Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Arch Toxicol ; 92(1): 487-500, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28766123

RESUMO

Methods are needed for rapid screening of environmental compounds for neurotoxicity, particularly ones that assess function. To demonstrate the utility of microelectrode array (MEA)-based approaches as a rapid neurotoxicity screening tool, 1055 chemicals from EPA's phase II ToxCast library were evaluated for effects on neural function and cell health. Primary cortical networks were grown on multi-well microelectrode array (mwMEA) plates. On day in vitro 13, baseline activity (40 min) was recorded prior to exposure to each compound (40 µM). Changes in spontaneous network activity [mean firing rate (MFR)] and cell viability (lactate dehydrogenase and CellTiter Blue) were assessed within the same well following compound exposure. Following exposure, 326 compounds altered (increased or decreased) normalized MFR beyond hit thresholds based on 2× the median absolute deviation of DMSO-treated wells. Pharmaceuticals, pesticides, fungicides, chemical intermediates, and herbicides accounted for 86% of the hits. Further, changes in MFR occurred in the absence of cytotoxicity, as only eight compounds decreased cell viability. ToxPrint chemotype analysis identified several structural domains (e.g., biphenyls and alkyl phenols) significantly enriched with MEA actives relative to the total test set. The top 5 enriched ToxPrint chemotypes were represented in 26% of the MEA hits, whereas the top 11 ToxPrints were represented in 34% of MEA hits. These results demonstrate that large-scale functional screening using neural networks on MEAs can fill a critical gap in assessment of neurotoxicity potential in ToxCast assay results. Further, a data-mining approach identified ToxPrint chemotypes enriched in the MEA-hit subset, which define initial structure-activity relationship inferences, establish potential mechanistic associations to other ToxCast assay endpoints, and provide working hypotheses for future studies.


Assuntos
Bases de Dados de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos/métodos , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Testes de Toxicidade/métodos , Potenciais de Ação/efeitos dos fármacos , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Córtex Cerebral/citologia , Mineração de Dados , Avaliação Pré-Clínica de Medicamentos/instrumentação , L-Lactato Desidrogenase/metabolismo , Microeletrodos , Neurônios/fisiologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Ratos Long-Evans , Testes de Toxicidade/instrumentação
2.
Front Toxicol ; 4: 812863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295216

RESUMO

With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.

3.
Curr Protoc ; 1(6): e158, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34152700

RESUMO

Neurotoxicity testing of chemicals, drug candidates, and environmental pollutants still relies on extensive in vivo studies that are very costly, time-consuming, and ethically debated due to the large number of animals typically used. Currently, rat primary cortical cultures are widely used for in vitro neurotoxicity studies, as they closely resemble the in vitro brain with respect to the diversity of cell types, their physiological functions, and the pathological processes that they undergo. Common in vitro assays for neurotoxicity screening often focus on very target-specific endpoints such as morphological, biochemical, or electrophysiological changes, and such narrow focus can hamper translation and interpretation. Microelectrode array (MEA) recordings provide a non-invasive platform for extracellular recording of electrical activity of cultured neuronal cells, thereby enabling the evaluation of changes in neuronal (network) function as a sensitive and integrated endpoint for neurotoxicity screening. Here, we describe an in vitro approach for assessing changes in neuronal network function as a measure for neurotoxicity, using rat primary cortical cultures grown on MEAs. We provide a detailed protocol for the culture of rat primary cortical cells, and describe several experimental procedures to address acute, subchronic, and chronic exposure scenarios. We additionally describe the steps for processing and analyzing MEA and cell viability data. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation and culture of rat primary cortical cells on 48-well MEA plates Support Protocol 1: Pretreatment and washing of 48-well MEA plates before first use or for re-use Support Protocol 2: Coating of 48-well MEA plates with 0.1% PEI solution Basic Protocol 2: MEA measurements during acute exposure Alternate Protocol 1: MEA measurements during subchronic exposure Alternate Protocol 2: MEA measurements during chronic exposure Support Protocol 3: Determination of cell viability after MEA experiments Basic Protocol 3: MEA data processing Basic Protocol 4: Analyzing MEA experiments after acute and subchronic exposure Alternate Protocol 3: Analyzing MEA experiments after chronic exposure.


Assuntos
Córtex Cerebral , Síndromes Neurotóxicas , Animais , Células Cultivadas , Microeletrodos , Neurônios , Ratos
4.
Toxicol Sci ; 180(2): 295-312, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33537736

RESUMO

Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human-induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia cocultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on multielectrode arrays, albeit with noticeable delay compared with primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia cocultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including gamma amino butyric acid receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.


Assuntos
Células-Tronco Pluripotentes Induzidas , Roedores , Animais , Astrócitos , Diferenciação Celular , Células Cultivadas , Humanos , Neurônios , Ratos
5.
Neurotoxicology ; 66: 87-97, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29572046

RESUMO

While the prevalence and the use of new psychoactive substances (NPS) is steadily increasing, data on pharmacological, toxicological and clinical effects is limited. Considering the large number of NPS available, there is a clear need for efficient in vitro screening techniques that capture multiple mechanisms of action. Neuronal cultures grown on multi-well microelectrode arrays (mwMEAs) have previously proven suitable for neurotoxicity screening of chemicals, pharmaceuticals and (illicit) drugs. We therefore used rat primary cortical cultures grown on mwMEA plates to investigate the effects of eight NPS (PMMA, α-PVP, methylone, MDPV, 2C-B, 25B-NBOMe, BZP and TFMPP) and two 'classic' illicit drugs (cocaine, methamphetamine) on spontaneous neuronal activity. All tested drugs rapidly and concentration-dependently decreased the weighted mean firing rate (wMFR) and the weighted mean burst rate (wMBR) during a 30 min acute exposure. Of the 'classic' drugs, cocaine most potently inhibited the wMFR (IC50 9.8 µM), whereas methamphetamine and the structurally-related NPS PMMA were much less potent (IC50 100 µM and IC50 112 µM, respectively). Of the cathinones, MDPV and α-PVP showed comparable IC50 values (29 µM and 21 µM, respectively), although methylone was 10-fold less potent (IC50 235 µM). Comparable 10-fold differences in potency were also observed between the hallucinogenic phenethylamines 2C-B (IC50 27 µM) and 25B-NBOMe (IC50 2.4 µM), and between the piperazine derivatives BZP (IC50 161 µM) and TFMPP (IC50 19 µM). All drugs also inhibited the wMBR and concentration-response curves for wMBR and wMFR were comparable. For most drugs, IC50 values are close to the estimated human brain concentrations following recreational doses of these drugs, highlighting the importance of this efficient in vitro screening approach for classification and prioritization of emerging NPS. Moreover, the wide range of IC50 values observed for these and previously tested drugs of abuse, both within and between different classes of NPS, indicates that additional investigation of structure-activity relationships could aid future risk assessment of emerging NPS.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Neurônios/efeitos dos fármacos , Psicotrópicos/toxicidade , Potenciais de Ação , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/instrumentação , Drogas Ilícitas/toxicidade , Concentração Inibidora 50 , Microeletrodos , Neurônios/fisiologia , Cultura Primária de Células , Ratos Wistar
6.
Biotech Histochem ; 93(1): 59-69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29388476

RESUMO

Oxidative stress contributes to cancer pathologies and to apoptosis. Marine algae exhibit cytotoxic, antiproliferative and apoptotic effects; their metabolites have been used to treat many types of cancer. We investigated in culture extracts of Petalonia fascia, Jania longifurca and Halimeda tuna to determine their effects on mouse neuroblastoma cell line, NA2B. NA2B cells were treated with algae extracts, and the survival and proliferation of NA2B cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of algae extracts on oxidative stress in NA2B cells also were investigated using nitric oxide synthase (NOS) immunocytochemistry and apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling. We observed significant neurite inhibition with moderate damage by the neurotoxicity-screening test (NST) at IC50 dilutions of the extracts. MTT demonstrated that J. longifurca extracts were more toxic than P. fascia and H. tuna extracts. We found an increase of endothelial and inducible NOS immunostaining for oxidative stress and TUNEL analysis revealed increased apoptosis after application of extract. Our findings suggest that the algae we tested may have potential use for treatment of cancer.


Assuntos
Extratos Celulares , Neuritos/efeitos dos fármacos , Phaeophyceae/química , Animais , Apoptose/efeitos dos fármacos , Extratos Celulares/química , Extratos Celulares/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Imuno-Histoquímica , Concentração Inibidora 50 , Biologia Marinha , Camundongos
7.
Neurotoxicology ; 67: 215-225, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29909083

RESUMO

Neurotoxicity testing still relies on ethically debated, expensive and time consuming in vivo experiments, which are unsuitable for high-throughput toxicity screening. There is thus a clear need for a rapid in vitro screening strategy that is preferably based on human-derived neurons to circumvent interspecies translation. Recent availability of commercially obtainable human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes holds great promise in assisting the transition from the current standard of rat primary cortical cultures to an animal-free alternative. We therefore composed several hiPSC-derived neuronal models with different ratios of excitatory and inhibitory neurons in the presence or absence of astrocytes. Using immunofluorescent stainings and multi-well micro-electrode array (mwMEA) recordings we demonstrate that these models form functional neuronal networks that become spontaneously active. The differences in development of spontaneous neuronal activity and bursting behavior as well as spiking patterns between our models confirm the importance of the presence of astrocytes. Preliminary neurotoxicity assessment demonstrates that these cultures can be modulated with known seizurogenic compounds, such as picrotoxin (PTX) and endosulfan, and the neurotoxicant methylmercury (MeHg). However, the chemical-induced effects on different parameters for neuronal activity, such as mean spike rate (MSR) and mean burst rate (MBR), may depend on the ratio of inhibitory and excitatory neurons. Our results thus indicate that hiPSC-derived neuronal models must be carefully designed and characterized prior to large-scale use in neurotoxicity screening.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/efeitos dos fármacos , Potenciais de Ação/fisiologia , Astrócitos/fisiologia , Células Cultivadas , Técnicas de Cocultura/métodos , Endossulfano/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Neurônios/fisiologia , Picrotoxina/toxicidade
8.
Toxicol In Vitro ; 45(Pt 1): 81-88, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28774849

RESUMO

Biomedical and (neuro) toxicity research on (neuro) degenerative diseases still relies strongly on animal models. However, the use of laboratory animals is often undesirable for both ethical and technical reasons. Current in vitro research thus largely relies on tumor derived- or immortalized cell lines. Notably, the suitability of cell lines for studying neurodegeneration is determined by their intrinsic properties. We therefore characterized PC12, SH-SY5Y, MES23.5 and N27 cells with respect to the presence of functional membrane ion channels and receptors as well as for the effects of five known neurotoxic pesticides on cytotoxicity, oxidative stress and parameters of intracellular calcium homeostasis using a combined alamar Blue/CFDA assay, a H2DCFDA assay and single cell fluorescent (Fura-2) calcium imaging, respectively. Although all pesticides demonstrated a certain level of functional neurotoxicity in the different cell lines, our results also demonstrate considerable differences in intrinsic properties and pesticide-induced effects between the cell lines. This clearly indicates that care should be taken when interpreting (neuro)toxicity data as the chosen cell model may greatly influence the outcome.


Assuntos
Dopamina/metabolismo , Neurônios/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Humanos , Canais Iônicos/metabolismo , Ratos , Receptores de Neurotransmissores/metabolismo
9.
Neurotoxicology ; 55: 1-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27149913

RESUMO

Annual prevalence of the use of common illicit drugs and new psychoactive substances (NPS) is high, despite the often limited knowledge on the health risks of these substances. Recently, cortical cultures grown on multi-well microelectrode arrays (mwMEAs) have been used for neurotoxicity screening of chemicals, pharmaceuticals, and toxins with a high sensitivity and specificity. However, the use of mwMEAs to investigate the effects of illicit drugs on neuronal activity is largely unexplored. We therefore first characterised the cortical cultures using immunocytochemistry and show the presence of astrocytes, glutamatergic and GABAergic neurons. Neuronal activity is concentration-dependently affected following exposure to six neurotransmitters (glutamate, GABA, serotonin, dopamine, acetylcholine and nicotine). Most neurotransmitters inhibit neuronal activity, although glutamate and acetylcholine transiently increase activity at specific concentrations. These transient effects are not detected when activity is determined during the entire 30min exposure window, potentially resulting in false-negative results. As expected, exposure to the GABAA-receptor antagonist bicuculline increases neuronal activity. Exposure to a positive allosteric modulator of the GABAA-receptor (diazepam) or to glutamate receptor antagonists (CNQX and MK-801) reduces neuronal activity. Further, we demonstrate that exposure to common drugs (3,4-methylenedioxymethamphetamine (MDMA) and amphetamine) and NPS (1-(3-chlorophenyl)piperazine (mCPP), 4-fluoroamphetamine (4-FA) and methoxetamine (MXE)) decreases neuronal activity. MXE most potently inhibits neuronal activity with an IC50 of 0.5µM, whereas 4-FA is least potent with an IC50 of 113µM. Our data demonstrate the importance of analysing neuronal activity within different time windows during exposure to prevent false-negative results. We also show that cortical cultures grown on mwMEAs can successfully be applied to investigate the effects of different (illicit) drugs on neuronal activity. Compared to investigating multiple single endpoints for neurotoxicity or neuromodulation, such as receptor activation or calcium channel function, mwMEAs can provide information on integrated aspects of drug-induced neurotoxicity more rapidly. Therefore, this approach could contribute to a faster insight in possible health risks and shorten the regulation process.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Drogas Ilícitas/toxicidade , Microeletrodos , Neurônios/efeitos dos fármacos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Córtex Cerebral/citologia , Maleato de Dizocilpina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , GABAérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
10.
Neurotoxicology ; 57: 194-202, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27720795

RESUMO

There is an increasing demand for in vitro test systems to detect neurotoxicity for use in chemical risk assessment. In this study, we evaluated the applicability of rat primary cortical cultures grown on multi-well micro-electrode arrays (mwMEAs) to detect effects of chronic 14-day exposure to structurally different insecticides or methylmercury on neuronal activity (mean spike rate; MSR). Effects of chronic exposure to α-cypermethrin, endosulfan, carbaryl, chlorpyrifos(-oxon), methylmercury or solvent control [14days exposure, initiated after baseline recording at day in vitro (DIV)7] were studied in five successive recordings between DIV10 and DIV21. The results were compared to effects of acute exposure to these same compounds (activity recorded immediately after the start of exposure after baseline recording at DIV10-11). Chronic 14-day exposure to methylmercury, chlorpyrifos and α-cypermethrin inhibited MSR, all with a lowest-observed effect concentration (LOEC) of 0.1µM, while exposure to endosulfan increased MSR [LOEC: 1µM]. No significant effects were observed for chlorpyrifos-oxon and carbaryl. Similar to the observations in the chronic 14-day exposure studies, MSR was inhibited by acute 30-min exposure to methylmercury, chlorpyrifos, and α-cypermethrin [LOECs: 1µM, 10µM, and 1µM, respectively], whereas endosulfan increased MSR [LOEC: 0.3µM]. While not observed in the chronic 14-day exposure study, acute exposure to chlorpyrifos-oxon and carbaryl resulted in inhibition of MSR [LOECs: 10µM, and100 µM, respectively]. Effects on median interspike intervals (mISI; a measure for neuronal firing pattern) were not detected following chronic 14-day or acute 30-min exposure, except for increased mISI at acute chlorpyrifos and α-cypermethrin exposures at concentrations that also inhibited MSR. These data indicate that the effects of chronic 14-day exposures to methylmercury and insecticides at low concentrations on spontaneous neuronal activity in vitro can be predicted in rapid acute screening studies using mwMEAs.


Assuntos
Córtex Cerebral/citologia , Neurônios/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inseticidas/farmacologia , Compostos de Metilmercúrio/farmacologia , Ratos , Ratos Wistar , Fatores de Tempo
11.
ALTEX ; 33(3): 261-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27010910

RESUMO

Current neurotoxicity testing heavily relies on expensive, time consuming and ethically debated in vivo animal experiments that are unsuitable for screening large number of chemicals. Consequently, there is a clear need for (high-throughput) in vitro test strategies, preferably using human cells as this increases relevance and eliminates the need for interspecies translation. However, human stem cell-derived neurons used to date are not well characterised, require prolonged differentiation and are potentially subject to batch-to-batch variation, ethical concerns and country-specific legislations. Recently, a number of human induced pluripotent stem cell (iPSC)-derived neurons became commercially available that may circumvent these concerns. We therefore used immunofluorescent stainings to demonstrate that human iPSC-derived neurons from various suppliers form mixed neuronal cultures, consisting of different types of (excitatory and inhibitory) neurons. Using multi-well microelectrode array (mwMEA) recordings, we demonstrate that these human iPSC-derived cultures develop spontaneous neuronal activity over time, which can be modulated by different physiological, toxicological and pharmacological compounds. Additional single cell calcium imaging illustrates the presence of functional GABA, glutamate, and acetylcholine receptors as well as voltage-gated calcium channels. While human iPSC-derived neuronal cultures appear not yet suitable to fully replace the rat primary cortical model, our data indicate that these rapidly differentiating, commercially available human iPSC-derived neuronal cultures are already suitable for in vitro prioritisation and effect screening studies. Further characterisation and toxicological validation is now required to facilitate acceptance and large-scale implementation of these animal-free, physiologically-relevant human iPSC-based modelsfor future neurotoxicity testing.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Testes de Toxicidade/métodos , Animais , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Fenômenos Eletrofisiológicos , Fluorimunoensaio , Regulação da Expressão Gênica/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Canais Iônicos/fisiologia , Neurônios/citologia , Ratos , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , Coloração e Rotulagem
12.
Neurotoxicology ; 40: 75-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24325902

RESUMO

Microelectrode arrays (MEAs) can be used to detect drug and chemical induced changes in neuronal network function and have been used for neurotoxicity screening. As a proof-of-concept, the current study assessed the utility of analytical "fingerprinting" using principal components analysis (PCA) and chemical class prediction using support vector machines (SVMs) to classify chemical effects based on MEA data from 16 chemicals. Spontaneous firing rate in primary cortical cultures was increased by bicuculline (BIC), lindane (LND), RDX and picrotoxin (PTX); not changed by nicotine (NIC), acetaminophen (ACE), and glyphosate (GLY); and decreased by muscimol (MUS), verapamil (VER), fipronil (FIP), fluoxetine (FLU), chlorpyrifos oxon (CPO), domoic acid (DA), deltamethrin (DELT) and dimethyl phthalate (DMP). PCA was performed on mean firing rate, bursting parameters and synchrony data for concentrations above each chemical's EC50 for mean firing rate. The first three principal components accounted for 67.5, 19.7, and 6.9% of the data variability and were used to identify separation between chemical classes visually through spatial proximity. In the PCA, there was clear separation of GABAA antagonists BIC, LND, and RDX from other chemicals. For the SVM prediction model, the experiments were classified into the three chemical classes of increasing, decreasing or no change in activity with a mean accuracy of 83.8% under a radial kernel with 10-fold cross-validation. The separation of different chemical classes through PCA and high prediction accuracy in SVM of a small dataset indicates that MEA data may be useful for separating chemicals into effects classes using these or other related approaches.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Acetaminofen/farmacologia , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/fisiologia , Interpretação Estatística de Dados , Fluoxetina/farmacologia , Antagonistas GABAérgicos/farmacologia , Ácido Caínico/análogos & derivados , Ácido Caínico/farmacologia , Microeletrodos , Muscimol/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Nicotina/farmacologia , Praguicidas/farmacologia , Análise de Componente Principal , Ratos , Ratos Long-Evans , Verapamil/farmacologia
13.
Neurotoxicology ; 45: 192-200, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25454721

RESUMO

Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens.


Assuntos
Astrócitos/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Neurais/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA