Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(13): e2220685120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940325

RESUMO

The ability to learn and form memories allows animals to adapt their behavior based on previous experiences. Associative learning, the process through which organisms learn about the relationship between two distinct events, has been extensively studied in various animal taxa. However, the existence of associative learning, prior to the emergence of centralized nervous systems in bilaterian animals, remains unclear. Cnidarians such as sea anemones or jellyfish possess a nerve net, which lacks centralization. As the sister group to bilaterians, they are particularly well suited for studying the evolution of nervous system functions. Here, we probe the capacity of the starlet sea anemone Nematostella vectensis to form associative memories by using a classical conditioning approach. We developed a protocol combining light as the conditioned stimulus with an electric shock as the aversive unconditioned stimulus. After repetitive training, animals exhibited a conditioned response to light alone-indicating that they learned the association. In contrast, all control conditions did not form associative memories. Besides shedding light on an aspect of cnidarian behavior, these results root associative learning before the emergence of NS centralization in the metazoan lineage and raise fundamental questions about the origin and evolution of cognition in brainless animals.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/fisiologia , Condicionamento Clássico , Sistema Nervoso
2.
Anim Cogn ; 26(6): 1851-1864, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38015282

RESUMO

Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.


Assuntos
Ctenóforos , Animais , Ctenóforos/fisiologia , Sistema Nervoso , Neurônios/fisiologia , Cognição , Evolução Biológica
3.
BMC Genomics ; 21(1): 360, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410625

RESUMO

BACKGROUND: The evolutionary radiation of animals was accompanied by extensive expansion of gene and genome sizes, increased isoform diversity, and complexity of regulation. RESULTS: Here we show that the longest genes are enriched for expression in neuronal tissues of diverse vertebrates and of invertebrates. Additionally, we show that neuronal gene size expansion occurred predominantly through net gains in intron size, with a positional bias toward the 5' end of each gene. CONCLUSIONS: We find that intron and gene size expansion is a feature of many genes whose expression is enriched in nervous systems. We speculate that unique attributes of neurons may subject neuronal genes to evolutionary forces favoring net size expansion. This process could be associated with tissue-specific constraints on gene function and/or the evolution of increasingly complex gene regulation in nervous systems.


Assuntos
Evolução Molecular , Genes/genética , Íntrons/genética , Sistema Nervoso , Animais , Regulação da Expressão Gênica , Genoma/genética , Mutação , Especificidade de Órgãos , Filogenia
4.
Front Zool ; 17: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582362

RESUMO

BACKGROUND: The ground pattern underlying the nervous system of the last common ancestor in annelids was long thought to be settled, consisting of a dorsal brain, circumoesophageal connectives and a subepithelial, ladder-like ventral nerve cord with segmental ganglia connected by paired connectives. With the advent of immunocytochemical stainings and confocal laser scanning microscopy, it becomes evident that its architecture is extremely diverse, which makes the reconstruction of a ground pattern in annelida challenging. Whereas the nervous systems of many different families has already been described, only very few studies looked at the diversity of nervous systems within such clades to give a closer estimate on how plastic the annelid nervous system really is. So far, little is known on syllid nervous system architecture, one of the largest and most diverse groups of marine annelids. RESULTS: The position of the brain, the circumoesophageal connectives, the stomatogastric nervous system, the longitudinal nerves that traverse each segment and the innervation of appendages are relatively uniform within the clade. Both the number of connectives within the ventral nerve cord and the number of segmental nerves, which in earlier studies were used to infer phylogenetic relationships and to reconstruct an annelid ground pattern, are highly diverse and differ between genera or even within a given genus. Differences in the distribution of somata of the brain, the nuchal innervation and its associated cell bodies were found between Syllinae and Exogoninae and may be subfamily-specific. CONCLUSIONS: The nervous system morphology of syllids very likely depends on the taxon-specific ecological requirements. Thus, it is not surprising that in a clade, which occupies such diverse niches as the Annelida, we find similar patterns in phylogenetically widely separated species in similar niches and a high degree of modularity within a family. Only standardized protocols and staining methods can lead to comparable results, but so far different approaches have been taken to describe annelid nervous systems, making homologization of certain structures difficult. This study provides the first thorough description of the nervous system in the family Syllidae, allowing more detailed comparisons between annelid families in the future.

5.
Dev Biol ; 431(1): 93-100, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28647138

RESUMO

A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the sponge sensory system.


Assuntos
Poríferos/citologia , Poríferos/genética , Animais , Evolução Molecular , Expressão Gênica , Filogenia , Poríferos/fisiologia , Sensação/genética , Sensação/fisiologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/genética
6.
Dev Biol ; 431(1): 59-68, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827097

RESUMO

Nervous systems often consist of a large number of different types of neurons which are generated from neural stem and progenitor cells by a series of symmetric and asymmetric divisions. The origin and early evolution of these neural progenitor systems is not well understood. Here we use a cnidarian model organism, Nematostella vectensis, to gain insight into the generation of neural cell type diversity in a non-bilaterian animal. We identify NvFoxQ2d as a transcription factor that is expressed in a population of spatially restricted, proliferating ectodermal cells that are derived from NvSoxB(2)-expressing neural progenitor cells. Using a transgenic reporter line we show that the NvFoxQ2d cells undergo a terminal, symmetric division to generate a morphologically homogeneous population of putative sensory cells. The abundance of these cells, but not their proliferation status is affected by treatment with the γ-secretase inhibitor DAPT, suggesting regulation by Notch signalling. Our data suggest that intermediate progenitor cells and symmetric divisions contribute to the formation of the seemingly simple nervous system of a sea anemone.


Assuntos
Células-Tronco Neurais/citologia , Neurogênese , Anêmonas-do-Mar/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Filogenia , Receptores Notch/genética , Receptores Notch/metabolismo , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/genética , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
7.
J Exp Biol ; 220(Pt 18): 3381-3390, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28931721

RESUMO

Trichoplax adhaerens is a flat, millimeter-sized marine animal that adheres to surfaces and grazes on algae. Trichoplax displays a repertoire of different feeding behaviors despite the apparent absence of a true nervous system with electrical or chemical synapses. It glides along surfaces to find food, propelled by beating cilia on cells at its ventral surface, and pauses during feeding by arresting ciliary beating. We found that when endomorphin-like peptides are applied to an animal, ciliary beating is arrested, mimicking natural feeding pauses. Antibodies against these neuropeptides label cells that express the neurosecretory proteins and voltage-gated calcium channels implicated in regulated secretion. These cells are embedded in the ventral epithelium, where they comprise only 4% of the total, and are concentrated around the edge of the animal. Each bears a cilium likely to be chemosensory and used to detect algae. Trichoplax pausing during feeding or spontaneously in the absence of food often induce their neighbors to pause as well, even neighbors not in direct contact. Pausing behavior propagates from animal to animal across distances much greater than the signal that diffuses from just one animal, so we presume that the peptides secreted from one animal elicit secretion from nearby animals. Signal amplification by peptide-induced peptide secretion explains how a small number of sensory secretory cells lacking processes and synapses can evoke a wave of peptide secretion across the entire animal to globally arrest ciliary beating and allow pausing during feeding.


Assuntos
Neuropeptídeos/genética , Placozoa/fisiologia , Animais , Epitélio , Comportamento Alimentar , Neuropeptídeos/metabolismo , Placozoa/genética , Análise de Sequência de DNA
8.
J Exp Biol ; 218(Pt 4): 612-7, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25696824

RESUMO

Even the most basal multicellular nervous systems are capable of producing complex behavioral acts that involve the integration and combination of simple responses, and decision-making when presented with conflicting stimuli. This requires an understanding beyond that available from genomic investigations, and calls for a integrative and comparative approach, where the power of genomic/transcriptomic techniques is coupled with morphological, physiological and developmental experimentation to identify common and species-specific nervous system properties for the development and elaboration of phylogenomic reconstructions. With careful selection of genes and gene products, we can continue to make significant progress in our search for ancestral nervous system organizations.


Assuntos
Cnidários/fisiologia , Ctenóforos/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Comportamento Animal , Evolução Biológica , Cnidários/anatomia & histologia , Ctenóforos/anatomia & histologia , Filogenia
9.
J Exp Biol ; 218(Pt 4): 581-91, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25696821

RESUMO

Genomic and transcriptomic analyses show that sponges possess a large repertoire of genes associated with neuronal processes in other animals, but what is the evidence these are used in a coordination or sensory context in sponges? The very different phylogenetic hypotheses under discussion today suggest very different scenarios for the evolution of tissues and coordination systems in early animals. The sponge genomic 'toolkit' either reflects a simple, pre-neural system used to protect the sponge filter or represents the remnants of a more complex signalling system and sponges have lost cell types, tissues and regionalization to suit their current suspension-feeding habit. Comparative transcriptome data can be informative but need to be assessed in the context of knowledge of sponge tissue structure and physiology. Here, I examine the elements of the sponge neural toolkit including sensory cells, conduction pathways, signalling molecules and the ionic basis of signalling. The elements described do not fit the scheme of a loss of sophistication, but seem rather to reflect an early specialization for suspension feeding, which fits with the presumed ecological framework in which the first animals evolved.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Poríferos/fisiologia , Animais , Evolução Biológica , Genoma , Sistema Nervoso/anatomia & histologia , Poríferos/anatomia & histologia , Poríferos/genética , Transdução de Sinais/fisiologia , Transcriptoma
10.
J Exp Biol ; 218(Pt 4): 637-45, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25696827

RESUMO

Understanding the evolution of deuterostome nervous systems has been complicated by the by the ambiguous phylogenetic position of the Xenocoelomorpha (Xenoturbellids, acoel flat worms, nemertodermatids), which has been placed either as basal bilaterians, basal deuterostomes or as a sister group to the hemichordate/echinoderm clade (Ambulacraria), which is a sister group of the Chordata. None of these groups has a single longitudinal nerve cord and a brain. A further complication is that echinoderm nerve cords are not likely to be evolutionarily related to the chordate central nervous system. For hemichordates, opinion is divided as to whether either one or none of the two nerve cords is homologous to the chordate nerve cord. In chordates, opposition by two secreted signaling proteins, bone morphogenetic protein (BMP) and Nodal, regulates partitioning of the ectoderm into central and peripheral nervous systems. Similarly, in echinoderm larvae, opposition between BMP and Nodal positions the ciliary band and regulates its extent. The apparent loss of this opposition in hemichordates is, therefore, compatible with the scenario, suggested by Dawydoff over 65 years ago, that a true centralized nervous system was lost in hemichordates.


Assuntos
Cordados/anatomia & histologia , Equinodermos/anatomia & histologia , Sistema Nervoso/anatomia & histologia , Animais , Evolução Biológica , Cordados/genética , Equinodermos/genética , Expressão Gênica , Larva/anatomia & histologia , Filogenia
11.
J Math Biol ; 71(6-7): 1299-324, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25697835

RESUMO

The basic functional characteristics of spiking neurones are remarkably similar throughout the animal kingdom. Their core design and function features were presumably established very early in their evolutionary history. Identifying the selection pressures that drove animals to evolve spiking neurones could help us interpret their design and function today. This paper provides a quantitative argument, based on ecology, that animals evolved neurones after they started eating each other, about 550 million years ago. We consider neurones as devices that aid an animal's foraging performance, but incur an energetic cost. We introduce an idealised stochastic model ecosystem of animals and their food, and obtain an analytic expression for the probability that an animal with a neurone will fix in a neurone-less population. Analysis of the fixation probability reveals two key results. First, a neurone will never fix if an animal forages low-value food at high density, even if that neurone incurs no cost. Second, a neurone will fix with high probability if an animal is foraging high-value food at low density, even if that neurone is expensive. These observations indicate that the transition from neurone-less to neurone-armed animals can be facilitated by a transition from filter-feeding or substrate grazing to episodic feeding strategies such as animal-on-animal predation (macrophagy).


Assuntos
Evolução Biológica , Modelos Neurológicos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Ecossistema , Metabolismo Energético , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Conceitos Matemáticos , Filogenia , Comportamento Predatório/fisiologia , Seleção Genética , Processos Estocásticos
12.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979169

RESUMO

Dopamine is one of the most versatile neurotransmitters in invertebrates. It's distribution and plethora of functions is likely coupled to feeding ecology, especially in Euthyneura (the largest clade of molluscs), which presents the broadest spectrum of environmental adaptations. Still, the analyses of dopamine-mediated signaling were dominated by studies of grazers. Here, we characterize the distribution of dopaminergic neurons in representatives of two distinct ecological groups: the sea angel - obligate predatory pelagic mollusc Clione limacina (Pteropoda, Gymnosomata) and its prey - the sea devil Limacina helicina (Pteropoda, Thecosomata) as well as the plankton eater Melibe leonina (Nudipleura, Nudibranchia). By using tyrosine hydroxylase-immunoreactivity (TH-ir) as a reporter, we showed that the dopaminergic system is moderately conservative among euthyneurans. Across all studied species, small numbers of dopaminergic neurons in the central ganglia contrast to significant diversification of TH-ir neurons in the peripheral nervous system, primarily representing sensory-like cells, which predominantly concentrated in the chemotactic areas and projecting afferent axons to the central nervous system. Combined with α-tubulin immunoreactivity, this study illuminates the unprecedented complexity of peripheral neural systems in gastropod molluscs, with lineage-specific diversification of sensory and modulatory functions.

13.
Neural Dev ; 19(1): 11, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909268

RESUMO

The complex morphology of neurons requires precise control of their microtubule cytoskeleton. This is achieved by microtubule-associated proteins (MAPs) that regulate the assembly and stability of microtubules, and transport of molecules and vesicles along them. While many of these MAPs function in all cells, some are specifically or predominantly involved in regulating microtubules in neurons. Here we use the sea anemone Nematostella vectensis as a model organism to provide new insights into the early evolution of neural microtubule regulation. As a cnidarian, Nematostella belongs to an outgroup to all bilaterians and thus occupies an informative phylogenetic position for reconstructing the evolution of nervous system development. We identified an ortholog of the microtubule-binding protein doublecortin-like kinase (NvDclk1) as a gene that is predominantly expressed in neurons and cnidocytes (stinging cells), two classes of cells belonging to the neural lineage in cnidarians. A transgenic NvDclk1 reporter line revealed an elaborate network of neurite-like processes emerging from cnidocytes in the tentacles and the body column. A transgene expressing NvDclk1 under the control of the NvDclk1 promoter suggests that NvDclk1 localizes to microtubules and therefore likely functions as a microtubule-binding protein. Further, we generated a mutant for NvDclk1 using CRISPR/Cas9 and show that the mutants fail to generate mature cnidocytes. Our results support the hypothesis that the elaboration of programs for microtubule regulation occurred early in the evolution of nervous systems.


Assuntos
Quinases Semelhantes a Duplacortina , Neurônios , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/genética , Neurônios/metabolismo , Neurônios/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Microtúbulos/metabolismo , Neurogênese/fisiologia , Animais Geneticamente Modificados , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética
14.
Methods Mol Biol ; 2757: 531-581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668982

RESUMO

Experimental discovery of neuropeptides and peptide hormones is a long and tedious task. Mining the genomic and transcriptomic sequence data with robust secretory peptide prediction tools can significantly facilitate subsequent experiments. We describe the application of various in silico neuropeptide discovery methods for the placozoan Trichopax adhaerens as an illustrated example and a powerful experimental paradigm for cellular and evolutionary biology. In total, 33 placozoan (neuro)peptide-like hormone precursors were found using homology-based BLAST search and repeat-based and comparative evolutionary methods. Some of the discovered precursors are homologous to insulins and RFamide precursors from Cnidaria and other animal phyla.


Assuntos
Biologia Computacional , Neuropeptídeos , Placozoa , Animais , Biologia Computacional/métodos , Placozoa/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Filogenia , Evolução Molecular
15.
Curr Biol ; 34(8): 1635-1645.e3, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38460513

RESUMO

How nervous systems evolved is a central question in biology. A diversity of synaptic proteins is thought to play a central role in the formation of specific synapses leading to nervous system complexity. The largest animal genes, often spanning hundreds of thousands of base pairs, are known to be enriched for expression in neurons at synapses and are frequently mutated or misregulated in neurological disorders and diseases. Although many of these genes have been studied independently in the context of nervous system evolution and disease, general principles underlying their parallel evolution remain unknown. To investigate this, we directly compared orthologous gene sizes across eukaryotes. By comparing relative gene sizes within organisms, we identified a distinct class of large genes with origins predating the diversification of animals and, in many cases, the emergence of neurons as dedicated cell types. We traced this class of ancient large genes through evolution and found orthologs of the large synaptic genes potentially driving the immense complexity of metazoan nervous systems, including in humans and cephalopods. Moreover, we found that while these genes are evolving under strong purifying selection, as demonstrated by low dN/dS ratios, they have simultaneously grown larger and gained the most isoforms in animals. This work provides a new lens through which to view this distinctive class of large and multi-isoform genes and demonstrates how intrinsic genomic properties, such as gene length, can provide flexibility in molecular evolution and allow groups of genes and their host organisms to evolve toward complexity.


Assuntos
Evolução Molecular , Neurônios , Isoformas de Proteínas , Animais , Neurônios/metabolismo , Neurônios/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Humanos
16.
Front Neurosci ; 17: 1125433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034176

RESUMO

Nitric oxide (NO) is one of the most ancient and versatile signal molecules across all domains of life. NO signaling might also play an essential role in the origin of animal organization. Yet, practically nothing is known about the distribution and functions of NO-dependent signaling pathways in representatives of early branching metazoans such as Ctenophora. Here, we explore the presence and organization of NO signaling components using Mnemiopsis and kin as essential reference species. We show that NO synthase (NOS) is present in at least eight ctenophore species, including Euplokamis and Coeloplana, representing the most basal ctenophore lineages. However, NOS could be secondarily lost in many other ctenophores, including Pleurobrachia and Beroe. In Mnemiopsis leidyi, NOS is present both in adult tissues and differentially expressed in later embryonic stages suggesting the involvement of NO in developmental mechanisms. Ctenophores also possess soluble guanylyl cyclases as potential NO receptors with weak but differential expression across tissues. Combined, these data indicate that the canonical NO-cGMP signaling pathways existed in the common ancestor of animals and could be involved in the control of morphogenesis, cilia activities, feeding and different behaviors.

17.
Front Cell Dev Biol ; 10: 1071961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619868

RESUMO

How to make a neuron, a synapse, and a neural circuit? Is there only one 'design' for a neural architecture with a universally shared genomic blueprint across species? The brief answer is "No." Four early divergent lineages from the nerveless common ancestor of all animals independently evolved distinct neuroid-type integrative systems. One of these is a subset of neural nets in comb jellies with unique synapses; the second lineage is the well-known Cnidaria + Bilateria; the two others are non-synaptic neuroid systems in sponges and placozoans. By integrating scRNA-seq and microscopy data, we revise the definition of neurons as synaptically-coupled polarized and highly heterogenous secretory cells at the top of behavioral hierarchies with learning capabilities. This physiological (not phylogenetic) definition separates 'true' neurons from non-synaptically and gap junction-coupled integrative systems executing more stereotyped behaviors. Growing evidence supports the hypothesis of multiple origins of neurons and synapses. Thus, many non-bilaterian and bilaterian neuronal classes, circuits or systems are considered functional rather than genetic categories, composed of non-homologous cell types. In summary, little-explored examples of convergent neuronal evolution in representatives of early branching metazoans provide conceptually novel microanatomical and physiological architectures of behavioral controls in animals with prospects of neuro-engineering and synthetic biology.

18.
Front Cell Dev Biol ; 10: 823283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223848

RESUMO

Placozoans are essential reference species for understanding the origins and evolution of animal organization. However, little is known about their life strategies in natural habitats. Here, by maintaining long-term culturing for four species of Trichoplax and Hoilungia, we extend our knowledge about feeding and reproductive adaptations relevant to the diversity of life forms and immune mechanisms. Three modes of population dynamics depended upon feeding sources, including induction of social behaviors, morphogenesis, and reproductive strategies. In addition to fission, representatives of all species produced "swarmers" (a separate vegetative reproduction stage), which could also be formed from the lower epithelium with greater cell-type diversity. We monitored the formation of specialized spheroid structures from the upper cell layer in aging culture. These "spheres" could be transformed into juvenile animals under favorable conditions. We hypothesize that spheroid structures represent a component of the innate immune defense response with the involvement of fiber cells. Finally, we showed that regeneration could be a part of the adaptive reproductive strategies in placozoans and a unique experimental model for regenerative biology.

19.
Curr Top Dev Biol ; 147: 563-594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337463

RESUMO

Amphioxus (cepholochordates) have long been used to infer how the vertebrates evolved from their invertebrate ancestors. However, some of the body part homologies between amphioxus and vertebrates have been controversial. This is not surprising as the amphioxus and vertebrate lineages separated half a billion years ago-plenty of time for independent loss and independent gain of features. The development of new techniques in the late 20th and early 21st centuries including transmission electron microscopy and serial blockface scanning electron microscopy in combination with in situ hybridization and immunocytochemistry to reveal spatio-temporal patterns of gene expression and gene products have greatly strengthened inference of some homologies (like those between regions of the central nervous system), although others (like nephridia) still need further support. These major advances in establishing homologies between amphioxus and vertebrates, together with strong support from comparative genomics, have firmly established amphioxus as a stand-in or model for the ancestral vertebrate.


Assuntos
Anfioxos , Animais , Sistema Nervoso Central , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Anfioxos/genética , Filogenia , Vertebrados/genética
20.
Philos Trans R Soc Lond B Biol Sci ; 376(1821): 20190761, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33550946

RESUMO

In nervous systems, there are two main modes of transmission for the propagation of activity between cells. Synaptic transmission relies on close contact at chemical or electrical synapses while volume transmission is mediated by diffusible chemical signals and does not require direct contact. It is possible to wire complex neuronal networks by both chemical and synaptic transmission. Both types of networks are ubiquitous in nervous systems, leading to the question which of the two appeared first in evolution. This paper explores a scenario where chemically organized cellular networks appeared before synapses in evolution, a possibility supported by the presence of complex peptidergic signalling in all animals except sponges. Small peptides are ideally suited to link up cells into chemical networks. They have unlimited diversity, high diffusivity and high copy numbers derived from repetitive precursors. But chemical signalling is diffusion limited and becomes inefficient in larger bodies. To overcome this, peptidergic cells may have developed projections and formed synaptically connected networks tiling body surfaces and displaying synchronized activity with pulsatile peptide release. The advent of circulatory systems and neurohemal organs further reduced the constraint imposed on chemical signalling by diffusion. This could have contributed to the explosive radiation of peptidergic signalling systems in stem bilaterians. Neurosecretory centres in extant nervous systems are still predominantly chemically wired and coexist with the synaptic brain. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.


Assuntos
Evolução Biológica , Encéfalo/fisiologia , Sistema Nervoso/química , Transdução de Sinais , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA