Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 41(12): 3356-3363, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27662849

RESUMO

Neuromelanin (NM) has long been considered as an aging pigment, perhaps an unavoidable and undesirable byproduct of dopaminergic neural transmission. However, NM is carefully packaged into double membrane-bound structures within cells of the substantia nigra and other neural tissues, suggesting a beneficial function to maintaining these stores. It is well established that NM is able to concentrate toxic xenobiotics within pigmented cells due to its unique chemical environment. In doing so, such agents may confer susceptibility to Parkinson's disease (PD) as illustrated by model PD-inducing neurotoxins such as methyl-phenyl-pyridinium ion. It is possible that high-affinity binding interactions toward NM may contribute to the adverse effects of PD-inducing toxins, as well as neuroprotective agents. Here we aim to develop a generalized assay capable of elucidating the binding constants of chemical agents to synthetic and natural neuromelanins. Toward this end, a model neuromelanin synthesized from dopamine and cysteine was prepared according to published procedure. Using a UV/Visible spectroscopic assay, we show that dopamine, 6-hydroxy dopamine, and nicotine bind to the synthetic neuromelanin, while caffeine did not. More importantly, nicotine was further found to induce a fluorescence signal in the presence of NM which was used to establish a binding constant estimated at 0.65 mM. Dopamine appears to enhance this signal, also in a saturable manner, with an estimated Kd of 0.05 mM in our isolated chemical system. In summary, the micro-scale fluorescence assay described herein will allow us to overcome many of the problems inherent in the study of chemical interaction with NM through traditional spectroscopic means. Using a single standardized signal, it should now be possible to rank a number of PD-related toxins based on NM-binding affinity and shed further light on this important problem.


Assuntos
Melaninas/química , Nicotina/química , Cafeína/química , Cisteína/química , Dopamina/química , Ferro/química , Melaninas/síntese química , Oxidopamina/química , Doença de Parkinson , Polimerização , Espectrometria de Fluorescência
2.
Front Dement ; 2: 1215505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39082000

RESUMO

Substantia nigra pars compacta (SNc) and locus coeruleus (LC) are neuromelanin-rich nuclei implicated in diverse cognitive and motor processes in normal brain function and disease. However, their roles in aging and neurodegenerative disease mechanisms have remained unclear due to a lack of tools to study them in vivo. Preclinical and post-mortem human investigations indicate that the relationship between tissue neuromelanin content and neurodegeneration is complex. Neuromelanin exhibits both neuroprotective and cytotoxic characteristics, and tissue neuromelanin content varies across the lifespan, exhibiting an inverted U-shaped relationship with age. Neuromelanin-sensitive MRI (NM-MRI) is an emerging modality that allows measurement of neuromelanin-associated contrast in SNc and LC in humans. NM-MRI robustly detects disease effects in these structures in neurodegenerative conditions, including Parkinson's disease (PD). Previous NM-MRI studies of PD have largely focused on detecting disease group effects, but few studies have reported NM-MRI correlations with phenotype. Because neuromelanin dynamics are complex, we hypothesize that they are best interpreted in the context of both disease stage and aging, with neuromelanin loss correlating with symptoms most clearly in advanced stages where neuromelanin loss and neurodegeneration are coupled. We tested this hypothesis using NM-MRI to measure SNc and LC volumes in healthy older adult control individuals and in PD patients with and without freezing of gait (FOG), a severe and disabling PD symptom. We assessed for group differences and correlations between NM-MRI measures and aging, cognition and motor deficits. SNc volume was significantly decreased in PD with FOG compared to controls. SNc volume correlated significantly with motor symptoms and cognitive measures in PD with FOG, but not in PD without FOG. SNc volume correlated significantly with aging in PD. When PD patients were stratified by disease duration, SNc volume correlated with aging, cognition, and motor deficits only in PD with disease duration >5 years. We conclude that in severe or advanced PD, identified by either FOG or disease duration >5 years, the observed correlations between SNc volume and aging, cognition, and motor function may reflect the coupling of neuromelanin loss with neurodegeneration and the associated emergence of a linear relationship between NM-MRI measures and phenotype.

3.
Front Psychiatry ; 13: 889572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669271

RESUMO

Background: Antipsychotic drugs are primarily efficacious in treating positive symptoms by blocking the dopamine D2 receptor, but they fail to substantially improve negative symptoms and cognitive deficits. The limited efficacy may be attributed to the fact that the pathophysiology of psychosis involves multiple neurotransmitter systems. In patients with chronic schizophrenia, memantine, a non-competitive glutamatergic NMDA receptor antagonist, shows promise for ameliorating negative symptoms and improving cognition. Yet, it is unknown how memantine modulates glutamate levels, and memantine has not been investigated in patients with first-episode psychosis. Aims: This investigator-initiated double-blinded randomized controlled trial is designed to (1) test the clinical effects on negative symptoms of add-on memantine to antipsychotic medication, and (2) neurobiologically characterize the responders to add-on memantine. Materials and Equipment: Antipsychotic-naïve patients with first-episode psychosis will be randomized to 12 weeks treatment with [amisulpride + memantine] or [amisulpride + placebo]. We aim for a minimum of 18 patients in each treatment arm to complete the trial. Brain mapping will be performed before and after 12 weeks focusing on glutamate and neuromelanin in predefined regions. Regional glutamate levels will be probed with proton magnetic resonance spectroscopy (MRS), while neuromelanin signal will be mapped with neuromelanin-sensitive magnetic resonance imaging (MRI). We will also perform structural and diffusion weighted, whole-brain MRI. MRS and MRI will be performed at an ultra-high field strength (7 Tesla). Alongside, participants undergo clinical and neuropsychological assessments. Twenty matched healthy controls will undergo similar baseline- and 12-week examinations, but without receiving treatment. Outcome Measures: The primary endpoint is negative symptom severity. Secondary outcomes comprise: (i) clinical endpoints related to cognition, psychotic symptoms, side effects, and (ii) neurobiological endpoints related to regional glutamate- and neuromelanin levels, and structural brain changes. Anticipated Results: We hypothesize that add-on memantine to amisulpride will be superior to amisulpride monotherapy in reducing negative symptoms, and that this effect will correlate with thalamic glutamate levels. Moreover, we anticipate that add-on memantine will restore regional white matter integrity and improve cognitive functioning. Perspectives: By combining two licensed, off-patent drugs, AMEND aims to optimize treatment of psychosis while investigating the memantine response. Alongside, AMEND will provide neurobiological insights to effects of dual receptor modulation, which may enable future stratification of patients with first-episode psychosis before initial antipsychotic treatment. Clinical Trial Registration: [ClinicalTrials.gov], identifier [NCT04789915].

4.
Antioxidants (Basel) ; 10(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467040

RESUMO

Aging is associated with an increasing dysfunction of key brain homeostasis mechanisms and represents the main risk factor across most neurodegenerative disorders. However, the degree of dysregulation and the affectation of specific pathways set apart normal aging from neurodegenerative disorders. In particular, the neuronal metabolism of catecholaminergic neurotransmitters appears to be a specifically sensitive pathway that is affected in different neurodegenerations. In humans, catecholaminergic neurons are characterized by an age-related accumulation of neuromelanin (NM), rendering the soma of the neurons black. This intracellular NM appears to serve as a very efficient quencher for toxic molecules. However, when a neuron degenerates, NM is released together with its load (many undegraded cellular components, transition metals, lipids, xenobiotics) contributing to initiate and worsen an eventual immune response, exacerbating the oxidative stress, ultimately leading to the neurodegenerative process. This review focuses on the analysis of the role of NM in normal aging and neurodegeneration related to its capabilities as an antioxidant and scavenging of harmful molecules, versus its involvement in oxidative stress and aberrant immune response, depending on NM saturation state and its extracellular release.

5.
Front Neurol ; 11: 791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849237

RESUMO

The brainstem is the earliest vulnerable structure in many neurodegenerative diseases like in Multiple System Atrophy (MSA) or Parkinson's disease (PD). Up-to-now, MRI studies have mainly focused on whole-brain data acquisition. Due to its spatial localization, size, and tissue characteristics, brainstem poses particular challenges for MRI. We provide a brief overview on recent advances in brainstem-related MRI markers in Parkinson's disease and Parkinsonism's. Several MRI techniques investigating brainstem, mainly the midbrain, showed to be able to discriminate PD patients from controls or to discriminate PD patients from atypical parkinsonism patients: iron-sensitive MRI, nigrosome imaging, neuromelanin-sensitive MRI, diffusion tensor imaging and advanced diffusion imaging. A standardized multimodal brainstem-dedicated MRI approach at high resolution able to quantify microstructural modification in brainstem nuclei would be a promising tool to detect early changes in parkinsonian syndromes.

6.
Biomolecules ; 9(5)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072013

RESUMO

Neuromelanin, the polymeric form of dopamine which accumulates in aging neuronal tissue, is increasingly recognized as a functional and critical component of a healthy and active adult human brain. Notorious in plant and insect literature for their ability to bind and retain amines for long periods of time, catecholamine polymers known colloquially as 'melanins' are nevertheless curiously absent from most textbooks regarding biochemistry, neuroscience, and evolution. Recent research has brought attention to the brain pigment due to its possible role in neurodegeneration. This linkage is best illustrated by Parkinson's disease, which is characterized by the loss of pigmented dopaminergic neurons and the 'white brain' pathological state. As such, the ability to determine the binding affinity of neurotoxic agents, as well as any potential specific endogenous ligands to neuromelanin are of interest and potential value. Neuromelanin has been shown to have saturable binding interactions with nicotine as monitored by a fluorimeter. This interaction provides a signal to allow for a competition-binding assay with target molecules which do not themselves produce signal. The current report establishes the viability of this competition assay toward three compounds with central relevance to Parkinson's disease. The Kd of binding toward neuromelanin by methyl-phenyl-pyridinium ion (MPP+), dopamine, and 6-hydroxydopamine were found to be 1 mM, 0.05 mM, and 0.1 mM, respectively in the current study. In addition, we demonstrate that 6-hydroxydopamine polymerizes to form neuromelanin granules in cultured dopaminergic neurons that treated with 2,4,5-trihydroxy-l-phenylalanine. Immunohistochemical analysis using fluor-tagged anti-dopamine antibodies suggests that the incorporation of 6-hydroxydopamine (following internalization and decarboxylation analogous to levodopa and dopamine) alters the localized distribution of bound dopamine in these cells.


Assuntos
Ligação Competitiva , Bioensaio , Melaninas/metabolismo , Animais , Catecolaminas/metabolismo , Células Cultivadas , Humanos , Nicotina/metabolismo , Nicotina/farmacologia , Oxirredução , Oxidopamina/metabolismo , Polimerização , Ratos , Transdução de Sinais , Espectrometria de Fluorescência
7.
Artigo em Inglês | MEDLINE | ID: mdl-31681735

RESUMO

Neuromelanin is present in the cathecolaminergic neuron cells of the substantia nigra and locus coeruleus of the midbrain of primates. Neuromelanin plays a role in Parkinson's disease (PD). Literature reports that neuromelanin features, among others, antioxidant properties by metal ion chelation and free radical scavenging. The pigment has been reported to have prooxidant properties too, in certain experimental conditions. We propose an explorative electrochemical study of the effect of the presence of metal ions and reactive oxygen species (ROS) on the cyclic voltammograms of a synthetic model of neuromelanin. Our work improves the current understanding on experimental conditions where neuromelanin plays an antioxidant or prooxidant behavior, thus possibly contributing to shed light on factors promoting the appearance of PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA