy technology in Brazil, pinpointing changes that have occurred since our former publication in 2011. It takes a fresh approach in terms of how likely Brazil will achieve its Nationally Determined Contributions Commitments in the energy sector. Many countries have implemented national climate policies to accomplish their pledged NDC and contribute to the temperature objectives of the Paris Agreement on climate change. Based on official reports and databases of energy development projections in Brazil and the socioeconomic context, we discuss what can be expected for the future of the Brazilian energy sector, the probability of implementing selected technologies, and the prospects of reaching the NDC targets for 2025 and 2030. In addition, this paper provides an overview of the current stage of development of these technologies, main directions, and bottlenecks in Brazil. Analyses have shown that the Brazilian renewable matrix tends to remain significant, driven by the development of solar and mostly small hydroelectric power sources, as well as different types of biomass. In addition, the system will include the replacement of thermoelectric plants powered by diesel and fuel oil by natural gas plants. The prospects for Brazil's official energy plan for 2027 are aligned with the reference technology scenario, which represents the business as usual scenario. Despite this, low-carbon technologies could be implemented far beyond the NDC's goals, given the abundance of renewable natural resources in the country.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA