Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.723
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 174(3): 622-635.e13, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29909983

RESUMO

Transcription factors regulate the molecular, morphological, and physiological characteristics of neurons and generate their impressive cell-type diversity. To gain insight into the general principles that govern how transcription factors regulate cell-type diversity, we used large-scale single-cell RNA sequencing to characterize the extensive cellular diversity in the Drosophila optic lobes. We sequenced 55,000 single cells and assigned them to 52 clusters. We validated and annotated many clusters using RNA sequencing of FACS-sorted single-cell types and cluster-specific genes. To identify transcription factors responsible for inducing specific terminal differentiation features, we generated a "random forest" model, and we showed that the transcription factors Apterous and Traffic-jam are required in many but not all cholinergic and glutamatergic neurons, respectively. In fact, the same terminal characters often can be regulated by different transcription factors in different cell types, arguing for extensive phenotypic convergence. Our data provide a deep understanding of the developmental and functional specification of a complex brain structure.


Assuntos
Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurogênese/fisiologia , Animais , Diferenciação Celular , Neurônios Colinérgicos/fisiologia , Análise por Conglomerados , Simulação por Computador , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Homeodomínio , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Neuroglia/fisiologia , Neurônios/fisiologia , Neurotransmissores/genética , Neurotransmissores/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Fenótipo , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
2.
Trends Immunol ; 45(5): 358-370, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658221

RESUMO

Microglia are brain-resident macrophages that play key roles in brain development and experience dependent plasticity. In this review we discuss recent findings regarding the molecular mechanisms through which mammalian microglia sense the unique molecular patterns of the homeostatic brain. We propose that microglial function is acutely controlled in response to 'brain-associated molecular patterns' (BAMPs) that function as indicators of neuronal activity and neural circuit remodeling. A further layer of regulation comes from instructive cytokine cues that define unique microglial functional states. A systematic investigation of the receptors and signaling pathways that mediate these two regulatory axes may begin to define a functional code for microglia-neuron interactions.


Assuntos
Encéfalo , Microglia , Transdução de Sinais , Microglia/imunologia , Microglia/metabolismo , Humanos , Animais , Encéfalo/fisiologia , Citocinas/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Plasticidade Neuronal , Homeostase
3.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568976

RESUMO

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Assuntos
Receptores Colinérgicos , Sinapses , Sinapses/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Neurônios Motores/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Colinérgicos , Receptores Pré-Sinápticos
4.
Proc Natl Acad Sci U S A ; 120(42): e2306990120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37831741

RESUMO

Hemispheric lateralization and its origins have been of great interest in neuroscience for over a century. The left-right asymmetry in cortical thickness may stem from differential maturation of the cerebral cortex in the two hemispheres. Here, we investigated the spatial pattern of hemispheric differences in cortical thinning during adolescence, and its relationship with the density of neurotransmitter receptors and homotopic functional connectivity. Using longitudinal data from IMAGEN study (N = 532), we found that many cortical regions in the frontal and temporal lobes thinned more in the right hemisphere than in the left. Conversely, several regions in the occipital and parietal lobes thinned less in the right (vs. left) hemisphere. We then revealed that regions thinning more in the right (vs. left) hemispheres had higher density of neurotransmitter receptors and transporters in the right (vs. left) side. Moreover, the hemispheric differences in cortical thinning were predicted by homotopic functional connectivity. Specifically, regions with stronger homotopic functional connectivity showed a more symmetrical rate of cortical thinning between the left and right hemispheres, compared with regions with weaker homotopic functional connectivity. Based on these findings, we suggest that the typical patterns of hemispheric differences in cortical thinning may reflect the intrinsic organization of the neurotransmitter systems and related patterns of homotopic functional connectivity.


Assuntos
Mapeamento Encefálico , Afinamento Cortical Cerebral , Adolescente , Humanos , Vias Neurais/fisiologia , Imageamento por Ressonância Magnética , Lateralidade Funcional/fisiologia , Receptores de Neurotransmissores , Encéfalo/fisiologia
5.
Front Neuroendocrinol ; 72: 101114, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993021

RESUMO

Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.


Assuntos
Finasterida , Disfunções Sexuais Fisiológicas , Masculino , Humanos , Finasterida/efeitos adversos , Inibidores de 5-alfa Redutase/efeitos adversos , Alopecia/tratamento farmacológico , Alopecia/induzido quimicamente , Disfunções Sexuais Fisiológicas/induzido quimicamente , Disfunções Sexuais Fisiológicas/tratamento farmacológico , Disfunções Sexuais Fisiológicas/diagnóstico , Antidepressivos
6.
Rev Physiol Biochem Pharmacol ; 186: 95-134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36416982

RESUMO

Oxytocin has recently gained significant attention because of its role in the pathophysiology and management of dominant neuropsychiatric disorders. Oxytocin, a peptide hormone synthesized in the hypothalamus, is released into different brain regions, acting as a neurotransmitter. Receptors for oxytocin are present in many areas of the brain, including the hypothalamus, amygdala, and nucleus accumbens, which have been involved in the pathophysiology of depression, anxiety, schizophrenia, autism, Alzheimer's disease, Parkinson's disease, and attention deficit hyperactivity disorder. Animal studies have spotlighted the role of oxytocin in social, behavioral, pair bonding, and mother-infant bonding. Furthermore, oxytocin protects fetal neurons against injury during childbirth and affects various behaviors, assuming its possible neuroprotective characteristics. In this review, we discuss some of the concepts and mechanisms related to the role of oxytocin in the pathophysiology and management of some neuropsychiatric, neurodegenerative, and neurodevelopmental disorders.


Assuntos
Transtorno Autístico , Ocitocina , Animais , Ocitocina/fisiologia , Comportamento Social , Ansiedade , Encéfalo
7.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502778

RESUMO

In fishes and salamanders, but not mammals, neural stem cells switch back to neurogenesis after injury. The signalling environment of neural stem cells is strongly altered by the presence of damaged cells and an influx of immune, as well as other, cells. Here, we summarise our recently expanded knowledge of developmental, physiological and immune signals that act on neural stem cells in the zebrafish central nervous system to directly, or indirectly, influence their neurogenic state. These signals act on several intracellular pathways, which leads to changes in chromatin accessibility and gene expression, ultimately resulting in regenerative neurogenesis. Translational approaches in non-regenerating mammals indicate that central nervous system stem cells can be reprogrammed for neurogenesis. Understanding signalling mechanisms in naturally regenerating species show the path to experimentally promoting neurogenesis in mammals.


Assuntos
Células-Tronco Neurais , Peixe-Zebra , Animais , Sistema Nervoso Central/fisiologia , Mamíferos , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Peixe-Zebra/fisiologia
8.
Hum Genomics ; 18(1): 61, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863077

RESUMO

Trace Amine Associated Receptor 1 (TAAR1) is a novel pharmaceutical target under investigation for the treatment of several neuropsychiatric conditions. TAAR1 single nucleotide variants (SNV) have been found in patients with schizophrenia and metabolic disorders. However, the frequency of variants in geographically diverse populations and the functional effects of such variants are unknown. In this study, we aimed to characterise the distribution of TAAR1 SNVs in five different WHO regions using the Database of Genotypes and Phenotypes (dbGaP) and conducted a critical computational analysis using available TAAR1 structural data to identify SNVs affecting ligand binding and/or functional regions. Our analysis shows 19 orthosteric, 9 signalling and 16 micro-switch SNVs hypothesised to critically influence the agonist induced TAAR1 activation. These SNVs may non-proportionally influence populations from discrete regions and differentially influence the activity of TAAR1-targeting therapeutics in genetically and geographically diverse populations. Notably, our dataset presented with orthosteric SNVs D1033.32N (found only in the South-East Asian Region and Western Pacific Region) and T1945.42A (found only in South-East Asian Region), and 2 signalling SNVs (V1253.54A/T2526.36A, found in African Region and commonly, respectively), all of which have previously demonstrated to influence ligand induced functions of TAAR1. Furthermore, bioinformatics analysis using SIFT4G, MutationTaster 2, PROVEAN and MutationAssessor predicted all 16 micro-switch SNVs are damaging and may further influence the agonist activation of TAAR1, thereby possibly impacting upon clinical outcomes. Understanding the genetic basis of TAAR1 function and the impact of common mutations within clinical populations is important for the safe and effective utilisation of novel and existing pharmacotherapies.


Assuntos
Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Polimorfismo de Nucleotídeo Único/genética , Relação Estrutura-Atividade , Genótipo , Ligantes , Receptores Associados a Traços de Amina
9.
Dev Dyn ; 253(2): 181-203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37638700

RESUMO

In response to injury, humans and many other mammals form a fibrous scar that lacks the structure and function of the original tissue, whereas other vertebrate species can spontaneously regenerate damaged tissues and structures. Peripheral nerves have been identified as essential mediators of wound healing and regeneration in both mammalian and nonmammalian systems, interacting with the milieu of cells and biochemical signals present in the post-injury microenvironment. This review examines the diverse functions of peripheral nerves in tissue repair and regeneration, specifically during the processes of wound healing, blastema formation, and organ repair. We compare available evidence in mammalian and nonmammalian models, identifying critical nerve-mediated mechanisms for regeneration and providing future perspectives toward integrating these mechanisms into a therapeutic framework to promote regeneration.


Assuntos
Cicatriz , Mamíferos , Animais , Humanos
10.
J Neurochem ; 168(6): 1168-1170, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38396216

RESUMO

Dr. Brian Collier, the former Editor-in-Chief of the Journal of Neurochemistry from 1996 to 2006, passed away January 4th, 2024. Brian's illustrious career spanned the fields of neurochemistry and pharmacology. He published his findings on mechanisms of acetylcholine synthesis and storage in the Journal of Neurochemistry, and his contributions remain landmarks in neurochemical research.


Assuntos
Neuroquímica , História do Século XX , História do Século XXI , Neuroquímica/história , Humanos , Publicações Periódicas como Assunto/história
11.
Neurobiol Dis ; 197: 106527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740347

RESUMO

BACKGROUND: Neurotransmitter deficits and spatial associations among neurotransmitter distribution, brain activity, and clinical features in Parkinson's disease (PD) remain unclear. Better understanding of neurotransmitter impairments in PD may provide potential therapeutic targets. Therefore, we aimed to investigate the spatial relationship between PD-related patterns and neurotransmitter deficits. METHODS: We included 59 patients with PD and 41 age- and sex-matched healthy controls (HCs). The voxel-wise mean amplitude of the low-frequency fluctuation (mALFF) was calculated and compared between the two groups. The JuSpace toolbox was used to test whether spatial patterns of mALFF alterations in patients with PD were associated with specific neurotransmitter receptor/transporter densities. RESULTS: Compared to HCs, patients with PD showed reduced mALFF in the sensorimotor- and visual-related regions. In addition, mALFF alteration patterns were significantly associated with the spatial distribution of the serotonergic, dopaminergic, noradrenergic, glutamatergic, cannabinoid, and acetylcholinergic neurotransmitter systems (p < 0.05, false discovery rate-corrected). CONCLUSIONS: Our results revealed abnormal brain activity patterns and specific neurotransmitter deficits in patients with PD, which may provide new insights into the mechanisms and potential targets for pharmacotherapy.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Neurotransmissores/metabolismo , Imagem Multimodal/métodos
12.
Eur J Immunol ; 53(10): e2250136, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37377338

RESUMO

Decades of extensive research have documented the presence of neural innervations of sensory, sympathetic, or parasympathetic origin in primary and secondary lymphoid organs. Such neural inputs can release neurotransmitters and neuropeptides to directly modulate the functions of various immune cells, which represents one of the essential aspects of the body's neuroimmune network. Notably, recent studies empowered by state-of-the-art imaging techniques have comprehensively assessed neural distribution patterns in BM, thymus, spleen, and LNs of rodents and humans, helping clarify several controversies lingering in the field. In addition, it has become evident that neural innervations in lymphoid organs are not static but undergo alterations in pathophysiological contexts. This review aims to update the current information on the neuroanatomy of lymphoid organs obtained through whole-tissue 3D imaging and genetic approaches, focusing on anatomical features that may designate the functional modulation of immune responses. Moreover, we discuss several critical questions that call for future research, which will advance our in-depth understanding of the importance and complexity of neural control of lymphoid organs.


Assuntos
Neuroanatomia , Neuropeptídeos , Humanos , Baço , Timo , Imunidade , Tecido Linfoide
13.
Hum Brain Mapp ; 45(2): e26575, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339909

RESUMO

Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region-specific and hierarchical across the neocortex. However, the relationship between hierarchical structure-function decoupling and the manifestation of individual behavior and cognition, along with the significance of the functional systems involved, and the specific molecular mechanism underlying structure-function decoupling remain incompletely characterized. Here, we used the structural-decoupling index (SDI) to quantify the dependency of functional signals on the structural connectome using a significantly larger cohort of healthy subjects. Canonical correlation analysis (CCA) was utilized to assess the general multivariate correlation pattern between region-specific SDIs across the whole brain and multiple cognitive traits. Then, we predicted five composite cognitive scores resulting from multivariate analysis using SDIs in primary networks, association networks, and all networks, respectively. Finally, we explored the molecular mechanism related to SDI by investigating its genetic factors and relationship with neurotransmitter receptors/transporters. We demonstrated that structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. We revealed better performance in cognition prediction is achieved by using high-level hierarchical SDIs, with varying significance of different brain regions in predicting cognitive processes. We found that the SDIs were associated with the gene expression level of several receptor-related terms, and we also found the spatial distributions of four receptors/transporters significantly correlated with SDIs, namely D2, NET, MOR, and mGluR5, which play an important role in the flexibility of neuronal function. Collectively, our findings corroborate the association between hierarchical macroscale structure-function decoupling and individual cognition and provide implications for comprehending the molecular mechanism of structure-function decoupling. PRACTITIONER POINTS: Structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. High-level hierarchical structure-function decoupling contributes much more than low-level decoupling to individual cognition. Structure-function decoupling could be regulated by genes associated with pivotal receptors that are crucial for neuronal function flexibility.


Assuntos
Conectoma , Neocórtex , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Imageamento por Ressonância Magnética/métodos , Cognição/fisiologia , Encéfalo/fisiologia , Conectoma/métodos , Neocórtex/diagnóstico por imagem
14.
Small ; 20(24): e2311275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196019

RESUMO

Nanomaterials with biomimetic catalytic abilities have attracted significant attention. However, the stereoselectivity of natural enzymes determined by their unique configurations is difficult to imitate. In this work, a kind of chiral CuxCoyS-CuzS nanoflowers (L/D-Pen-NFs) is developed, using porous CuxCoyS nanoparticles (NPs) as stamens, CuzS sheets as petals, and chiral penicillamine as surface stabilizers. Compared to the natural laccase enzyme, L/D-Pen-NFs exhibit significant advantages in catalytic efficiency, stability against harsh environments, recyclability, and convenience in construction. Most importantly, they display high enantioselectivity toward chiral neurotransmitters, which is proved by L- and D-Pen-NFs' different catalytic efficiencies toward chiral enantiomers. L-Pen-NFs are more efficient in catalyzing the oxidation of L-epinephrine and L-dopamine compared with D-Pen-NFs. However, their catalytic efficiency in oxidizing L-norepinephrine and L-DOPA is lower than that of D-Pen-NFs. The reason for the difference in catalytic efficiency is the distinct binding affinities between CuxCoyS-CuzS nano-enantiomers and chiral molecules. This work can spur the development of chiral nanostructures with biomimetic functions.


Assuntos
Cobre , Catálise , Cobre/química , Estereoisomerismo , Nanoestruturas/química , Biomimética/métodos , Oxirredução , Lacase/química , Lacase/metabolismo
15.
Biol Reprod ; 110(2): 310-328, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37883444

RESUMO

The fetal brain of the mouse is thought to be dependent upon the placenta as a source of serotonin (5-hydroxytryptamine; 5-HT) and other factors. How factors reach the developing brain remains uncertain but are postulated here to be part of the cargo carried by placental extracellular vesicles (EV). We have analyzed the protein, catecholamine, and small RNA content of EV from mouse trophoblast stem cells (TSC) and TSC differentiated into parietal trophoblast giant cells (pTGC), potential primary purveyors of 5-HT. Current studies examined how exposure of mouse neural progenitor cells (NPC) to EV from either TSC or pTGC affect their transcriptome profiles. The EV from trophoblast cells contained relatively high amounts of 5-HT, as well as dopamine and norepinephrine, but there were no significant differences between EV derived from pTGC and from TSC. Content of miRNA and small nucleolar (sno)RNA, however, did differ according to EV source, and snoRNA were upregulated in EV from pTGC. The primary inferred targets of the microRNA (miRNA) from both pTGC and TSC were mRNA enriched in the fetal brain. NPC readily internalized EV, leading to changes in their transcriptome profiles. Transcripts regulated were mainly ones enriched in neural tissues. The transcripts in EV-treated NPC that demonstrated a likely complementarity with miRNA in EV were mainly up- rather than downregulated, with functions linked to neuronal processes. Our results are consistent with placenta-derived EV providing direct support for fetal brain development and being an integral part of the placenta-brain axis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Gravidez , Feminino , Animais , Camundongos , Serotonina/metabolismo , Placenta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Trofoblastos/metabolismo , Células-Tronco/metabolismo
16.
Mol Genet Metab ; 142(1): 108363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452608

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Succinato-Semialdeído Desidrogenase , Succinato-Semialdeído Desidrogenase/deficiência , Humanos , Succinato-Semialdeído Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Consenso , Ácido gama-Aminobutírico/metabolismo , Guias de Prática Clínica como Assunto
17.
Neurochem Res ; 49(2): 327-337, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37768468

RESUMO

Sleep is a dynamic and controlled set of physiological and behavioural practices during which the stabilisation and restoration processes of the body take place properly. Therefore, sleep disorders, especially chronic insomnia, can harm an individual's physical and mental health. However, the therapeutic alternatives are limited and possess severe side effects. Thus, in this study, we aimed to investigate the anti-insomnia effect of a polyherbal formulation (Sleep) (SLP) on p-chlorophenyalanine (PCPA) induced insomnia in rats. Intraperitoneal injection of PCPA induced the experimental condition, and the therapeutic effect of SLP was evaluated by studying the sleep pattern and expression of various neurotransmitters and receptors, along with neurotrophins. Moreover, insomnia-associated oxidative stress and inflammation were also studied. From the findings, we found that the SLP-supplemented animals improved their sleeping behaviour and that the major neurotransmitters, hormones, and receptors were maintained at an equilibrium level. Furthermore, the neurotrophin level was increased and pro-inflammatory cytokines were reduced. The evaluation of oxidative stress markers shows that the antioxidants were significantly boosted, and as a result, lipid peroxidation was prevented. The overall findings suggest that SLP can be used as an effective medication for the treatment of sleep disorders like insomnia as it triggers the major neurotransmitter system.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Ratos , Animais , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Sono/fisiologia , Modelos Animais , Neurotransmissores
18.
Neurochem Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960951

RESUMO

Omega-3 (n3) is a polyunsaturated fatty acid well known for its anti-inflammatory and neuroprotective properties. Obesity is linked to chronic inflammation that disrupts metabolism, the intestine physiology and the central nervous system functioning. This study aims to determine if n3 supplementation can interfere with the effects of obesity on the mitochondrial activity, intestinal barrier, and neurotransmitter levels in the brain of Wistar rats that received cafeteria diet (CAF). We examined adipose tissue, skeletal muscle, plasma, intestine, and the cerebral cortex of four groups: CT (control diet), CTn3 (control diet with n3 supplementation), CAF, and CAFn3 (CAF and n3). Diets were offered for 13 weeks, with n3 supplementation in the final 5 weeks. Adipose tissue Electron Transport Chain complexes I, II, and III showed higher activity in CAF groups, as did complexes III and IV in skeletal muscle. Acetate levels in plasma were reduced in CAF groups, and Lipopolysaccharide (LPS) was higher in the CAF group but reduced in CAFn3 group. Claudin-5 in the intestine was lower in CAF groups, with no n3 supplementation effect. In the cerebral cortex, dopamine levels were decreased with CAF, which was reversed by n3. DOPAC, a dopamine metabolite, also showed a supplementation effect, and HVA, a diet effect. Serotonin levels increased in the CAF group that received supplementation. Therefore, we demonstrate disturbances in mitochondria, plasma, intestine and brain of rats submitted to CAF and the potential benefit of n3 supplementation in endotoxemia and neurotransmitter levels.

19.
J Inherit Metab Dis ; 47(3): 533-550, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38168036

RESUMO

Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.


Assuntos
Modelos Animais de Doenças , Neurotransmissores , Animais , Camundongos , Humanos , Neurotransmissores/metabolismo , Monoaminas Biogênicas/metabolismo
20.
Neuroimmunomodulation ; 31(1): 51-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38272012

RESUMO

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by the transformation and uncontrolled proliferation of T-cell precursors. T-ALL is generally thought to originate in the thymus since lymphoblasts express phenotypic markers comparable to those described in thymocytes in distinct stages of development. Although around 50% of T-ALL patients present a thymic mass, T-ALL is characterized by peripheral blood and bone marrow involvement, and central nervous system (CNS) infiltration is one of the most severe complications of the disease. SUMMARY: The CNS invasion is related to the expression of specific adhesion molecules and receptors commonly expressed in developing T cells, such as L-selectin, CD44, integrins, and chemokine receptors. Furthermore, T-ALL blasts also express neurotransmitters, neuropeptides, and cognate receptors that are usually present in the CNS and can affect both the brain and thymus, participating in the crosstalk between the organs. KEY MESSAGES: This review discusses how the thymus-brain connections, mediated by innervation and common molecules and receptors, can impact the development and migration of T-ALL blasts, including CNS infiltration.


Assuntos
Encéfalo , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Timo , Humanos , Timo/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA