Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
J Transl Med ; 22(1): 80, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243294

RESUMO

BACKGROUND: Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS: This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS: Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION: Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.


Assuntos
Infecções por Clostridium , Enterite , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Humanos , Animais , Clostridium perfringens/genética , Galinhas/genética , RNA Ribossômico 16S/genética , Disbiose , Jejuno/química , Jejuno/patologia , Enterite/microbiologia , Enterite/patologia , Enterite/veterinária , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia
2.
Microb Pathog ; 192: 106691, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759933

RESUMO

Necrotic enteritis (NE) is a potentially fatal poultry disease that causes enormous economic losses in the poultry industry worldwide. The study aimed to evaluate the effects of dietary organic yeast-derived selenium (Se) on immune protection against experimental necrotic enteritis (NE) in commercial broilers. Chickens were fed basal diets supplemented with different Se levels (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, Clostridium perfringens (C. perfringens) was orally administered at 14 days of age post hatch. The results showed that birds fed 0.25 Se mg/kg exhibited significantly increased body weight gain compared with the non-supplemented/infected birds. There were no significant differences in gut lesions between the Se-supplemented groups and the non-supplemented group. The antibody levels against α-toxin and NetB toxin increased with the increase between 0.25 Se mg/kg and 0.50 Se mg/kg. In the jejunal scrapings and spleen, the Se-supplementation groups up-regulated the transcripts for pro-inflammatory cytokines IL-1ß, IL-6, IL-8, iNOS, and LITAF and avian ß-defensin 6, 8, and 13 (AvBD6, 8 and 13). In conclusion, supplementation with organic yeast-derived Se alleviates the negative consequences and provides beneficial protection against experimental NE.


Assuntos
Ração Animal , Galinhas , Infecções por Clostridium , Clostridium perfringens , Citocinas , Suplementos Nutricionais , Enterite , Doenças das Aves Domésticas , Selênio , Animais , Enterite/prevenção & controle , Enterite/veterinária , Enterite/imunologia , Enterite/microbiologia , Selênio/farmacologia , Selênio/administração & dosagem , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Clostridium perfringens/imunologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Citocinas/metabolismo , Toxinas Bacterianas/imunologia , Necrose , beta-Defensinas/metabolismo , Jejuno/efeitos dos fármacos , Jejuno/imunologia , Jejuno/microbiologia , Jejuno/patologia , Baço/imunologia , Leveduras , Óxido Nítrico Sintase Tipo II/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Interleucina-1beta/metabolismo , Anticorpos Antibacterianos/sangue
3.
Avian Pathol ; : 1-16, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38776185

RESUMO

Probiotics can enhance broiler chicken health by improving intestinal microbiota, potentially replacing antibiotics. They protect against bacterial diseases like necrotic enteritis (NE) in poultry. Understanding their role is crucial for managing bacterial diseases, including NE. This study conducted a meta-analysis to assess the effects of Bacillus subtilis probiotic supplementation on feed conversion ratio (FCR), NE lesion score, and mortality. Additionally, a systematic review analysed gut microbiota changes in broilers challenged with Clostridium perfringens with or without the probiotic supplementation. Effect sizes from the studies were estimated in terms of standardized mean difference (SMD). Random effect models were fitted to estimate the pooled effect size and 95% confidence interval (CI) of the pooled effect size between the control [probiotic-free + C. perfringens] and the treatment [Bacillus subtilis supplemented + C. perfringens] groups. Overall variance was computed by heterogeneity (Q). The meta-analysis showed that Bacillus subtilis probiotic supplementation significantly improved FCR and reduced NE lesion score but had no effect on mortality rates. The estimated overall effects of probiotic supplementation on FCR, NE lesion score and mortality percentage in terms of SMD were -0.91 (CI = -1.34, -0.49; P < 0.001*); -0.67 (CI = -1.11, -0.22; P = 0.006*), and -0.32 (CI = -0.70, 0.06; P = 0.08), respectively. Heterogeneity analysis indicated significant variations across studies for FCR (Q = 69.66; P < 0.001*) and NE lesion score (Q = 42.35; P < 0.001*) while heterogeneity was not significant for mortality (Q = 2.72; P = 0.74). Bacillus subtilis probiotic supplementation enriched specific gut microbiota including Streptococcus, Butyricicoccus, Faecalibacterium, and Ruminococcus. These microbiotas were found to upregulate expression of various genes such as TJ proteins occluding, ZO-1, junctional adhesion 2 (JAM2), interferon gamma, IL12-ß and transforming growth factor-ß4. Moreover, downregulated mucin-2 expression was involved in restoring the intestinal physical barrier, reducing intestinal inflammation, and recovering the physiological functions of damaged intestines. These findings highlight the potential benefits of probiotic supplementation in poultry management, particularly in combating bacterial diseases and promoting intestinal health.

4.
Anaerobe ; 85: 102817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163631

RESUMO

OBJECTIVES: This study aimed to produce and purify Clostridium perfringens type C beta-toxin, sheep anti-beta toxin immunoglobulin G (IgG) and chicken immunoglobulin Y (IgY). METHODS: Two methods were used for beta-toxin purification: single-step metal affinity chromatography (MAC) using zinc as a chelator and ion exchange chromatography (IEX). The purified and inactivated beta-toxoids were then administered to sheep and chickens in order to produce IgG and IgY. RESULTS: All assays using the IEX failed. In contrast, MAC purified more than 21 mg of toxin per run in a single-step protocol. The purified and inactivated beta-toxoids were then administered to sheep and chickens, and IgG and IgY were purified with a high yield, medium antibody titer of 50 IU/mL, and high avidity (73.2 %). CONCLUSIONS: C. perfringens type C beta-toxin and sheep or chicken anti-beta toxin IgG and IgY antibodies were successfully produced and purified using a simple protocol. This protocol can be used for the production of components used in the diagnosis and research of necrotic enteritis caused by C. perfringens type C, as well as for the evaluation of existing vaccines and the development of new preventive methods against this disease.


Assuntos
Antitoxinas , Infecções por Clostridium , Enterite , Imunoglobulinas , Doenças das Aves Domésticas , Animais , Ovinos , Clostridium perfringens , Infecções por Clostridium/veterinária , Enterite/veterinária , Galinhas , Toxoides , Imunoglobulina G , Doenças das Aves Domésticas/prevenção & controle
5.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928362

RESUMO

The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates the immune system through complicated transcriptional programs. Genistein, an AhR ligand, exhibits anti-inflammatory properties. However, its role in modulating immune responses via the AhR signaling pathway remains unclear. In this study, 360 male Arbor Acre broilers (1-day-old) were fed a basal diet supplemented with 40 or 80 mg/kg genistein and infected with or without Clostridium perfringens (Cp). Our results demonstrated that genistein ameliorated Cp-induced intestinal damage, as reflected by the reduced intestinal lesion scores and improved intestinal morphology and feed-to-gain ratio. Moreover, genistein increased intestinal sIgA, TGF-ß, and IL-10, along with elevated serum IgG, IgA, and lysozyme levels. Genistein improved intestinal AhR and cytochrome P450 family 1 subfamily A member 1 (CYP1A1) protein levels and AhR+ cell numbers in Cp-challenged broilers. The increased number of AhR+CD163+ cells in the jejunum suggested a potential association between genistein-induced AhR activation and anti-inflammatory effects mediated through M2 macrophage polarization. In IL-4-treated RAW264.7 cells, genistein increased the levels of AhR, CYP1A1, CD163, and arginase (Arg)-1 proteins, as well as IL-10 mRNA levels. This increase was attenuated by the AhR antagonist CH223191. In summary, genistein activated the AhR signaling pathway in M2 macrophages, which enhanced the secretion of anti-inflammatory cytokines and attenuated intestinal damage in Cp-infected broilers Cp.


Assuntos
Galinhas , Enterite , Genisteína , Macrófagos , Receptores de Hidrocarboneto Arílico , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Genisteína/farmacologia , Genisteína/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Enterite/tratamento farmacológico , Enterite/metabolismo , Masculino , Células RAW 264.7 , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Clostridium perfringens , Infecções por Clostridium/tratamento farmacológico , Necrose , Ativação de Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Avian Pathol ; 52(2): 108-118, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36453684

RESUMO

Necrotic enteritis (NE), caused by Clostridium perfringens, is an economically important disease of chickens. Although NE pathogenesis is moderately well studied, the host immune responses against C. perfringens are poorly understood. The present study used an experimental NE model to characterize lymphoid immune responses in the caecal tonsils (CT), bursa of Fabricius, Harderian gland (HG) and spleen tissues of broiler chickens infected with four netB+ C. perfringens strains (CP1, CP5, CP18, and CP26), of which CP18 and CP26 strains also carried the tpeL gene. The gross and histopathological lesions in chickens revealed CP5 to be avirulent, while CP1, CP18, and CP26 strains were virulent with CP26 being "very virulent". Gene expression analysis showed that, while the virulent strains induced a significantly upregulated expression of pro-inflammatory IL-1ß gene in CT, the CP26-infected birds had significantly higher CT transcription of IFNγ and IL-6 pro-inflammatory genes compared to CP5-infected or uninfected chickens. Furthermore, CP26 infection also led to significantly increased bursal and HG expression of the anti-inflammatory/regulatory genes, IL-10 or TGFß, compared to control, CP5 and CP1 groups. Additionally, the splenic pro- and anti-inflammatory transcriptional changes were observed only in the CP26-infected chickens. An antibody-mediated response, as characterized by increased IL-4 and/or IL-13 transcription and elevated IgM levels in birds infected with virulent strains, particularly in the CP26-infected group compared to uninfected controls, was also evident. Collectively, our findings suggest that lymphoid immune responses during NE in chickens are spatially regulated such that the inflammatory responses against C. perfringens depend on the virulence of the strain.


Assuntos
Infecções por Clostridium , Enterite , Doenças das Aves Domésticas , Animais , Clostridium perfringens/genética , Infecções por Clostridium/veterinária , Galinhas , Virulência , Enterite/veterinária , Doenças das Aves Domésticas/patologia , Imunidade , Anti-Inflamatórios/metabolismo
7.
Avian Pathol ; 52(5): 309-322, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37485826

RESUMO

The poultry industry has been facing the impact of necrotic enteritis (NE), a disease caused by the bacterium Clostridium perfringens producing the haemolytic toxin NetB. NE severity may vary from mild clinical to prominent enteric signs causing reduced growth rates and affecting feed conversion ratio. NetB production is controlled by the Agr-like quorum-sensing (QS) system, which coordinates virulence gene expression in response to bacterial cell density. In this study, the peptide-containing cell-free spent media (CFSM) from Enterococcus faecium was tested in NE challenged broilers in two battery cage and one floor pen studies. Results showed a significant reduction of NE mortality. Metagenomic sequencing of the jejunum microbiome revealed no impact of the CFSM on the microbial community, and growth of C. perfringens was unaffected by CFSM in vitro. The expression of QS-controlled virulence genes netB, plc and pfoA was found to be significantly repressed by CFSM during the mid-logarithmic stage of C. perfringens growth and this corresponded with a significant decrease in haemolytic activity. Purified fractions of CFSM containing bioactive peptides were found to cause reduced haemolysis. These results showed that bioactive peptides reduce NE mortality in broilers by interfering with the QS system of C. perfringens and reducing bacterial virulence. Furthermore, the microbiome of C. perfringens-challenged broilers is not affected by quorum sensing inhibitor containing CFSM.


Assuntos
Toxinas Bacterianas , Infecções por Clostridium , Enterite , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Animais , Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Galinhas/microbiologia , Enterite/veterinária , Enterite/microbiologia , Clostridium perfringens/genética , Água/metabolismo , Doenças das Aves Domésticas/microbiologia
8.
BMC Vet Res ; 19(1): 13, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658534

RESUMO

BACKGROUND: Clostridium perfringens (C. perfringens) is a serious anaerobic enteric pathogen causing necrotic enteritis (NE) in broiler chickens. Following the ban on antibiotics as growth promoters in animal feedstuffs, there has been a remarkable rise in occurrence of NE which resulted in considering alternative approaches, particularly vaccination. The objective of this work was to evaluate the recombinant Lactobacillus casei (L. casei) expressing the C-terminal domain of α-toxin from C. perfringens as a potential probiotic-based vaccine candidate to immunize the broiler chickens against NE. RESULTS: The broiler chickens immunized orally with recombinant vaccine strain were significantly protected against experimental NE challenge, and developed specific serum anti-α antibodies. Additionally, the immunized birds showed higher body weight gains compared with control groups during the challenge experiment. CONCLUSIONS: The current study showed that oral immunization of broiler chickens with a safe probiotic-based vector vaccine expressing α-toxin from C. perfringens could provide protective immunity against NE in birds.


Assuntos
Infecções por Clostridium , Enterite , Lacticaseibacillus casei , Doenças das Aves Domésticas , Animais , Clostridium perfringens , Galinhas , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Lacticaseibacillus casei/genética , Vacinas Bacterianas , Enterite/veterinária , Imunização/veterinária , Vacinação/veterinária , Vacinas Sintéticas , Doenças das Aves Domésticas/prevenção & controle , Necrose/veterinária
9.
J Sci Food Agric ; 103(14): 6958-6965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37309567

RESUMO

BACKGROUND: Bacillus licheniformis is a gram-positive bacterium that has strong environmental adaptability and can improve the growth performance, immunity, and antioxidant function of broilers. The current study aimed to elucidate the protective capability of B. licheniformis against inflammatory responses and intestinal barrier damage in broilers with necrotic enteritis (NE) induced by Clostridium perfringens (CP). RESULTS: The results showed that B. licheniformis enhanced the final body weight in broilers compared with that of broilers in the CP group after the stress of infection (P < 0.05). Bacillus licheniformis reversed the decreased levels of serum and jejunum mucosa immunoglobulins and anti-inflammatory cytokines, reduced the values of villus height and the ratio of villus height to crypt depth, and mitigated the increased levels of serum d-lactic acid and diamine oxidase in CP-challenged broilers (P < 0.05). Moreover, B. licheniformis modulated the expression levels of genes involved in the TLR4/NF-κB signalling pathway, the NLRP3 inflammasome activation pathway, and the sirt 1/Parkin signalling pathway in CP-challenged broilers. Compared with the CP challenge group, the B. licheniformis-treated group exhibited reduced abundance values of Shuttleworthia and Alistipes and enhanced abundance values of Parabacteroides in the caecal contents (P < 0.05). CONCLUSION: Bacillus licheniformis improved the final body weight and alleviated the inflammatory response and intestinal barrier function damage in birds with NE induced by CP by maintaining intestinal physiological function, enhancing immunity, regulating inflammatory cytokine secretion, modulating the mitophagy response, and increasing the abundance of beneficial intestinal flora. © 2023 Society of Chemical Industry.


Assuntos
Bacillus licheniformis , Infecções por Clostridium , Enterite , Doenças das Aves Domésticas , Animais , Clostridium perfringens/fisiologia , Galinhas , Bacillus licheniformis/genética , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Enterite/prevenção & controle , Enterite/veterinária , Enterite/microbiologia , Peso Corporal , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/prevenção & controle
10.
J Appl Microbiol ; 132(1): 113-125, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34101942

RESUMO

AIMS: In this study, we attempted to design a recombinant vaccine harbouring domain with a key role in enterocyte attachment and cell invasion in necrotic enteritis (NE) and coccidiosis. METHODS AND RESULTS: In this study, we investigated whether a recombinant protein consisting of necrotic enteritis B-like toxin, C-terminal domain of alpha-toxin, apical membrane antigen 1 (AMA1), and Rhoptry neck protein 2 (RON2) which we call "NeCoVac" hereafter, can improve protection against both diseases compared to vaccination with each antigen in previous studies. Birds intestinal lesion scores and specific antibody levels were measured to determine protection after oral gavage challenges with virulent Clostridium perfringens and LIVACOX® T. Birds immunized with NeCoVac were protected up to 84% against NE and coccidiosis compared to unimmunized and even positive groups (groups treated with LIVACOX® T [coccidiosis live vaccine] and tylosin as routine veterinary interventions) (p < 0.05). CONCLUSIONS: Our findings suggest that vaccination with NeCoVac is highly efficient in protecting birds from NE, coccidiosis and a combination of both diseases. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study is the first one to describe the combinatorial use of AMA1 and RON2 against coccidiosis, and the first report using NeCoVac against NE and coccidiosis together.


Assuntos
Infecções por Clostridium , Coccidiose , Enterite , Doenças das Aves Domésticas , Animais , Galinhas , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Clostridium perfringens , Coccidiose/prevenção & controle , Coccidiose/veterinária , Enterite/prevenção & controle , Enterite/veterinária , Necrose , Doenças das Aves Domésticas/prevenção & controle , Vacinas Combinadas
11.
Appl Microbiol Biotechnol ; 106(19-20): 6441-6453, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36063180

RESUMO

Necrotic enteritis is a serious economical disease of poultry caused by Clostridium perfringens. NetB toxin of Clostridium perfringens is considered the causative agent of necrotic enteritis. Following the withdrawal of in-feed antibiotic growth promoters, there has been an urgent need to develop alternative approaches such as vaccination. Currently, there are no commercially available vaccines to control necrotic enteritis especially in broiler chickens as the target population. In the present study, we constructed a recombinant Lactobacillus casei strain expressing NetB protein of C. perfringens on the cell surface and used this probiotic-based vaccine strain to immunize broiler chickens orally against experimental induction of necrotic enteritis. The birds immunized with the oral vaccine strain were significantly protected against necrotic enteritis challenge and developed strong serum anti-NetB antibody responses to NetB protein. Furthermore, the immunized birds showed higher body weight gains during the challenge experiment compared with control birds. This study showed, for the first time, that a probiotic-based vector vaccine could be a promising vaccine candidate to provide protection against necrotic enteritis in broiler chickens. KEYPOINTS: • The probiotic L. casei carrying pT1NX-netB plasmid displayed NetB antigen on the cell surface. • The LC-NetB vaccine strain induced high anti-toxin antibody response in broiler chickens. • The LC-NetB vector vaccine provided significant protection against experimental NE challenge.


Assuntos
Toxinas Bacterianas , Infecções por Clostridium , Enterite , Lacticaseibacillus casei , Doenças das Aves Domésticas , Animais , Antibacterianos , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Galinhas , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Clostridium perfringens/genética , Enterite/prevenção & controle , Enterite/veterinária , Lacticaseibacillus casei/genética , Doenças das Aves Domésticas/prevenção & controle
12.
BMC Vet Res ; 18(1): 160, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501900

RESUMO

BACKGROUND: To date, Campylobacter jejuni has not been found to be pathogenic to peafowl. The available publications show that out of a total of 44 samples tested from peafowl, this bacterium was isolated only in two cases. Eimeria pavonina infestations in the peafowl have been described, but no fatal cases have been reported yet. CASE PRESENTATION: The four-year-old peacock was presented with chronic diarrhea, emaciation and weakness. Post mortem examination revealed enlarged and pale kidneys, small intestinal mucosal necrosis and thickening of intestinal wall, and pericardial effusion. The histopathological examination revealed necrotic enteritis with marked mononuclear cells infiltration associated with the presence of coccidia, additionally there was histological evidence of septicemia in liver and kidneys. Bacteria identification was based on light microscopy of the small intestine sample, culture, and biochemical tests. Further identification was based on PCR. Antimicrobial susceptibility profile was created by determination of minimal inhibitory concentration (MIC) values for 6 antimicrobial agents from 5 different classes. PCR assays were performed to detect virulence factors genes responsible for motility, cytolethal distending toxin production, adhesion and internalization. Bacteriology of the small intestine sample showed abundant growth almost exclusively of Campylobacter jejuni, resistant to ciprofloxacin, gentamycin and ampicillin. Bacteria was sensitive to Amoxicillin + clavulanic acid, tetracycline, and erythromycin. All tested virulence factors genes have been detected. The parasitological examination was performed by microscopic examination of fresh faeces and intestinal content, and revealed the moderate number of Eimeria pavonina, Histomonas meleagridis, single Capillaria spp. eggs as well Heterakis spp. like parasites. CONCLUSION: The above case shows that a virulent isolate of Campylobacter jejuni in combination with a parasitic invasion may cause chronic enteritis in peafowl, which most likely led to extreme exhaustion of the host organism and death.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Coccidiose , Eimeria , Enterite , Enterocolite Necrosante , Gastroenterite , Animais , Infecções por Campylobacter/veterinária , Coccidiose/veterinária , Enterite/veterinária , Enterocolite Necrosante/veterinária , Gastroenterite/veterinária , Fatores de Virulência
13.
Anaerobe ; 73: 102499, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890812

RESUMO

BACKGROUND AND OBJECTIVES: Clostridium perfringens is a causative agent of enteric infections in animals including poultry by producing twenty different types of toxins. A single strain produces only a subset of these toxins, which form the basis of its classification into seven toxinotypes (A-G). C. perfringens toxinotype A is a widespread cause of necrotic enteritis (NE) in poultry. The current study was conducted to determine the prevalence of different toxins and antimicrobial susceptibility of C. perfringens isolated from Pakistan NE affected poultry. METHODS: A total of 134 intestinal samples of the diseased birds were collected postmortem and processed for isolation of C. perfringens using tryptose sulphite cycloserine (TSC) agar supplemented with d-cycloserine. Isolates were confirmed by Gram's staining, biochemical and molecular analyses. Toxinotyping was performed by multiplex PCR. Antimicrobial susceptibility profile of isolates was performed by Kirby Bauer disc diffusion method. RESULTS: A total of 34 strains of C. perfringens were isolated from 134 samples with prevalence rate of 25.37%. All the isolated strains were toxinotype A, as they were positive for alpha toxin (CPA) and negative for other tested toxins such as beta (CPB), epsilon (ETX), iota (ITX), enterotoxin (CPE), toxin perfringens large (TpeL) and necrotic B-like toxin (NetB). Interestingly, all the isolated strains of C. perfringens were multidrug resistant. The highest resistance was observed against Neomycin, Trimethoprim, Tetracycline and Lincomycin which are routinely used at Pakistan poultry production. CONCLUSION: C. perfringens toxinotype A is prevalent in Pakistan poultry. Incidence of C. perfringens with prevalence rate of 25.37% can pose serious threat to Pakistan's poultry industry given that all the isolated strains were multidrug resistant. Our findings highlight the need for new antibiotics and antibiotic alternatives to overcome multidrug resistance.


Assuntos
Toxinas Bacterianas , Infecções por Clostridium , Enterite , Doenças das Aves Domésticas , Animais , Antibacterianos/farmacologia , Toxinas Bacterianas/análise , Toxinas Bacterianas/genética , Galinhas , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/veterinária , Clostridium perfringens/genética , Enterite/veterinária , Enterotoxinas/genética , Paquistão , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia
14.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613680

RESUMO

Here, we demonstrated the potential of Cannabis-derived cannabidiol (CBD) and nanosized selenium (nano-Se) for the modulation of microvascularization and muscle fiber lesions in superficial breast muscle in C. perfringens-challenged chickens. The administration of CBD resulted in a decreased number of atrophic fibers (3.13 vs. 1.13/1.5 mm2) compared with the control, whereas nano-Se or both substances resulted in a decreased split fiber number (4.13 vs. 1.55/1.5 mm2) and in a lower number of necrotic myofibers (2.38 vs. 0.69/1.5 mm2) in breast muscle than the positive control. There was a significantly higher number of capillary vessels in chickens in the CBD+Nano-Se group than in the control and positive control groups (1.31 vs. 0.97 and 0.98, respectively). Feeding birds experimental diets lowered the activity of DNA damage repair enzymes, including 3,N4-ethenodeoxycytosine (by 39.6%), 1,N6-ethenodeoxyadenosine (by 37.5%), 8-oxo-guanine (by 36.2%), formamidopyrimidine (fapy)-DNA glycosylase (by 56.2%) and human alkyl adenine DNA glycosylase (by 40.2%) in the ileal mucosa, but it did not compromise the blood mitochondrial oxygen consumption rate (-2.67 OD/min on average). These findings indicate a potential link between gut mucosa condition and histopathological changes in superficial pectoral muscle under induced inflammation and show the ameliorative effect of CBD and nano-Se in this cross-talk due to their protection from mucosal DNA damage.


Assuntos
Canabidiol , Infecções por Clostridium , Enterite , Doenças das Aves Domésticas , Selênio , Humanos , Animais , Galinhas , Selênio/farmacologia , Canabidiol/farmacologia , Infecções por Clostridium/prevenção & controle , Músculos Peitorais/patologia , Enterite/patologia , Clostridium perfringens , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle
15.
J Bacteriol ; 203(7)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33468589

RESUMO

Clostridium perfringens type G strains cause necrotic enteritis (NE) in poultry, an economically important disease that is a major target of in-feed antibiotics. NE is a multifactorial disease, involving not only the critically important NetB toxin but also additional virulence and virulence-associated factors. We previously identified a C. perfringens chromosomal locus (VR-10B) associated with disease-causing strains that is predicted to encode a sortase-dependent pilus. In the current study, we sought to provide direct evidence for the production of a pilus by C. perfringens and establish its role in NE pathogenesis. Pilus structures in virulent C. perfringens strain CP1 were visualized by transmission electron microscopy (TEM) of immunogold-labeled cells. Filamentous structures were observed extending from the cell surface in wild-type CP1 but not from isogenic pilin-null mutant strains. In addition, immunoblotting of cell surface proteins demonstrated that CP1, but not the null mutant strains, produced a high molecular weight ladder-like pattern characteristic of a pilus polymer. Binding to collagen types I, II, and IV was significantly reduced (Tukey's test, P < 0.01) in all three pilin mutants compared to CP1 and could be specifically blocked by CnaA and FimA antisera, indicating that these pilins participate in adherence. Furthermore, fimA and fimB null mutants were both severely attenuated in their ability to cause disease in an in vivo chicken NE challenge model. Together, these results provide the first direct evidence for the production of a sortase-dependent pilus by C. perfringens and confirm its critical role in NE pathogenesis and collagen binding.IMPORTANCE In necrotic enteritis (NE), an intestinal disease of chickens, Clostridium perfringens cells adhere tightly to damaged intestinal tissue, but the factors involved are not known. We previously discovered a cluster of C. perfringens genes predicted to encode a pilus, a hair-like bacterial surface structure commonly involved in adherence. In the current study, we have directly imaged this pilus using transmission electron microscopy (TEM). We also show that inactivation of the pilus genes stops pilus production, significantly reducing the bacterium's ability to bind collagen and cause disease. Importantly, this is the first direct evidence for the production of a sortase-dependent pilus by C. perfringens, revealing a promising new target for developing therapeutics to combat this economically important disease.


Assuntos
Infecções por Clostridium/veterinária , Clostridium perfringens/fisiologia , Clostridium perfringens/patogenicidade , Enterite/veterinária , Fímbrias Bacterianas/fisiologia , Doenças das Aves Domésticas/microbiologia , Animais , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Galinhas , Infecções por Clostridium/microbiologia , Clostridium perfringens/genética , Enterite/microbiologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Intestinos/microbiologia , Virulência
16.
J Bacteriol ; 203(17): e0009621, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34152200

RESUMO

Clostridium perfringens causes necrotic enteritis (NE) in poultry. A chromosomal locus (VR-10B) was previously identified in NE-causing C. perfringens strains that encodes an adhesive pilus (NE pilus), along with a two-component system (TCS) designated here as PilRS. While the NE pilus is important in pathogenesis, the role of PilRS remains to be determined. The current study investigated the function of PilRS, as well as the Agr-like quorum-sensing (QS) system and VirSR TCS in the regulation of pilin production. Isogenic pilR, agrB, and virR null mutants were generated from the parent strain CP1 by insertional inactivation using the ClosTron system, along with the respective complemented strains. Immunoblotting analyses showed no detectable pilus production in the CP1pilR mutant, while production in its complement (CP1pilR+) was greater than wild-type levels. In contrast, pilus production in the agrB and virR mutants was comparable or higher than the wild type but reduced in their respective complemented strains. When examined for collagen-binding activity, the pilR mutant showed significantly lower binding to most collagen types (types I to V) than parental CP1 (P ≤ 0.05), whereas this activity was restored in the complemented strain (P > 0.05). In contrast, binding of agrB and virR mutants to collagen showed no significant differences in collagen-binding activity compared to CP1 (P > 0.05), whereas the complemented strains exhibited significantly reduced binding (P ≤ 0.05). These data suggest the PilRS TCS positively regulates pilus production in C. perfringens, while the Agr-like QS system may serve as a negative regulator of this operon. IMPORTANCE Clostridium perfringens type G isolates cause necrotic enteritis (NE) in poultry, presenting a major challenge for poultry production in the postantibiotic era. Multiple factors in C. perfringens, including both virulent and nonvirulent, are involved in the development of the disease. We previously discovered a cluster of C. perfringens genes that encode a pilus involved in adherence and NE development, along with a predicted two-component regulatory system (TCS), designated PilRS. In the present study, we have demonstrated the role of PilRS in regulating pilus production and collagen binding of C. perfringens. In addition, the Agr-like quorum sensing signaling pathway was found to be involved in the regulation. These findings have identified additional targets for developing nonantibiotic strategies to control NE disease.


Assuntos
Clostridium perfringens/metabolismo , Enterite/veterinária , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Doenças das Aves Domésticas/microbiologia , Sequência de Aminoácidos , Animais , Galinhas , Clostridium perfringens/química , Clostridium perfringens/genética , Clostridium perfringens/patogenicidade , Colágeno/metabolismo , Enterite/metabolismo , Enterite/microbiologia , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Doenças das Aves Domésticas/metabolismo , Alinhamento de Sequência , Virulência
17.
J Biol Chem ; 295(28): 9513-9530, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32424044

RESUMO

Clostridium perfringens is a leading cause of food-poisoning and causes avian necrotic enteritis, posing a significant problem to both the poultry industry and human health. No effective vaccine against C. perfringens is currently available. Using an antiserum screen of mutants generated from a C. perfringens transposon-mutant library, here we identified an immunoreactive antigen that was lost in a putative glycosyltransferase mutant, suggesting that this antigen is likely a glycoconjugate. Following injection of formalin-fixed whole cells of C. perfringens HN13 (a laboratory strain) and JGS4143 (chicken isolate) intramuscularly into chickens, the HN13-derived antiserum was cross-reactive in immunoblots with all tested 32 field isolates, whereas only 5 of 32 isolates were recognized by JGS4143-derived antiserum. The immunoreactive antigens from both HN13 and JGS4143 were isolated, and structural analysis by MALDI-TOF-MS, GC-MS, and 2D NMR revealed that both were atypical lipoteichoic acids (LTAs) with poly-(ß1→4)-ManNAc backbones substituted with phosphoethanolamine. However, although the ManNAc residues in JGS4143 LTA were phosphoethanolamine-modified, a few of these residues were instead modified with phosphoglycerol in the HN13 LTA. The JGS4143 LTA also had a terminal ribose and ManNAc instead of ManN in the core region, suggesting that these differences may contribute to the broadly cross-reactive response elicited by HN13. In a passive-protection chicken experiment, oral challenge with C. perfringens JGS4143 lead to 22% survival, whereas co-gavage with JGS4143 and α-HN13 antiserum resulted in 89% survival. This serum also induced bacterial killing in opsonophagocytosis assays, suggesting that HN13 LTA is an attractive target for future vaccine-development studies.


Assuntos
Galinhas , Infecções por Clostridium , Clostridium perfringens , Lipopolissacarídeos , Doenças das Aves Domésticas , Ácidos Teicoicos , Animais , Galinhas/imunologia , Galinhas/microbiologia , Infecções por Clostridium/imunologia , Infecções por Clostridium/prevenção & controle , Clostridium perfringens/química , Clostridium perfringens/imunologia , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Ácidos Teicoicos/química , Ácidos Teicoicos/imunologia , Ácidos Teicoicos/farmacologia
18.
BMC Genomics ; 22(1): 890, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903179

RESUMO

BACKGROUND: Avian necrotic enteritis (NE) caused by Clostridium perfringens is a disease with a major economic impact, generating losses estimated to 6 billion of dollars annually for the poultry industry worldwide. The incidence of the disease is particularly on the rise in broiler chicken flocks eliminating the preventive use of antibiotics. To date, no alternative allows for the efficient prevention of NE and a control of the disease using a vaccinal strategy would be mostly prized. For this purpose, comparative and subtractive reverse vaccinology identifying putative immunogenic bacterial surface proteins is one of the most promising approaches. RESULTS: A comparative genomic study was performed on 16 C. perfringens strains isolated from healthy broiler chickens and from broilers affected with necrotic enteritis. Results showed that the analyzed genomes were composed of 155,700 distinct proteins from which 13% were identified as extracellular, 65% as cytoplasmic and 22% as part of the bacterial membrane. The evaluation of the immunogenicity of these proteins was determined using the prediction software VaxiJen®. CONCLUSIONS: For the most part, proteins with the highest scores were associated with an extracellular localisation. For all the proteins analyzed, the combination of both the immunogenicity score and the localisation prediction led to the selection of 12 candidate proteins that were mostly annotated as hypothetical proteins. We describe 6 potential candidates of higher interest due to their antigenic potential, their extracellular localisation, and their possible role in virulence of C. perfringens.


Assuntos
Enterite , Doenças das Aves Domésticas , Animais , Galinhas , Clostridium perfringens/genética , Enterite/veterinária , Necrose , Vacinologia
19.
Anaerobe ; 70: 102377, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33957249

RESUMO

OBJECTIVE: Keeping in view, the constraints faced by the Indian broiler industry with lack of a suitable vaccine against Necrotic Enteritis (NE), a study has been proposed to explore the prevalence and detail characterization of C. perfringens type G in NE suspected broiler chicken in the process of suitable vaccine development. METHODS: Intestinal scrapings/faecal contents of NE suspected broiler chickens were screened to establish the prevalence of C.perfringens type G in broiler birds. A most pathogenic, highly resistant type G isolate of C. perfringens, bearing both tpeL and gapC gene was selected for preparation of three different vaccine formulations, and to evaluate their immunogenic potential in broiler birds. RESULTS: Screening of clinical samples of NE suspected broiler birds revealed C. perfringens type G, bearing gapC gene in 51.22% samples, of which 47.62% revealed tpeL gene. Seven of the tpeLpos type G isolates were comparatively more pathogenic for mice, of which, one exhibited multidrug resistance towards ciprofloxacin, norfloxacin, tetracycline and levofloxacin. The sonicated supernatant (SS) prepared from the selected tpeL and gapC positive isolate could maintain a significantly higher protective IgG response than toxoid and bacterin preparation from the 21st to 28thday of age in immunized birds. CONCLUSION: The additional TpeL toxin in C. perfringens type G has been proved to be an additional key biological factor in the pathogenesis of NE in broiler chickens. Considering the release of more immunogenic proteins, the SS proved to be a better immunogenic preparation against NE with a multiple immunization dose.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Infecções por Clostridium/veterinária , Clostridium perfringens/imunologia , Enterite/veterinária , Doenças das Aves Domésticas/prevenção & controle , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Galinhas , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle , Clostridium perfringens/classificação , Clostridium perfringens/genética , Enterite/microbiologia , Enterite/prevenção & controle , Doenças das Aves Domésticas/microbiologia
20.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361680

RESUMO

Necrotic enteritis (NE) caused by Clostridium perfringens is one of the most important enteric diseases in poultry. The antibacterial activity of two different essential oil (EO) blends against C. perfringens was investigated both in vitro and in vivo. Additionally, the immunological response to EO treatment was assessed. In the in vitro study, the antibacterial activity of EO formulas and commonly used antibiotics was evaluated against C. perfringens using disk diffusion assay, minimum inhibitory concentration (MIC) assay, and minimum bactericidal concentration (MBC) assay. In the in vivo study, NE experimental infection was performed on 440 Ross broiler chicks at 19 days of age for 4 continuous days. The chicks were treated with either EOs or amoxicillin at 22 days of age for 5 continuous days. One day after the end of treatment, the birds' performance was evaluated by calculating the feed conversion ratio. Serum samples from 120 birds were collected to measure the levels of IL-1ß, IFN-γ, IL-8, IL-10, and IL-17. After that, all birds were slaughtered, and their small intestines were subjected to gross and histopathological evaluation. In addition, bacterial counts in the small intestines were evaluated. In the in vitro study, EOs showed higher antimicrobial activities in comparison with antibiotics against C. perfringens. In the in vivo study, birds treated with EOs showed a significant decrease in bacterial counts, a significant decrease in intestinal lesions, and a significant improvement in performance compared with untreated birds (p < 0.05). Moreover, treating birds with EOs directed the immune system toward an anti-inflammatory pathway. None of the treated birds died due to NE compared with the 10% mortality rate in untreated birds. In conclusion, EOs might be an effective and safe alternative to antibiotics in the treatment of chicken NE.


Assuntos
Amoxicilina/administração & dosagem , Antibacterianos/administração & dosagem , Galinhas/microbiologia , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/imunologia , Clostridium perfringens/efeitos dos fármacos , Enterite/tratamento farmacológico , Enterite/imunologia , Imunidade , Óleos Voláteis/administração & dosagem , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/imunologia , Ração Animal , Animais , Infecções por Clostridium/microbiologia , Infecções por Clostridium/veterinária , Enterite/patologia , Enterite/veterinária , Testes de Sensibilidade Microbiana , Necrose , Óleos Voláteis/química , Projetos Piloto , Doenças das Aves Domésticas/microbiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA