Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Trends Biochem Sci ; 47(4): 289-300, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35012873

RESUMO

The sterol-sensing domain (SSD) is present in several membrane proteins that function in cholesterol metabolism, transport, and signaling. Recent progress in structural studies of SSD-containing proteins, such as sterol regulatory element-binding protein (SREBP)-cleavage activating protein (Scap), Patched, Niemann-Pick disease type C1 (NPC1), and related proteins, reveals a conserved core that is essential for their sterol-dependent functions. This domain, by its name, 'senses' the presence of sterol substrates through interactions and may modulate protein behaviors with changing sterol levels. We summarize recent advances in structural and mechanistic investigations of these proteins and propose to divide them to two classes: M for 'moderator' proteins that regulate sterol metabolism in response to membrane sterol levels, and T for 'transporter' proteins that harbor inner tunnels for cargo trafficking across cellular membranes.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína C1 de Niemann-Pick , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Esteróis/metabolismo
2.
J Inherit Metab Dis ; 47(2): 317-326, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38131230

RESUMO

Hundreds of NPC1 variants cause highly heterogeneous phenotypes. This study aims to explore the genotype-phenotype correlation of NPC1, especially for missense variants. In a well-characterized cohort, phenotypes are graded into three clinical forms: mild, intermediate, and severe. Missense residue structural location was stratified into three categories: surface, partially, and fully buried. The association of phenotypes with the topography of the amino acid substitution in the protein structure was investigated in our cohort and validated in two reported cohorts. One hundred six unrelated NPC1 patients were enrolled. A significant correlation of genotype-phenotype was found in 81 classified individuals with two or one (the second was null variant) missense variant (p < 0.001): of 25 patients with at least one missense variant of surface (group A), 19 (76%) mild, six (24%) intermediate, and none severe; of 31 cases with at least one missense variant of partially buried without surface variants (group B), 11 (35%) mild, 16 (52%) intermediate, and four (13%) severe; of the remaining 25 patients with two or one buried missense variants (group C), eight (32%) mild, nine (36%) intermediate, and eight (32%) severe. Additionally, 7-ketocholesterol, the biomarker, was lower in group A than in group B (p = 0.024) and group C (p = 0.029). A model was proposed that accurately predicted phenotypes of 72 of 90 (80%), 73 of85 (86%), and 64 of 69 (93%) patients in our cohort, Italian, and UK cohort, respectively. This study proposed a novel genotype-phenotype correlation in NPC1, linking the underlying molecular pathophysiology with clinical phenotype and aiding genetic counseling and evaluation in clinical practice.


Assuntos
Doença de Niemann-Pick Tipo C , Doenças de Niemann-Pick , Humanos , Genótipo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fenótipo , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Estudos de Associação Genética , Doença de Niemann-Pick Tipo C/genética
3.
Anim Genet ; 55(1): 99-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087834

RESUMO

Niemann-Pick disease type C1 (NPC1) is a lysosomal lipid storage disease caused by NPC1 gene mutation. Our previous study found that, compared with wild-type (Npc1+/+ ) mice, the renal volume and weight of Npc1 gene mutant (Npc1-/- ) mice were significantly reduced. We speculate that Npc1 gene mutations may affect the basic structure of the kidneys of Npc1-/- mice, and thus affect their function. Therefore, we randomly selected postnatal Day 28 (P28) and P56 Npc1+/+ and Npc1-/- mice, and observed the renal structure and pathological changes by haematoxylin-eosin staining. The level of renal fibrosis was detected by immunofluorescence histochemical techniques, and western blotting was used to detect the expression levels of apoptosis-related proteins and canonical Wnt signalling pathway related proteins. The results showed that compared with Npc1+/+ mice, the kidneys of P28 and P56 Npc1-/- mice underwent apoptosis and fibrosis; furthermore, there were obvious vacuoles in the cytoplasm of renal tubular epithelial cells of P56 Npc1-/- mice, the cell bodies were loose and foam-like, and the canonical Wnt signalling pathway was abnormally activated. These results showed that Npc1 gene mutation can cause pathological changes in the kidneys of mice. As age increased, vacuoles developed in the cytoplasm of renal tubular epithelial cells, and apoptosis of renal cells, abnormal activation of the Wnt signalling pathway, and promotion of renal fibrosis increased.


Assuntos
Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Animais , Camundongos , Fibrose , Rim/metabolismo , Rim/patologia , Mutação , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia
4.
Genet Med ; 25(3): 100349, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36470574

RESUMO

PURPOSE: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal disorder caused by pathogenic variants in NPC1. Disease progression is monitored using the NPC Neurological Severity Scale, but there are currently no established validated or qualified biomarkers. Neurofilament light chain (NfL) is being investigated as a biomarker in multiple neurodegenerative diseases. METHODS: Cross-sectional and longitudinal cerebrospinal fluid (CSF) samples were obtained from 116 individuals with NPC1. NfL levels were measured using a solid-phase sandwich enzyme-linked immunosorbent assay and compared with age-appropriate non-NPC1 comparison samples. RESULTS: Median levels of NfL were elevated at baseline (1152 [680-1840] pg/mL) in NPC1 compared with controls (167 [82-372] pg/mL; P < .001). Elevated NfL levels were associated with more severe disease as assessed by both the 17-domain and 5-domain NPC Neurological Severity Score. Associations were also observed with ambulation, fine motor, speech, and swallowing scores. Although treatment with the investigational drug 2-hydroxypropyl-ß-cyclodextrin (adrabetadex) did not decrease CSF NfL levels, miglustat therapy over time was associated with a decrease (odds ratio = 0.77, 95% CI = 0.62-0.96). CONCLUSION: CSF NfL levels are increased in individuals with NPC1, associated with clinical disease severity, and decreased with miglustat therapy. These data suggest that NfL is a biomarker that may have utility in future therapeutic trials.


Assuntos
Doença de Niemann-Pick Tipo A , Doença de Niemann-Pick Tipo C , Humanos , Filamentos Intermediários/patologia , Estudos Transversais , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/líquido cefalorraquidiano , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Biomarcadores
5.
Mol Genet Metab ; 140(3): 107656, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37517328

RESUMO

BACKGROUND: Niemann-Pick disease, type C1 (NPC1) is an ultrarare, recessive disorder due to pathological variants of NPC1. The NPC1 phenotype is characterized by progressive cerebellar ataxia and cognitive impairment. Although classically a childhood/adolescent disease, NPC1 is heterogeneous with respect to the age of onset of neurological signs and symptoms. While miglustat has shown to be clinically effective, there are currently no FDA approved drugs to treat NPC1. Identification and characterization of biomarkers may provide tools to facilitate therapeutic trials. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is a protein which is highly expressed by neurons and is a biomarker of neuronal damage. We thus measured cerebrospinal fluid (CSF) levels of UCHL1 in individuals with NPC1. METHODS: CSF levels of UCHL1 were measured using a Quanterix Neuroplex 4 assay in 94 individuals with NPC1 and 35 age-appropriate comparison samples. Cross-sectional and longitudinal CSF UCHL1 levels were then evaluated for correlation with phenotypic measures and treatment status. RESULTS: CSF UCHL1 levels were markedly elevated (3.3-fold) in individuals with NPC1 relative to comparison samples. The CSF UCHL1 levels showed statistically significant (adj p < 0.0001), moderate, positive correlations with both the 17- and 5-domain NPC Neurological Severity Scores and the Annual Severity Increment Scores. Miglustat treatment significantly decreased (adj p < 0.0001) CSF UCHL1 levels by 30% (95% CI 17-40%). CONCLUSIONS: CSF UCHL1 levels are elevated in NPC1, increase with increasing clinical severity and decrease in response to therapy with miglustat. Based on these data, UCHL1 may be a useful biomarker to monitor disease progression and therapeutic response in individuals with NPC1.


Assuntos
Doença de Niemann-Pick Tipo C , Adolescente , Criança , Humanos , Biomarcadores/metabolismo , Estudos Transversais , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Fenótipo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/uso terapêutico
6.
BMC Biol ; 19(1): 218, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592985

RESUMO

BACKGROUND: Niemann-Pick disease, type C (NPC) is a childhood-onset, lethal, neurodegenerative disorder caused by autosomal recessive mutations in the genes NPC1 or NPC2 and characterized by impaired cholesterol homeostasis, a lipid essential for cellular function. Cellular cholesterol levels are tightly regulated, and mutations in either NPC1 or NPC2 lead to deficient transport and accumulation of unesterified cholesterol in the late endosome/lysosome compartment, and progressive neurodegeneration in affected individuals. Previous cell-based studies to understand the NPC cellular pathophysiology and screen for therapeutic agents have mainly used patient fibroblasts. However, these do not allow modeling the neurodegenerative aspect of NPC disease, highlighting the need for an in vitro system that permits understanding the cellular mechanisms underlying neuronal loss and identifying appropriate therapies. This study reports the development of a novel human iPSC-derived, inducible neuronal model of Niemann-Pick disease, type C1 (NPC1). RESULTS: We generated a null i3Neuron (inducible × integrated × isogenic) (NPC1-/- i3Neuron) iPSC-derived neuron model of NPC1. The NPC1-/- and the corresponding isogenic NPC1+/+ i3Neuron cell lines were used to efficiently generate homogenous, synchronized neurons that can be used in high-throughput screens. NPC1-/- i3Neurons recapitulate cardinal cellular NPC1 pathological features including perinuclear endolysosomal storage of unesterified cholesterol, accumulation of GM2 and GM3 gangliosides, mitochondrial dysfunction, and impaired axonal lysosomal transport. Cholesterol storage, mitochondrial dysfunction, and axonal trafficking defects can be ameliorated by treatment with 2-hydroxypropyl-ß-cyclodextrin, a drug that has shown efficacy in NPC1 preclinical models and in a phase 1/2a trial. CONCLUSION: Our data demonstrate the utility of this new cell line in high-throughput drug/chemical screens to identify potential therapeutic agents. The NPC1-/- i3Neuron line will also be a valuable tool for the NPC1 research community to explore the pathological mechanisms contributing to neuronal degeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Niemann-Pick Tipo C , Colesterol , Humanos , Neurônios , Doença de Niemann-Pick Tipo C/genética , Preparações Farmacêuticas
7.
Mol Genet Metab ; 134(4): 330-336, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34802899

RESUMO

Niemann-Pick disease, type C1 is a progressive, lethal, neurodegenerative disorder due to endolysosomal storage of unesterified cholesterol. Cerebellar ataxia, as a result of progressive loss of cerebellar Purkinje neurons, is a major symptom of Nieman-Pick disease, type C1. Comparing single cell RNAseq data from control (Npc1+/+) and mutant (Npc1-/-) mice, we observed significantly decreased expression of Slc1a3 in Npc1-/- astrocytes. Slc1a3 encodes a glutamate transporter (GLAST, EAAT1) which functions to decrease glutamate concentrations in the post synaptic space after neuronal firing. Glutamate is an excitatory neurotransmitter and elevated extracellular levels of glutamate can be neurotoxic. Impaired EAAT1 function underlies type-6 episodic ataxia, a rare disorder with progressive cerebellar dysfunction, thus suggesting that impaired glutamate uptake in Niemann-Pick disease, type C1 could contribute to disease progression. We now show that decreased expression of Slc1a3 in Npc1-/- mice has functional consequences that include decreased surface protein expression and decreased glutamate uptake by Npc1-/- astrocytes. To test whether glutamate neurotoxicity plays a role in Niemann-Pick disease, type C1 progression, we treated NPC1 deficient mice with ceftriaxone and riluzole. Ceftriaxone is a ß-lactam antibiotic that is known to upregulate the expression of Slc1a2, an alternative glial glutamate transporter. Although ceftriaxone increased Slc1a2 expression, we did not observe a treatment effect in NPC1 mutant mice. Riluzole is a glutamate receptor antagonist that inhibits postsynaptic glutamate receptor signaling and reduces the release of glutamate. We found that treatment with riluzole increased median survival in Npc1-/- by 12%. Given that riluzole is an approved drug for the treatment of amyotrophic lateral sclerosis, repurposing of this drug may provide a novel therapeutic approach to decrease disease progression in Niemann-Pick disease type, C1 patients.


Assuntos
Ceftriaxona/uso terapêutico , Ácido Glutâmico/toxicidade , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Riluzol/uso terapêutico , Animais , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína C1 de Niemann-Pick/fisiologia
8.
Mol Genet Metab ; 129(2): 165-170, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31668555

RESUMO

Niemann-Pick disease, type C1 (NPC1) is a rare neurodegenerative lysosomal storage disease with a wide spectrum of clinical manifestation. Multiple genetic factors influence the NPC1 mouse phenotype, but very little attention has been given to prenatal environmental factors that might have long-term effects on the neuroinflammatory component of NPC1 pathology. Studies in other mouse models of cerebellar ataxia have shown that developmental exposures lead to Purkinje neuron degeneration later in life, suggesting that environmental exposures during development can impact cerebellar biology. Thus, we evaluated the potential effect of maternal immune activation (MIA) on disease progression in an Npc1 mouse model. The MIA paradigm used mimics viral infection using the toll like receptor 3 agonist polyinosinic-polycytidilic acid during gestation. Through phenotypic and pathologic tests, we measured motor and behavioral changes as well as cerebellar neuroinflammation and neurodegeneration. We observed a gender and genotype dependent effect of MIA on the cerebellum. While the effects of MIA have been previously shown to primarily affect male progeny, we observed increased sensitivity of female mutant progeny to prenatal exposure to treatment with polyinosinic-polycytidilic acid. Specifically, prenatal MIA resulted in female NPC1 mutant progeny with greater motor deficits and a corresponding decrease in cerebellar Purkinje neurons. Our data suggest that prenatal environmental exposures may be one factor contributing to the phenotypic variability observed in individuals with NPC1.


Assuntos
Troca Materno-Fetal/imunologia , Neurônios/patologia , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/imunologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Troca Materno-Fetal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/imunologia , Poli I-C/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fatores Sexuais
9.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599915

RESUMO

Niemann-Pick type C1 (NPC1) is a lysosomal storage disorder, inherited as an autosomal-recessive trait. Mutations in the Npc1 gene result in malfunction of the NPC1 protein, leading to an accumulation of unesterified cholesterol and glycosphingolipids. Beside visceral symptoms like hepatosplenomegaly, severe neurological symptoms such as ataxia occur. Here, we analyzed the sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) axis in different brain regions of Npc1-/- mice and evaluated specific effects of treatment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) together with the iminosugar miglustat. Using high-performance thin-layer chromatography (HPTLC), mass spectrometry, quantitative real-time PCR (qRT-PCR) and western blot analyses, we studied lipid metabolism in an NPC1 mouse model and human skin fibroblasts. Lipid analyses showed disrupted S1P metabolism in Npc1-/- mice in all brain regions, together with distinct changes in S1pr3/S1PR3 and S1pr5/S1PR5 expression. Brains of Npc1-/- mice showed only weak treatment effects. However, side effects of the treatment were observed in Npc1+/+ mice. The S1P/S1PR axis seems to be involved in NPC1 pathology, showing only weak treatment effects in mouse brain. S1pr expression appears to be affected in human fibroblasts, induced pluripotent stem cells (iPSCs)-derived neural progenitor and neuronal differentiated cells. Nevertheless, treatment-induced side effects make examination of further treatment strategies indispensable.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lisofosfolipídeos/metabolismo , Mutação , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Esfingosina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Adulto , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Camundongos Knockout , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Esfingosina/metabolismo , Adulto Jovem
10.
Lipids Health Dis ; 18(1): 146, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31248418

RESUMO

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is an autosomal-recessive lipid-storage disorder with an estimated minimal incidence of 1/120,000 live births. Besides other neuronal and visceral symptoms, NPC1 patients develop spleen dysfunction, isolated spleno- or hepatosplenomegaly and infections. The mechanisms of splenomegaly and alterations of lipid metabolism-related genes in NPC1 disease are still poorly understood. METHODS: Here, we used an NPC1 mouse model to study a splenoprotective effect of a treatment with miglustat, 2-hydroxypropyl-ß-cyclodextrin and allopregnanolone and showed that this treatment has a positive effect on spleen morphology and lipid metabolism. RESULTS: Disease progress can be halted and blocked at the molecular level. Mutant Npc1 (Npc1-/-) mice showed increased spleen weight and increased lipid accumulation that could be avoided by our treatment. Also, FACS analyses showed that the increased number of splenic myeloid cells in Npc1-/- mice was normalized by the treatment. Treated Npc1-/- mice showed decreased numbers of cytotoxic T cells and increased numbers of T helper cells. CONCLUSIONS: In summary, the treatment promotes normal spleen morphology, stabilization of lipid homeostasis and blocking of inflammation, but alters the composition of T cell subtypes.


Assuntos
1-Desoxinojirimicina/análogos & derivados , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Pregnanolona/uso terapêutico , Baço/metabolismo , 1-Desoxinojirimicina/uso terapêutico , Animais , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Genótipo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Doença de Niemann-Pick Tipo C , Baço/efeitos dos fármacos
11.
Int J Mol Sci ; 19(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424529

RESUMO

INTRODUCTION: Olfactory impairment is one of the earliest symptoms in neurodegenerative disorders that has also been documented in Niemann-Pick disease type C1 (NPC1). NPC1 is a very rare, neurovisceral lipid storage disorder, characterized by a deficiency of Npc1 gene function that leads to progressive neurodegeneration. Here, we compared the pathologic effect of defective Npc1 gene on the vomeronasal neuroepithelium (VNE) with that of the olfactory epithelium (OE) in an NPC1 mouse model. METHODS: Proliferation in the VNE and OE was assessed by applying a bromodeoxyuridine (BrdU) protocol. We further compared the immunoreactivities of anti-olfactory marker protein (OMP), and the lysosomal marker cathepsin-D in both epithelia. To investigate if degenerative effects of both olfactory systems can be prevented or reversed, some animals were treated with a combination of miglustat/allopregnanolone/2-hydroxypropyl-cyclodextrin (HPßCD), or a monotherapy with HPßCD alone. RESULTS: Using BrdU to label dividing cells of the VNE, we detected a proliferation increase of 215% ± 12% in Npc1-/- mice, and 270% ± 10% in combination- treated Npc1-/- animals. The monotherapy with HPßCD led to an increase of 261% ± 10.5% compared to sham-treated Npc1-/- mice. Similar to the OE, we assessed the high regenerative potential of vomeronasal progenitor cells. OMP reactivity in the VNE of Npc1-/- mice was not affected, in contrast to that observed in the OE. Concomitantly, cathepsin-D reactivity in the VNE was virtually absent. Conclusion: Vomeronasal receptor neurons are less susceptible against NPC1 pathology than olfactory receptor neurons. Compared to control mice, however, the VNE of Npc1-/- mice displays an increased neuroregenerative potential, indicating compensatory cell renewal.


Assuntos
Doença de Niemann-Pick Tipo C/patologia , Mucosa Olfatória/patologia , Órgão Vomeronasal/patologia , Animais , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Caspase 3/metabolismo , Catepsina D/metabolismo , Contagem de Células , Proliferação de Células , Camundongos Endogâmicos BALB C , Doença de Niemann-Pick Tipo C/metabolismo , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Órgão Vomeronasal/metabolismo
12.
J Cell Mol Med ; 21(5): 848-859, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27860245

RESUMO

Niemann-Pick disease, type C1 (Npc1), is an atypical lysosomal storage disorder caused by autosomal recessive inheritance of mutations in Npc1 gene. In the Npc1 mutant mice (Npc1-/- ), the initial manifestation is enlarged spleen, concomitant with free cholesterol accumulation. Telocytes (TCs), a novel type of interstitial cell, exist in a variety of tissues including spleen, presumably thought to be involved in many biological processes such as nursing stem cells and recruiting inflammatory cells. In this study, we found that the spleen is significantly enlarged in Npc1-/- mice, and the results from transmission electron microscopy examination and immunostaining using three different TCs markers, c-Kit, CD34 and Vimentin revealed significantly increased splenic TCs in Npc1-/- mice. Furthermore, hematopoietic stem cells and macrophages were also elevated in Npc1-/- spleen. Taken together, our data indicate that splenic TCs might alleviate the progress of splenic malfunction via recruiting hematopoietic stem cells and macrophages.


Assuntos
Proteínas/metabolismo , Baço/metabolismo , Telócitos/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Contagem de Células , Imunofluorescência , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/metabolismo , Masculino , Camundongos Mutantes , Proteína Homeobox Nanog/metabolismo , Proteína C1 de Niemann-Pick , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Baço/patologia , Baço/ultraestrutura , Telócitos/patologia , Telócitos/ultraestrutura , Vimentina/metabolismo
13.
Biochim Biophys Acta ; 1842(11): 2193-203, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25132229

RESUMO

Progressive olfactory impairment is one of the earliest markers of neurodegeneration. However, the underlying mechanism for this dysfunction remains unclear. The present study investigated the possible role of microgliosis in olfactory deficits using a mouse model of Niemann-Pick disease type C1 (NPC1), which is an incurable neurodegenerative disorder with disrupted lipid trafficking. At 7weeks of age, NPC1 mutants showed a distinct olfactory impairment in an olfactory test compared with age-matched wild-type controls (WT). The marked loss of olfactory sensory neurons within the NPC1 affected olfactory bulb (NPC1-OB) suggests that NPC1 dysfunction impairs olfactory structure. Furthermore, the pool of neuroblasts in the OB was diminished in NPC1 mice despite the intact proliferative capacity of neural stem/progenitor cells in the subventricular zone. Instead, pro-inflammatory proliferating microglia accumulated extensively in the NPC1-OB as the disease progressed. To evaluate the impact of abnormal microglial activation on olfaction in NPC1 mice, a microglial inhibition study was performed using the anti-inflammatory agent Cyclosporin A (CsA). Importantly, long-term CsA treatment in NPC1 mice reduced reactive microgliosis, restored the survival of newly generated neurons in the OB and improved overall performance on the olfactory test. Therefore, our study highlights the possible role of microglia in the regulation of neuronal turnover in the OB and provides insight into the possible therapeutic applications of microglial inhibition in the attenuation or reversal of olfactory impairment.

14.
Neurobiol Dis ; 67: 9-17, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24631719

RESUMO

OBJECTIVES: Niemann-Pick disease type C (NPC) is a neurodegenerative lysosomal storage disorder characterised by the storage of multiple lipids, reduced lysosomal calcium levels, impaired late endosome:lysosome fusion and neuroinflammation. NPC is caused by mutations in either of the two genes, NPC1 or NPC2, which are believed to function in a common cellular pathway, the function of which remains unclear. The complexity of the pathogenic cascade in NPC disease provides a number of potential clinical intervention points. To date, drugs that target pivotal stages in the pathogenic cascade have been tested as monotherapies or in combination with a second agent, showing additive or synergistic benefit. In this study, we have investigated whether we can achieve greater therapeutic benefit in the Npc1(-/-) mouse by combining three therapies that each targets unique aspects of the pathogenic cascade. METHODS: We have treated Npc1(-/-) mice with miglustat that targets sphingolipid synthesis and storage, curcumin that compensates for the lysosomal calcium defect by elevating cytosolic calcium, and the non-steroidal anti-inflammatory drug ibuprofen to reduce central nervous system inflammation. RESULTS/INTERPRETATION: We have found that triple combination therapy has a greater neuroprotective benefit compared with single and dual therapies, increasing the time period that Npc1(-/-) mice maintained body weight and motor function and maximally delaying the onset of Purkinje cell loss. In addition, ibuprofen selectively reduced microglial activation, while curcumin had no anti-inflammatory effects, indicating differential mechanisms of action for these two therapies. When taken together, these results demonstrate that targeting multiple unique steps in the pathogenic cascade maximises the clinical benefit in a mouse model of NPC1 disease.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Curcumina/uso terapêutico , Ibuprofeno/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , 1-Desoxinojirimicina/uso terapêutico , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Quimioterapia Combinada , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína C1 de Niemann-Pick , Proteínas/genética
15.
Clin Transl Oncol ; 26(10): 2665-2673, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38698279

RESUMO

BACKGROUND: The Niemann-Pick disease type C1 (NPC1) protein plays a pivotal role in lipid transport, particularly free cholesterol, within lysosomal/late endosomal membranes. Previous studies have highlighted NPC1 as a promising target for cholesterol trafficking and cancer therapy. Nevertheless, the expression of NPC1 in gastric cancer (GC) and its clinical implications remain unexplored. This study aims to investigate NPC1 expression in GC and its correlation with patient prognosis. METHODS: NPC1 expression levels in GC and normal tissues were assessed using the GEPIA database, and survival analysis was conducted via Kaplan‒Meier Plotter. Evaluation of potential biological effects of NPC1 in GC by protein-protein interaction network and GO, KEGG bioenrichment analysis. Immunohistochemistry was performed on surgical samples collected from 306 GC patients. Correlations between NPC1 expression, clinical characteristics, and patient prognosis were analyzed. RESULTS: NPC1 mRNA expression was elevated in GC tissues compared to normal tissues (P < 0.05) and significantly associated with poorer prognosis. In our cohort of 306 patients, NPC1 exhibited significant upregulation in GC versus adjacent normal tissues (P = 0.031). High NPC1 expression correlated with adverse clinical characteristics, including lymph node metastasis, distant metastasis, and advanced TNM stage (all P < 0.05). Patients with high NPC1 expression experienced notably shorter overall survival (P < 0.001), particularly in stages III and IV (P = 0.003). Multivariate Cox regression analysis identified high NPC1 expression as an independent prognostic factor for GC patients (HR 1.57, 95% CI 1.14-2.18, P = 0.006). Lastly, an optimized nomogram incorporating NPC1, tumor size, and TNM stage was constructed. CONCLUSIONS: NPC1 expression is upregulated in GC and serves as a pivotal prognostic factor for adverse outcomes in GC patients.


Assuntos
Proteína C1 de Niemann-Pick , Neoplasias Gástricas , Regulação para Cima , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/genética , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Estimativa de Kaplan-Meier , Metástase Linfática , Idoso , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Estadiamento de Neoplasias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Taxa de Sobrevida , Mapas de Interação de Proteínas
16.
Front Pharmacol ; 15: 1465872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263569

RESUMO

Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.

17.
J Mass Spectrom ; 59(3): e5008, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445816

RESUMO

Given the complexity of nervous tissues, understanding neurochemical pathophysiology puts high demands on bioanalytical techniques with respect to specificity and sensitivity. Mass spectrometry imaging (MSI) has evolved to become an important, biochemical imaging technology for spatial biology in biological and translational research. The technique facilitates comprehensive, sensitive elucidation of the spatial distribution patterns of drugs, lipids, peptides, and small proteins in situ. Matrix-assisted laser desorption ionization (MALDI)-based MSI is the dominating modality due to its broad applicability and fair compromise of selectivity, sensitivity price, throughput, and ease of use. This is particularly relevant for the analysis of spatial lipid patterns, where no other comparable spatial profiling tools are available. Understanding spatial lipid biology in nervous tissue is therefore a key and emerging application area of MSI research. The aim of this review is to give a concise guide through the MSI workflow for lipid imaging in central nervous system (CNS) tissues and essential parameters to consider while developing and optimizing MSI assays. Further, this review provides a broad overview of key developments and applications of MALDI MSI-based spatial neurolipidomics to map lipid dynamics in neuronal structures, ultimately contributing to a better understanding of neurodegenerative disease pathology.


Assuntos
Doenças Neurodegenerativas , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Doenças Neurodegenerativas/diagnóstico por imagem , Fluxo de Trabalho , Encéfalo/diagnóstico por imagem , Lipídeos
18.
J Lipid Res ; 54(8): 2153-2165, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23709693

RESUMO

Cholesterol is an essential lipid in eukaryotic cells and is present in membranes of all intracellular compartments. A major source for cellular cholesterol is internalized lipoprotein particles that are transported toward acidic late endosomes (LE) and lysosomes. Here the lipoprotein particles are hydrolyzed, and free cholesterol is redistributed to other organelles. The LE can contain over half of the cellular cholesterol and, as a major sorting station, can contain many cholesterol-binding proteins from the ABCA, STARD, and ORP families. Here, we show that metastatic lymph node 64 (MLN64, STARD3) and oxysterol-binding protein-related protein 1L (ORP1L) define two subpopulations of LE. MLN64 is present on a LE containing the cholesterol transporter ABCA3, whereas ORP1L localizes to another population of LE containing Niemann Pick type C1 (NPC1), a cholesterol exporter. Endocytosed cargo passes through MLN64/ABCA3-positive compartments before it reaches ORP1L/NPC1-positive LE. The MLN64/ABCA3 compartments cycle between LE and plasma membrane and frequently contact "later" ORP1L/NPC1-containing LE. We propose two stages of cholesterol handling in late endosomal compartments: first, cholesterol enters MLN64/ABCA3-positive compartments from where it can be recycled to the plasma membrane, and later, cholesterol enters ORP1L/NPC1 endosomes that mediate cholesterol export to the endoplasmic reticulum.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Endossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Esteroides/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína C1 de Niemann-Pick
19.
Mol Genet Metab ; 110(1-2): 188-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23850077

RESUMO

Mutations in individuals with the lysosomal storage disorder Niemann-Pick disease, type C1 (NPC1) are heterogeneous, not localized to specific protein domains, and not correlated to time of onset or disease severity. We demonstrate direct correlation of the time of neurological symptom onset with the severity of lysosomal defects in NPC1 patient-derived fibroblasts. This is a novel assay for NPC1 individuals that may be predictive of NPC1 disease progression and broadly applicable to other lysosomal disorders.


Assuntos
Doenças por Armazenamento dos Lisossomos/genética , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/genética , Adolescente , Adulto , Transporte Biológico/genética , Células Cultivadas , Criança , Pré-Escolar , Progressão da Doença , Feminino , Fibroblastos , Humanos , Lactente , Recém-Nascido , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/genética , Lisossomos/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Estrutura Terciária de Proteína
20.
Metabolites ; 13(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887404

RESUMO

In this investigation, we outline the applications of a data mining technique known as Subgroup Discovery (SD) to the analysis of a sample size-limited metabolomics-based dataset. The SD technique utilized a supervised learning strategy, which lies midway between classificational and descriptive criteria, in which given the descriptive property of a dataset (i.e., the response target variable of interest), the primary objective was to discover subgroups with behaviours that are distinguishable from those of the complete set (albeit with a differential statistical distribution). These approaches have, for the first time, been successfully employed for the analysis of aromatic metabolite patterns within an NMR-based urinary dataset collected from a small cohort of patients with the lysosomal storage disorder Niemann-Pick class 1 (NPC1) disease (n = 12) and utilized to distinguish these from a larger number of heterozygous (parental) control participants. These subgroup discovery strategies discovered two different NPC1 disease-specific metabolically sequential rules which permitted the reliable identification of NPC1 patients; the first of these involved 'normal' (intermediate) urinary concentrations of xanthurenate, 4-aminobenzoate, hippurate and quinaldate, and disease-downregulated levels of nicotinate and trigonelline, whereas the second comprised 'normal' 4-aminobenzoate, indoxyl sulphate, hippurate, 3-methylhistidine and quinaldate concentrations, and again downregulated nicotinate and trigonelline levels. Correspondingly, a series of five subgroup rules were generated for the heterozygous carrier control group, and 'biomarkers' featured in these included low histidine, 1-methylnicotinamide and 4-aminobenzoate concentrations, together with 'normal' levels of hippurate, hypoxanthine, quinolinate and hypoxanthine. These significant disease group-specific rules were consistent with imbalances in the combined tryptophan-nicotinamide, tryptophan, kynurenine and tyrosine metabolic pathways, along with dysregulations in those featuring histidine, 3-methylhistidine and 4-hydroxybenzoate. In principle, the novel subgroup discovery approach employed here should also be readily applicable to solving metabolomics-type problems of this nature which feature rare disease classification groupings with only limited patient participant and sample sizes available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA