Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.759
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209683

RESUMO

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Assuntos
Síndrome do Cromossomo X Frágil , Expansão das Repetições de Trinucleotídeos , Humanos , Estruturas R-Loop , Metilação de DNA , Síndrome do Cromossomo X Frágil/genética , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
2.
Cell ; 185(23): 4409-4427.e18, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368308

RESUMO

Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Variações do Número de Cópias de DNA/genética , Genômica
3.
Cell ; 184(15): 4048-4063.e32, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34233165

RESUMO

Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.


Assuntos
Microglia/metabolismo , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Parvalbuminas/metabolismo , Fenótipo , Receptores de GABA-B/metabolismo , Sinapses/fisiologia , Transcrição Gênica
4.
Cell ; 174(3): 505-520, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30053424

RESUMO

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Assuntos
Mapeamento Cromossômico/métodos , Transtornos do Neurodesenvolvimento/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Neurobiologia/métodos , Neuropsiquiatria
5.
Cell ; 172(3): 500-516.e16, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29275859

RESUMO

Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease.


Assuntos
Vida Livre de Germes , Microbiota , Microglia/citologia , Efeitos Tardios da Exposição Pré-Natal/microbiologia , Transcriptoma , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Gravidez , Fatores Sexuais
6.
Cell ; 173(6): 1356-1369.e22, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29856954

RESUMO

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.


Assuntos
Encéfalo/embriologia , Córtex Cerebral/fisiologia , Neurogênese/fisiologia , Receptor Notch2/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Deleção de Genes , Genes Reporter , Gorilla gorilla , Células HEK293 , Humanos , Neocórtex/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Pan troglodytes , Receptor Notch2/genética , Análise de Sequência de RNA
7.
Cell ; 169(5): 945-955.e10, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525759

RESUMO

Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Animais , Encéfalo/fisiologia , Cromossomos Humanos X , Ritmo Circadiano , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Edição de Genes , Humanos , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Mutação , Dor , Síndrome de Rett/fisiopatologia , Sono , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Transcriptoma
8.
Immunity ; 55(1): 145-158.e7, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34879222

RESUMO

Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/imunologia , Linfócitos T CD4-Positivos/imunologia , Cromatina/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Interleucina-17/metabolismo , Intestinos/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Transtorno do Espectro Autista/microbiologia , Criança , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Humanos , Imunização , Inflamação/microbiologia , Camundongos , Transtornos do Neurodesenvolvimento/microbiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologia
9.
Cell ; 165(7): 1762-1775, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315483

RESUMO

Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT.


Assuntos
Transtorno do Espectro Autista/microbiologia , Dieta Hiperlipídica , Microbioma Gastrointestinal , Obesidade/complicações , Comportamento Social , Animais , Disbiose/fisiopatologia , Feminino , Vida Livre de Germes , Abrigo para Animais , Limosilactobacillus reuteri , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/análise , Ocitocina/metabolismo , Gravidez , Área Tegmentar Ventral
10.
Mol Cell ; 83(9): 1412-1428.e7, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37098340

RESUMO

During postnatal development, the DNA methyltransferase DNMT3A deposits high levels of non-CG cytosine methylation in neurons. This methylation is critical for transcriptional regulation, and loss of this mark is implicated in DNMT3A-associated neurodevelopmental disorders (NDDs). Here, we show in mice that genome topology and gene expression converge to shape histone H3 lysine 36 dimethylation (H3K36me2) profiles, which in turn recruit DNMT3A and pattern neuronal non-CG methylation. We show that NSD1, an H3K36 methyltransferase mutated in NDD, is required for the patterning of megabase-scale H3K36me2 and non-CG methylation in neurons. We find that brain-specific deletion of NSD1 causes altered DNA methylation that overlaps with DNMT3A disorder models to drive convergent dysregulation of key neuronal genes that may underlie shared phenotypes in NSD1- and DNMT3A-associated NDDs. Our findings indicate that H3K36me2 deposited by NSD1 is important for neuronal non-CG DNA methylation and suggest that the H3K36me2-DNMT3A-non-CG-methylation pathway is likely disrupted in NSD1-associated NDDs.


Assuntos
Metilação de DNA , Histonas , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neurônios/metabolismo
11.
Annu Rev Neurosci ; 45: 425-445, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35436413

RESUMO

Mounting evidence indicates that microglia, which are the resident immune cells of the brain, play critical roles in a diverse array of neurodevelopmental processes required for proper brain maturation and function. This evidence has ultimately led to growing speculation that microglial dysfunction may play a role in neurodevelopmental disorder (NDD) pathoetiology. In this review, we first provide an overview of how microglia mechanistically contribute to the sculpting of the developing brain and neuronal circuits. To provide an example of how disruption of microglial biology impacts NDD development, we also highlight emerging evidence that has linked microglial dysregulation to autism spectrum disorder pathogenesis. In recent years, there has been increasing interest in how the gut microbiome shapes microglial biology. In the last section of this review, we put a spotlight on this burgeoning area of microglial research and discuss how microbiota-dependent modulation of microglial biology is currently thought to influence NDD progression.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/patologia , Encéfalo/fisiologia , Humanos , Microglia/fisiologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/patologia
12.
Annu Rev Genet ; 56: 391-422, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36055969

RESUMO

Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.


Assuntos
Transtornos do Neurodesenvolvimento , Animais , Humanos , Transtornos do Neurodesenvolvimento/genética , Modelos Animais de Doenças , Genômica , Mutação , Sinapses/genética
13.
Immunity ; 54(11): 2611-2631.e8, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758338

RESUMO

Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.


Assuntos
Hipocampo/metabolismo , Interleucina-6/biossíntese , Exposição Materna , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Gravidez , Transdução de Sinais , Transmissão Sináptica
14.
Genes Dev ; 35(23-24): 1642-1656, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819353

RESUMO

Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.


Assuntos
Neoplasias , Transtornos do Neurodesenvolvimento , Cromatina , Histonas/metabolismo , Humanos , Proteínas de Membrana , Neoplasias/genética , Transtornos do Neurodesenvolvimento/genética , Nucleossomos , Proteínas Proto-Oncogênicas
15.
Annu Rev Neurosci ; 43: 315-336, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32101484

RESUMO

All mammals must suckle and swallow at birth, and subsequently chew and swallow solid foods, for optimal growth and health. These initially innate behaviors depend critically upon coordinated development of the mouth, tongue, pharynx, and larynx as well as the cranial nerves that control these structures. Disrupted suckling, feeding, and swallowing from birth onward-perinatal dysphagia-is often associated with several neurodevelopmental disorders that subsequently alter complex behaviors. Apparently, a broad range of neurodevelopmental pathologic mechanisms also target oropharyngeal and cranial nerve differentiation. These aberrant mechanisms, including altered patterning, progenitor specification, and neurite growth, prefigure dysphagia and may then compromise circuits for additional behavioral capacities. Thus, perinatal dysphagia may be an early indicator of disrupted genetic and developmental programs that compromise neural circuits and yield a broad range of behavioral deficits in neurodevelopmental disorders.


Assuntos
Animais Lactentes/fisiologia , Transtornos de Deglutição/patologia , Rede Nervosa/fisiologia , Faringe/patologia , Animais , Comportamento/fisiologia , Deglutição/fisiologia , Transtornos de Deglutição/fisiopatologia , Humanos , Faringe/fisiologia
16.
Trends Genet ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39358183

RESUMO

Two recent papers have identified genetic variants in the noncoding gene RNU4-2 to cause a frequent neurodevelopmental disorder. This work will have a substantial impact on the rare disease community, leading to thousands of diagnoses worldwide. These studies also highlight the untapped diagnostic potential of noncoding regions.

17.
EMBO J ; 42(13): e113796, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37161785

RESUMO

In the last two decades, the term synaptopathy has been largely used to underline the concept that impairments of synaptic structure and function are the major determinant of brain disorders, including neurodevelopmental disorders. This notion emerged from the progress made in understanding the genetic architecture of neurodevelopmental disorders, which highlighted the convergence of genetic risk factors onto molecular pathways specifically localized at the synapse. However, the multifactorial origin of these disorders also indicated the key contribution of environmental factors. It is well recognized that inflammation is a risk factor for neurodevelopmental disorders, and several immune molecules critically contribute to synaptic dysfunction. In the present review, we highlight this concept, which we define by the term "immune-synaptopathy," and we discuss recent evidence suggesting a bi-directional link between the genetic architecture of individuals and maternal activation of the immune system in modulating brain developmental trajectories in health and disease.


Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Sinapses/metabolismo , Família
18.
Am J Hum Genet ; 111(3): 509-528, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412861

RESUMO

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Encéfalo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
19.
Am J Hum Genet ; 111(8): 1588-1604, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047730

RESUMO

Histone deacetylase 3 (HDAC3) is a crucial epigenetic modulator essential for various developmental and physiological functions. Although its dysfunction is increasingly recognized in abnormal phenotypes, to our knowledge, there have been no established reports of human diseases directly linked to HDAC3 dysfunction. Using trio exome sequencing and extensive phenotypic analysis, we correlated heterozygous de novo variants in HDAC3 with a neurodevelopmental disorder having variable clinical presentations, frequently associated with intellectual disability, developmental delay, epilepsy, and musculoskeletal abnormalities. In a cohort of six individuals, we identified missense variants in HDAC3 (c.277G>A [p.Asp93Asn], c.328G>A [p.Ala110Thr], c.601C>T [p.Pro201Ser], c. 797T>C [p.Leu266Ser], c.799G>A [p.Gly267Ser], and c.1075C>T [p.Arg359Cys]), all located in evolutionarily conserved sites and confirmed as de novo. Experimental studies identified defective deacetylation activity in the p.Asp93Asn, p.Pro201Ser, p.Leu266Ser, and p.Gly267Ser variants, positioned near the enzymatic pocket. In addition, proteomic analysis employing co-immunoprecipitation revealed that the disrupted interactions with molecules involved in the CoREST and NCoR complexes, particularly in the p.Ala110Thr variant, consist of a central pathogenic mechanism. Moreover, immunofluorescence analysis showed diminished nuclear to cytoplasmic fluorescence ratio in the p.Ala110Thr, p.Gly267Ser, and p.Arg359Cys variants, indicating impaired nuclear localization. Taken together, our study highlights that de novo missense variants in HDAC3 are associated with a broad spectrum of neurodevelopmental disorders, which emphasizes the complex role of HDAC3 in histone deacetylase activity, multi-protein complex interactions, and nuclear localization for proper physiological functions. These insights open new avenues for understanding the molecular mechanisms of HDAC3-related disorders and may inform future therapeutic strategies.


Assuntos
Epigênese Genética , Histona Desacetilases , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Masculino , Feminino , Pré-Escolar , Criança , Deficiência Intelectual/genética , Sequenciamento do Exoma , Adolescente , Deficiências do Desenvolvimento/genética , Fenótipo , Lactente , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo
20.
Am J Hum Genet ; 111(8): 1605-1625, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39013458

RESUMO

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 9 , Anormalidades Craniofaciais , Metilação de DNA , Estudos de Associação Genética , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Fenótipo , Humanos , Histona-Lisina N-Metiltransferase/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Cromossomos Humanos Par 9/genética , Metilação de DNA/genética , Feminino , Masculino , Criança , Pré-Escolar , Antígenos de Histocompatibilidade/genética , Adolescente , Cardiopatias Congênitas/genética , Haploinsuficiência/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA