RESUMO
Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.
Assuntos
Galinhas , Patos , Cavalos , Vírus da Influenza A , Influenza Aviária , Ácidos Neuramínicos , Animais , Humanos , Galinhas/genética , Galinhas/metabolismo , Galinhas/virologia , Patos/genética , Patos/metabolismo , Patos/virologia , Epitopos/química , Epitopos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Cavalos/genética , Cavalos/metabolismo , Cavalos/virologia , Vírus da Influenza A/química , Vírus da Influenza A/classificação , Vírus da Influenza A/metabolismo , Influenza Aviária/genética , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mutação , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Suínos/virologia , Zoonoses Virais/metabolismo , Zoonoses Virais/transmissão , Zoonoses Virais/virologiaRESUMO
We monitored longitudinal changes in bovine milk IgG in samples from four cows at 9 time points in between 0.5 and 28 days following calving. We used peptide-centric LC-MS/MS on proteolytic digests of whole bovine milk, resulting in the combined identification of 212 individual bovine milk protein sequences, with IgG making up >50 percent of the protein content of every 0.5 d colostrum sample, which reduced to ≤3 percent in mature milk. In parallel, we analyzed IgG captured from the bovine milk samples to characterize its N-glycosylation, using dedicated methods for bottom-up glycoproteomics employing product ion-triggered hybrid fragmentation; data are available via ProteomeXchange with identifier PXD037755. The bovine milk IgG N-glycosylation profile was revealed to be very heterogeneous, consisting of >40 glycoforms. Furthermore, these N-glycosylation profiles changed substantially over the period of lactation, but consistently across the four individual cows. We identified NeuAc sialylation as the key abundant characteristic of bovine colostrum IgG, significantly decreasing in the first days of lactation, and barely detectable in mature bovine milk IgG. We also report, for the first time to our knowledge, the identification of subtype IgG3 in bovine milk, alongside the better-documented IgG1 and IgG2. The detailed molecular characteristics we describe of the bovine milk IgG, and their dynamic changes during lactation, are important not only for the fundamental understanding of the calf's immune development, but also for understanding bovine milk and its bioactive components in the context of human nutrition.
Assuntos
Colostro , Imunoglobulina G , Gravidez , Feminino , Animais , Bovinos , Humanos , Colostro/metabolismo , Imunoglobulina G/metabolismo , Glicosilação , Cromatografia Líquida , Espectrometria de Massas em Tandem , LactaçãoRESUMO
Influenza A viruses (IAV) initiate infection by binding to glycans with terminal sialic acids on the cell surface. Hosts of IAV variably express two major forms of sialic acid, N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc). NeuGc is produced in most mammals, including horses and pigs, but is absent in humans, ferrets, and birds. The only known naturally occurring IAV that exclusively bind NeuGc are extinct highly pathogenic equine H7N7 viruses. We determined the crystal structure of a representative equine H7 hemagglutinin (HA) in complex with NeuGc and observed high similarity in the receptor-binding domain with an avian H7 HA. To determine the molecular basis for NeuAc and NeuGc specificity, we performed systematic mutational analyses, based on the structural insights, on two distant avian H7 HAs and an H15 HA. We found that the A135E mutation is key for binding α2,3-linked NeuGc but does not abolish NeuAc binding. The additional mutations S128T, I130V, T189A, and K193R converted the specificity from NeuAc to NeuGc. We investigated the residues at positions 128, 130, 135, 189, and 193 in a phylogenetic analysis of avian and equine H7 HAs. This analysis revealed a clear distinction between equine and avian residues. The highest variability was observed at key position 135, of which only the equine glutamic acid led to NeuGc binding. These results demonstrate that genetically distinct H7 and H15 HAs can be switched from NeuAc to NeuGc binding and vice versa after the introduction of several mutations, providing insights into the adaptation of H7 viruses to NeuGc receptors. IMPORTANCE Influenza A viruses cause millions of cases of severe illness and deaths annually. To initiate infection and replicate, the virus first needs to bind to a structure on the cell surface, like a key fitting in a lock. For influenza A viruses, these "keys" (receptors) on the cell surface are chains of sugar molecules (glycans). The terminal sugar on these glycans is often either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc). Most influenza A viruses bind NeuAc, but a small minority bind NeuGc. NeuGc is present in species like horses, pigs, and mice but not in humans, ferrets, and birds. Here, we investigated the molecular determinants of NeuGc specificity and the origin of viruses that bind NeuGc.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H7N7 , Ácidos Neuramínicos , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Cavalos , Humanos , Vírus da Influenza A Subtipo H7N7/química , Vírus da Influenza A Subtipo H7N7/metabolismo , Ácido N-Acetilneuramínico , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Filogenia , Polissacarídeos/metabolismo , Ligação ProteicaRESUMO
Glycosylation modification serves as a pivotal quality attribute in glycoprotein-based therapeutics, emphasizing its role in drug safety and efficacy. Prior studies have underscored the potential immunogenic risks posed by the presence of galactose-α-1,3-galactose (α-Gal) and N-glycolylneuraminic acid (NeuGc) in glycoprotein formulations. This accentuates the imperative for developing robust qualitative and quantitative analytical methods to monitor these immunogenic epitopes, thereby ensuring drug safety. In the present investigation, α-Gal and NeuGc were accurately quantified using UPLC-FLR-MS/MS at the oligosaccharide level. Remarkably, α-Gal could be identified when the ion intensity ratio or the mass-to-charge ratio (m/z) of 528.19 to 366.14 exceeded 1. Concurrently, NeuGc and N-acetylneuraminic acid (NeuAc) could be unambiguously identified through their respective fragment ions at m/z 673.23 and m/z 657.23. Furthermore, relative quantification of α-Gal and NeuGc was achieved using fluorescence signals. This study introduces a sensitive and reliable analytical approach for the qualitative and quantitative assessment of α-Gal and NeuGc in glycoprotein pharmaceuticals. The methodology offers significant potential for application in process control and optimization of glycoprotein production, aimed at minimizing immunogenicity and enhancing product quality.
Assuntos
Galactose , Espectrometria de Massas em Tandem , Ácidos Neuramínicos , Ácido N-Acetilneuramínico , Glicoproteínas , OligossacarídeosRESUMO
The evaluation of the protein glycosylation states of samples of aflibercept obtained from three different regions was conducted by site-specific N-linked glycan microheterogeneity profiling. Glycopeptide-based nano-LC MSMS mapping of tryptic-digested samples of each aflibercept lot provided site-specific information about glycan microheterogeneity on each of the five N-glycosylation sites (two sites in the VEGFR-1 region, two sites in the VEGFR-2 region, and one site in the human IgG Fc region). Next, the glycopeptide-mapping results obtained from the three different aflibercept lots were compared to evaluate the similarity between the samples. Three aflibercept lots showed a high degree of similarity in glycan composition, fucosylation level, sialylation level, and branching, when all five N-glycosylation sites were assessed together as a group. On the other hand, noticeable variations between lots in the glycan types and sialylation levels on the two sites of the VEGFR-2 domain were observed when each of the five N-glycosylation sites were assessed using the glycopeptide-based method. The presence of N-glycolylneuraminic acid (NeuGc) glycans, which may mediate adverse immune reactions in antibody therapeutics, were also detected on the sites of VEGFR1 and VEGFR2 domains, but not on the IgG Fc domain site. These results imply that analyses of the glycosylation profiles of fusion proteins containing multiple N-glycosylation sites, such as aflibercept, being done as a part of quality control for the therapeutics manufacturing process or for biosimilar development, can be done with a more applicable outcome by assessing each site separately.
Assuntos
Medicamentos Biossimilares , Glicopeptídeos , Humanos , Imunoglobulina G , Polissacarídeos/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio VascularRESUMO
N-glycolylneuraminic acid (NeuGc), a non-human sialic acid derivative synthesized by cytidine-5'-monophospho-N-acetylneuraminic acid hydroxylase (CMAH), plays a crucial role in mediating infections by certain pathogens. Although it has been postulated that NeuGc biosynthesis and CMAH expression are downregulated during microbial infection, the underlying mechanisms remain unclear. The present study showed that exposure to lipopolysaccharide (LPS), a Gram-negative bacterial endotoxin, leads to loss of NeuGc biosynthesis in pig small intestinal I2I-2I cells. This LPS-induced NeuGc loss was accompanied by decreased CMAH transcript levels, especially intestine-specific 5'pcmah-1. Furthermore, LPS suppressed the activity of the Pi promoter responsible for 5'pcmah-1 by inhibiting DNA binding of Est1. These findings provide insight into the regulatory mechanisms of Neu5Gc biosynthesis during pathogenic infectious events, which may represent a host defense mechanism that protects the self against pathogenic bacterial infections even in non-sanitary environments.
Assuntos
Regulação para Baixo/efeitos dos fármacos , Endotoxinas/farmacologia , Bactérias Gram-Negativas/metabolismo , Intestino Delgado/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Ácidos Neuramínicos/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Animais , Linhagem Celular , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/metabolismo , Oxigenases de Função Mista/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Ácidos Siálicos/metabolismo , SuínosRESUMO
Disease outbreaks are a limiting factor for the sustainable development of the aquaculture industry. The intestinal tract is covered by a mucus layer mainly comprised by highly glycosylated proteins called mucins. Mucins regulate pathogen adhesion, growth, and virulence, and the glycans are vital for these functions. We analyzed intestinal mucin O-glycans on mucins from control and full-fat extruded soy-bean-fed (known to cause enteritis) Arctic charr using liquid chromatography-tandem mass spectrometry. In total, 56 glycans were identified on Arctic charr intestinal mucins, with a high prevalence of core-5-type and sialylated O-glycans. Disialic-acid-epitope-containing structures including NeuAcα2,8NeuAc, NeuAc(Gc)α2,8NeuGc(Ac), and NeuGcα2,8NeuGc were the hallmark of Arctic charr intestinal mucin glycosylation. Arctic charr fed with soy bean meal diet had lower (i) number of structures detected, (ii) interindividual variation, and (iii) N-glycolylneuraminic-acid-containing glycans compared with control Arctic charr. Furthermore, Aeromonas salmonicida grew less in response to mucins from inflamed Arctic charr than from the control group. The Arctic charr glycan repertoire differed from that of Atlantic salmon. In conclusion, the loss of N-glycolylneuraminic acid may be a biomarker for inflammation in Arctic char, and inflammation-induced glycosylation changes affect host-pathogen interactions.
Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Intestinos/química , Ácidos Neuramínicos/análise , Polissacarídeos , Salmonidae/fisiologia , Ração Animal , Animais , Aquicultura , Regiões Árticas , Sequência de Carboidratos , Cromatografia Líquida , Inflamação/metabolismo , Inflamação/microbiologia , Mucinas/análise , Mucinas/química , Mucinas/isolamento & purificação , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Espectrometria de Massas em TandemRESUMO
Brachyspira hyodysenteriae causes swine dysentery (SD), leading to global financial losses to the pig industry. Infection with this pathogen results in an increase in B. hyodysenteriae binding sites on mucins, along with increased colonic mucin secretion. We predict that B. hyodysenteriae modifies the glycosylation pattern of the porcine intestinal mucus layer to optimize its host niche. We characterized the swine colonic mucin O-glycome and identified the differences in glycosylation between B. hyodysenteriae-infected and noninfected pigs. O-Glycans were chemically released from soluble and insoluble mucins isolated from five infected and five healthy colon tissues and analyzed using porous graphitized carbon liquid chromatography tandem mass spectrometry. In total, 94 O-glycans were identified, with healthy pigs having higher interindividual variation, although a larger array of glycan structures was present in infected pigs. This implied that infection induced loss of individual variation and that specific infection-related glycans were induced. The dominating structures shifted from core-4-type O-glycans in noninfected pigs toward core-2-type O-glycans in infected animals, which correlated with increased levels of the C2GnT glycosyl transferase. Overall, glycan chains from infected pigs were shorter and had a higher abundance of structures that were neutral or predominantly contained NeuGc instead of NeuAc, whereas they had a lower abundance of structures that were fucosylated, acidic, or sulfated than those from noninfected pigs. Therefore, we conclude that B. hyodysenteriae plays a major role in regulating colonic mucin glycosylation in pigs during SD. The changes in mucin O-glycosylation thus resulted in a glycan fingerprint in porcine colonic mucus that may provide increased exposure of epitopes important for host-pathogen interactions. The results from this study provide potential therapeutic targets and a platform for investigations of B. hyodysenteriae interactions with the host via mucin glycans.
Assuntos
Brachyspira hyodysenteriae/genética , Disenteria/microbiologia , Mucinas/metabolismo , Polissacarídeos/metabolismo , Animais , Brachyspira hyodysenteriae/patogenicidade , Colo/metabolismo , Colo/patologia , Disenteria/patologia , Disenteria/veterinária , Glicosilação , Interações Hospedeiro-Patógeno/genética , Mucinas/química , Polissacarídeos/química , SuínosRESUMO
In the present study, we isolated pCMAH house-keeping promoter regions (Ph), which are responsible for transcriptional regulation and which are located upstream of the alternative transcript pcmah-2. Luciferase reporter assays using serial construction of each deleted promoter demonstrated that the Ph promoter was highly active in pig-derived kidney PK15. Ph promoter of pcmah lacked a TATA box, but contained three putative Sp1 binding sites. Mutations of these Sp1 binding sites always resulted in the reduction of luciferase activities in Ph-334. In addition, treatment with mithramycin A (25-100 nM) decreased the luciferase activities of the Ph promoters and NeuGc expression in a dose-dependent manner. Electrophoretic mobility shift assay analysis revealed that the probes containing each Sp1 binding site bound to Sp1. Taken together, the results indicate that Sp1 bind to their putative binding sites on the Ph promoter regions of pcmah and positively regulate the promoter activity in pig kidney cells. Interspecies comparison of 5'UTRs and 5'flanking regions shows high homology between pig and cattle, and Sp1 binding sites existing in genomic regions corresponding Ph region are evolutionally conserved.
Assuntos
Regulação Enzimológica da Expressão Gênica , Genes Essenciais/fisiologia , Oxigenases de Função Mista/biossíntese , Ácidos Neuramínicos/metabolismo , Elementos de Resposta/fisiologia , Animais , Linhagem Celular , Plicamicina/farmacologia , SuínosRESUMO
Cancer immunotherapy represents a promising approach to specifically target and treat cancer. The most common mechanisms by which monoclonal antibodies kill cells include antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity and apoptosis, but also other mechanisms have been described. 14F7 is an antibody raised against the tumor-associated antigen NeuGc GM3, which was previously reported to kill cancer cells without inducing apoptotic pathways. The antibody was reported to induce giant membrane lesions in tumor cells, with apparent changes in the cytoskeleton. Here, we investigated the effect of humanized 14F7 on HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with LC-MS and live cell imaging. 14F7 did not kill the HeLa cells, however, it caused altered protein expression (MS data are available via ProteomeXchange with identifier PXD024320). Several cytoskeletal and nucleic-acid binding proteins were found to be strongly down-regulated in response to antibody treatment, suggesting how 14F7 may induce membrane lesions in cells that contain higher amounts of NeuGc GM3. The altered expression profile identified in this study thus contributes to an improved understanding of the unusual killing mechanism of 14F7.
Assuntos
Neoplasias , Proteômica , Humanos , Células HeLa , Microscopia , Anticorpos MonoclonaisRESUMO
Valvular heart diseases (VHD) are a major health burden, affecting millions of people worldwide. The treatments for such diseases rely on medicine, valve repair, and artificial heart valves including mechanical and bioprosthetic valves. Yet, there are countless reports on possible alternatives noting long-term stability and biocompatibility issues and highlighting the need for fabrication of more durable and effective replacements. This review discusses the current and potential materials that can be used for developing such valves along with existing and developing fabrication methods. With this perspective, we quantitatively compare mechanical properties of various materials that are currently used or proposed for heart valves along with their fabrication processes to identify challenges we face in creating new materials and manufacturing techniques to better mimick âthe performance of native heart valves.
RESUMO
The transplantation (implantation) of xenograft heart valves into humans has been carried out for >50 years. There has been considerable research into making this form of xenotransplantation successful, though it is not perfect yet. We review the understanding of the immune response to xenograft heart valves. Important steps in the history include understanding (i) the importance of glutaraldehyde in decreasing the immune response and (ii) the relationship between calcification (which is the main problem leading to xenograft failure) and the immune response. We subsequently discuss the importance of identifying xenoantigens that are important in leading to xenograft valve failure, and the potential of genetically-engineered pigs to allow the development of the 'ideal' heart valve for clinical valve replacement.
Assuntos
Bioprótese/tendências , Implante de Prótese de Valva Cardíaca/tendências , Próteses Valvulares Cardíacas/tendências , Animais , Animais Geneticamente Modificados , Calcinose/etiologia , Rejeição de Enxerto/imunologia , Doenças das Valvas Cardíacas/etiologia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/métodos , Xenoenxertos , Humanos , SuínosRESUMO
Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after α1,3-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identified and quantified totally 47 N-glycans from wild-type (WT) and GalT-KO pig fibroblasts using mass spectrometry. First, our results confirmed the absence of galactose-alpha-1,3-galactose (α-Gal) residue in the GalT-KO pig cells. Interestingly, we showed that the level of overall fucosylated N-glycans from GalT-KO pig fibroblasts is much higher than from WT pig fibroblasts. Moreover, the relative quantity of the N-glycolylneuraminic acid (NeuGc) antigen is slightly higher in the GalT-KO pigs. Thus, this study will contribute to a better understanding of cellular glycan alterations on GalT-KO pigs for successful xenotransplantation.
Assuntos
Fibroblastos/enzimologia , Galactosiltransferases/genética , Ácidos Neuramínicos/metabolismo , Polissacarídeos/isolamento & purificação , Animais , Membrana Celular/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/imunologia , Galactosiltransferases/metabolismo , Técnicas de Inativação de Genes , Espectrometria de Massas , SuínosAssuntos
Anticorpos/imunologia , Asma/imunologia , Dieta/efeitos adversos , Infertilidade/imunologia , Esclerose Múltipla/imunologia , Neoplasias/imunologia , Ácidos Neuramínicos/imunologia , Doenças Vasculares/imunologia , Antígenos/imunologia , Humanos , Ácidos Neuramínicos/administração & dosagemRESUMO
We have recently developed an in vitro culture model enabling the large-scale expansion of switched-memory B lymphocytes, producing a polyclonal human IgG repertoire. Given the importance of glycosylation for the functions of immunoglobulins, we analyzed the N-glycosylation profiles of the immunoglobulin G (IgG) in this model. Switched-memory B cells were cultured for 38 days and, using liquid chromatography-mass spectrometry, we analyzed IgGs' glycosylation profiles which were then compared to the glycosylation patterns of commercial intravenous immunoglobulin (IVIG). We observed a reproducible proliferation rate, high viability through the cultures as well as a good maintenance of the switched-memory B cells repertoire. The glycosylation pattern analyses revealed a variety of the typical biantennary N-glycan structures with diverse terminal monosaccharides. While many similarities were detected in comparison to the glycosylation profile of IVIG, in vitro-produced polyclonal IgGs were bearing higher levels of bisecting GlcNAc known to affect the effector functions of therapeutic antibodies. This data highlights the need for monitoring of the glycoform distribution in antibodies produced in vitro.