Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2308132121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551841

RESUMO

Tumor necrosis factor (TNF) receptor 1 (TNFR1) plays a pivotal role in mediating TNF induced downstream signaling and regulating inflammatory response. Recent studies have suggested that TNFR1 activation involves conformational rearrangements of preligand assembled receptor dimers and targeting receptor conformational dynamics is a viable strategy to modulate TNFR1 signaling. Here, we used a combination of biophysical, biochemical, and cellular assays, as well as molecular dynamics simulation to show that an anti-inflammatory peptide (FKCRRWQWRMKK), which we termed FKC, inhibits TNFR1 activation allosterically by altering the conformational states of the receptor dimer without blocking receptor-ligand interaction or disrupting receptor dimerization. We also demonstrated the efficacy of FKC by showing that the peptide inhibits TNFR1 signaling in HEK293 cells and attenuates inflammation in mice with intraperitoneal TNF injection. Mechanistically, we found that FKC binds to TNFR1 cysteine-rich domains (CRD2/3) and perturbs the conformational dynamics required for receptor activation. Importantly, FKC increases the frequency in the opening of both CRD2/3 and CRD4 in the receptor dimer, as well as induces a conformational opening in the cytosolic regions of the receptor. This results in an inhibitory conformational state that impedes the recruitment of downstream signaling molecules. Together, these data provide evidence on the feasibility of targeting TNFR1 conformationally active region and open new avenues for receptor-specific inhibition of TNFR1 signaling.


Assuntos
Receptores Tipo I de Fatores de Necrose Tumoral , Transdução de Sinais , Camundongos , Humanos , Animais , Ligantes , Células HEK293 , Fator de Necrose Tumoral alfa/metabolismo , Peptídeos/farmacologia
2.
Med Res Rev ; 43(5): 1701-1747, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37062876

RESUMO

The androgen receptor (AR) has been shown to be a key determinant in the pathogenesis of castration-resistant prostate cancer (CRPC). The current standard of care therapies targets the ligand-binding domain of the receptor and can afford improvements to life expectancy often only in the order of months before resistance occurs. Emerging preclinical and clinical compounds that inhibit receptor activity via differentiated mechanisms of action which are orthogonal to current antiandrogens show promise for overcoming treatment resistance. In this review, we present an authoritative summary of molecules that noncompetitively target the AR. Emerging small molecule strategies for targeting alternative domains of the AR represent a promising area of research that shows significant potential for future therapies. The overall quality of lead candidates in the area of noncompetitive AR inhibition is discussed, and it identifies the key chemotypes and associated properties which are likely to be, or are currently, positioned to be first in human applications.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Antagonistas de Androgênios/uso terapêutico , Linhagem Celular Tumoral
3.
J Biol Chem ; 296: 100312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482195

RESUMO

Elevated plasma triglycerides are a risk factor for coronary artery disease, which is the leading cause of death worldwide. Lipoprotein lipase (LPL) reduces triglycerides in the blood by hydrolyzing them from triglyceride-rich lipoproteins to release free fatty acids. LPL activity is regulated in a nutritionally responsive manner by macromolecular inhibitors including angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4). However, the mechanism by which ANGPTL3 inhibits LPL is unclear, in part due to challenges in obtaining pure protein for study. We used a new purification protocol for the N-terminal domain of ANGPTL3, removing a DNA contaminant, and found DNA-free ANGPTL3 showed enhanced inhibition of LPL. Structural analysis showed that ANGPTL3 formed elongated, flexible trimers and hexamers that did not interconvert. ANGPTL4 formed only elongated flexible trimers. We compared the inhibition of ANGPTL3 and ANGPTL4 using human very-low-density lipoproteins as a substrate and found both were noncompetitive inhibitors. The inhibition constants for the trimeric ANGPTL3 (7.5 ± 0.7 nM) and ANGPTL4 (3.6 ± 1.0 nM) were only 2-fold different. Heparin has previously been reported to interfere with ANGPTL3 binding to LPL, so we questioned if the negatively charged heparin was acting in a similar fashion to the DNA contaminant. We found that ANGPTL3 inhibition is abolished by binding to low-molecular-weight heparin, whereas ANGPTL4 inhibition is not. Our data show new similarities and differences in how ANGPTL3 and ANGPTL4 regulate LPL and opens new avenues of investigating the effect of heparin on LPL inhibition by ANGPTL3.


Assuntos
Proteína 4 Semelhante a Angiopoietina/química , Proteínas Semelhantes a Angiopoietina/química , Doença da Artéria Coronariana/genética , Lipase Lipoproteica/química , Conformação Proteica , Proteína 3 Semelhante a Angiopoietina , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/ultraestrutura , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/ultraestrutura , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/patologia , Heparina/farmacologia , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/ultraestrutura , Lipoproteínas VLDL/química , Lipoproteínas VLDL/genética , Ligação Proteica/efeitos dos fármacos , Especificidade por Substrato , Triglicerídeos/sangue
4.
Biopolymers ; 112(7): e23429, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33851721

RESUMO

Angiogenin (Ang), is a ribonucleolytic protein that is associated with angiogenesis, the formation of blood vessels. The involvement of Ang in vascularisation makes it a potential target for the identification of compounds that have the potential to inhibit the process. The compounds may be assessed for their ability to inhibit the ribonucleolytic activity of the protein and subsequently blood vessel formation, a crucial requirement for tumor formation. We report an inhibition of the ribonucleolytic activity of Ang with the gallate containing green tea polyphenols, ECG and EGCG that exhibits an increased efficacy upon forming polyphenol-capped gold nanoparticles (ECG-AuNPs and EGCG-AuNPs). The extent of inhibition was confirmed using an agarose gel-based assay followed by fluorescence titration studies that indicated a hundred fold stronger binding of polyphenol-capped gold nanoparticles (GTP-AuNPs) compared to the bare polyphenols. Interestingly, we found a change in the mode of inhibition from a noncompetitive type to a competitive mode of inhibition in case of the GTP-AuNPs, which is in agreement with the 'n' values obtained from the fluorescence quenching studies. The effect on angiogenesis has also been assessed by the chorioallantoic membrane (CAM) assay. We find an increase in the inhibition potency of GTP-AuNPs that could find applications in the development of anti-angiogenic compounds.


Assuntos
Enzimas/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Polifenóis/química , Ribonuclease Pancreático/metabolismo , Sítios de Ligação , Ligação Competitiva , Catequina/análogos & derivados , Catequina/química , Enzimas/química , Humanos , Cinética , Simulação de Acoplamento Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Ribonuclease Pancreático/antagonistas & inibidores , Ribonuclease Pancreático/genética , Espectrometria de Fluorescência
5.
Molecules ; 25(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947893

RESUMO

Neuraminidase (NA) of influenza viruses enables the virus to access the cell membrane. It degrades the sialic acid contained in extracellular mucin. Later, it is responsible for releasing newly formed virions from the membrane of infected cells. Both processes become key functions within the viral cycle. Therefore, it is a therapeutic target for research of the new antiviral agents. Structure-activity relationships studies have revealed which are the important functional groups for the receptor-ligand interaction. Influenza virus type A NA activity was inhibited by five scaffolds without structural resemblance to sialic acid. Intending small organic compound repositioning along with drug repurposing, this study combined in silico simulations of ligand docking into the known binding site of NA, along with in vitro bioassays. The five proposed scaffolds are N-acetylphenylalanylmethionine, propanoic 3-[(2,5-dimethylphenyl) carbamoyl]-2-(piperazin-1-yl) acid, 3-(propylaminosulfonyl)-4-chlorobenzoic acid, ascorbic acid (vitamin C), and 4-(dipropylsulfamoyl) benzoic acid (probenecid). Their half maximal inhibitory concentration (IC50) was determined through fluorometry. An acidic reagent 2'-O-(4-methylumbelliferyl)-α-dN-acetylneuraminic acid (MUNANA) was used as substrate for viruses of human influenza H1N1 or avian influenza H5N2. Inhibition was observed in millimolar ranges in a concentration-dependent manner. The IC50 values of the five proposed scaffolds ranged from 6.4 to 73 mM. The values reflect a significant affinity difference with respect to the reference drug zanamivir (p < 0.001). Two compounds (N-acetyl dipeptide and 4-substituted benzoic acid) clearly showed competitive mechanisms, whereas ascorbic acid reflected non-competitive kinetics. The five small organic molecules constitute five different scaffolds with moderate NA affinities. They are proposed as lead compounds for developing new NA inhibitors which are not analogous to sialic acid.


Assuntos
Inibidores Enzimáticos/química , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H5N2/enzimologia , Neuraminidase/antagonistas & inibidores , Antivirais/química , Antivirais/metabolismo , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Sítios de Ligação , Ligação Competitiva , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Ácido N-Acetilneuramínico/química , Neuraminidase/metabolismo , Relação Estrutura-Atividade , Zanamivir/química , Zanamivir/metabolismo
6.
Prep Biochem Biotechnol ; 50(5): 511-520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910723

RESUMO

Aloe vera, a succulent herb, has a long history of use in traditional medicine, including diabetes. Earlier studies from our laboratory demonstrated that the Aloe vera extract has the ability to inhibit the diabetic drug target dipeptidyl peptidase (DPP) IV in vitro. This current study focuses on the isolation of small water soluble active molecule(s) involved in DPP-IV inhibition from Aloe vera extract, and further to characterize its structure and to elucidate the mode of inhibition of the DPP-IV enzyme. Aloe vera gel ethanolic extract was subjected to preparative reverse-phase high-pressure liquid chromatography (RP-HPLC), LH-20 Sephadex gel filtration chromatography, followed by analytical RP-HPLC, to isolate the active molecule involved in DPP-IV inhibition. Based on the spectroscopic studies, the structure of the isolated DPP-IV inhibitor was predicted to be 3, 6-dioxo-3, 3a, 6, 6 a-tetrahydropyrrolo [3, 4-c] pyrrole-1, 4-dicarboxamide with the chemical formula C8H6N4O4, having the molecular weight of 225.175 Da. This molecule inhibited the DPP-IV enzyme in a noncompetitive manner with an IC50 value of 8.59 ± 2.61 µM, with a Ki of 4.7 ± 0.038 µM. Thus, the mechanism of DPP-IV inhibition and the inhibitory constants were determined. The results of our studies suggested that the inhibition of the DPP-IV enzyme as one of the pathways by which the Aloe vera extract may restore the pancreatic islets cell mass in diabetic animal model.


Assuntos
Aloe/química , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Hipoglicemiantes/química , Pirrolidinonas/química , Inibidores da Dipeptidil Peptidase IV/isolamento & purificação , Ensaios Enzimáticos , Humanos , Hipoglicemiantes/isolamento & purificação , Cinética , Pirrolidinonas/isolamento & purificação
7.
Bioorg Chem ; 92: 103253, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31557620

RESUMO

Two ß-secreatase (BACE1) inhibitors from natural products (cinnamic acid and flavone) were linked to furnish potent, cell permeable BACE1 inhibitors with noncompetitive mode of inhibition, with the assistance of saturated transfer difference (STD)-NMR technique. Some of these conjugates also exhibited selective BACE1 inhibition over other aspartyl proteases such as BACE-2 and renin, as well as poor cytotoxicity. Taken together, conjugates 4 represent a new series of BACE inhibitors warrants further investigation for their potential in Alzheimier's disease therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Permeabilidade da Membrana Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/síntese química , Doença de Alzheimer/enzimologia , Sítios de Ligação , Ligação Competitiva , Descoberta de Drogas/instrumentação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular
8.
Ecotoxicol Environ Saf ; 147: 266-274, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28850809

RESUMO

Soil phosphatase, which plays an important role in phosphorus cycling, is strongly inhibited by Arsenic (As). However, the inhibition mechanism in kinetics is not adequately investigated. In this study, we investigated the kinetic characteristics of soil acid phosphatase (ACP) in 14 soils with varied properties, and also explored how kinetic properties of soil ACP changed with different spiked As concentrations. The results showed that the Michaelis constant (Km) and maximum reaction velocity (Vmax) values of soil ACP ranged from 1.18 to 3.77mM and 0.025-0.133mMh-1 in uncontaminated soils. The kinetic parameters of soil ACP in different soils changed differently with As contamination. The Km remained unchanged and Vmax decreased with increase of As concentration in most acid and neutral soils, indicating a noncompetitive inhibition mechanism. However, in alkaline soils, the Km increased linearly and Vmax decreased with increase of As concentration, indicating a mixed inhibition mechanism that include competitive and noncompetitive. The competitive inhibition constant (Kic) and noncompetitive inhibition constant (Kiu) varied among soils and ranged from 0.38 to 3.65mM and 0.84-7.43mM respectively. The inhibitory effect of As on soil ACP was mostly affected by soil organic matter and cation exchange capacity. Those factors influenced the combination of As with enzyme, which resulted in a difference of As toxicity to soil ACP. Catalytic efficiency (Vmax/Km) of soil ACP was a sensitive kinetic parameter to assess the ecological risks of soil As contamination.


Assuntos
Fosfatase Ácida/antagonistas & inibidores , Arsênio/toxicidade , Monitoramento Ambiental/métodos , Poluentes do Solo/toxicidade , Solo/química , China , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Fósforo/análise , Solo/normas
9.
Prep Biochem Biotechnol ; 47(2): 111-115, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-27143318

RESUMO

Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO2 concentration (CTOT) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at xCO2 of 5% vol/vol and the rate consequently decreased when the CTOT and OPR were 0.015 k mol m-3 and 0.55 mL h-1, respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.


Assuntos
Anabaena/metabolismo , Dióxido de Carbono/metabolismo , Hidrogênio/metabolismo , Oxigênio/metabolismo , Cinética
10.
Bioorg Med Chem Lett ; 26(18): 4542-4547, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27520940

RESUMO

Protein conjugation with ubiquitin and ubiquitin-like small molecules, such as UFM1, is important for promoting cancer cell survival and proliferation. Herein, the development of the first selective micromolar inhibitor of the UBA5 E1 enzyme that initiates UFM1 protein conjugation is described. This organometallic inhibitor incorporates adenosine and zinc(II)cyclen within its core scaffold and inhibits UBA5 noncompetitively and selectively over other E1 enzymes and a panel of human kinases. Furthermore, this compound selectively impedes the cellular proliferation (above 50µM) of cancer cells containing higher levels of UBA5. This inhibitor may be used to further probe the intracellular role of the UFM1 pathway in disease progression.


Assuntos
Inibidores Enzimáticos/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Humanos
11.
J Biol Chem ; 289(47): 32559-70, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25258314

RESUMO

The protein G0/G1 switch gene 2 (G0S2) is a small basic protein that functions as an endogenous inhibitor of adipose triglyceride lipase (ATGL), a key enzyme in intracellular lipolysis. In this study, we identified a short sequence covering residues Lys-20 to Ala-52 in G0S2 that is still fully capable of inhibiting mouse and human ATGL. We found that a synthetic peptide corresponding to this region inhibits ATGL in a noncompetitive manner in the nanomolar range. This peptide is highly selective for ATGL and does not inhibit other lipases, including hormone-sensitive lipase, monoacylglycerol lipase, lipoprotein lipase, and patatin domain-containing phospholipases 6 and 7. Because increased lipolysis is linked to the development of metabolic disorders, the inhibition of ATGL by G0S2-derived peptides may represent a novel therapeutic tool to modulate lipolysis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Lipase/antagonistas & inibidores , Peptídeos/farmacologia , Proteínas Recombinantes/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/antagonistas & inibidores , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Lipase/genética , Lipase/metabolismo , Camundongos Knockout , Dados de Sequência Molecular , Peptídeos/genética , Proteínas Recombinantes/química
12.
FEBS J ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39241105

RESUMO

Calcineurin is a serine/threonine protein phosphatase that is highly conserved from yeast to human and plays a critical role in many physiological processes. Regulators of calcineurin (RCANs) are a family of endogenous calcineurin regulators, which are capable of inhibiting the catalytic activity of calcineurin in vivo and in vitro. In this study, we first characterized the biochemical properties of yeast calcineurin and its endogenous regulator Rcn1, a yeast homolog of RCAN1. Our data show that Rcn1 inhibits yeast calcineurin toward pNPP substrate with a noncompetitive mode; and Rcn1 binds cooperatively to yeast calcineurin through multiple low-affinity interactions at several docking regions. Next, we reinvestigated the mechanism underlying the inhibition of mammalian calcineurin by RCAN1 using a combination of biochemical, biophysical, and computational methods. In contrast to previous observations, RCAN1 noncompetitively inhibits calcineurin phosphatase activity toward both pNPP and phospho-RII peptide substrates by targeting the enzyme active site in part. Re-analysis of previously reported kinetic data reveals that the RCAN1 concentrations used were too low to distinguish between the inhibition mechanisms [Chan B et al. (2005) Proc Natl Acad Sci USA 102, 13075]. The results presented in this study provide new insights into the interaction between calcineurin and RCAN1/Rcn1.

13.
Food Chem Toxicol ; 184: 114415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141941

RESUMO

Chalcones from licorice and its related plants have many pharmacological effects. However, the effects of chalcones on the activity of human and rat 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2), and associated side effects remain unclear. The inhibition of 11 chalcones on human and rat 11ß-HSD2 were evaluated in microsomes and a 3D-quantitative structure-activity relationship (3D-QSAR) was analyzed. Screening revealed that bavachalcone, echinatin, isobavachalcone, isobavachromene, isoliquiritigenin, licochalcone A, and licochalcone B significantly inhibited human 11ß-HSD2 with IC50 values ranging from 15.62 (licochalcone A) to 38.33 (echinatin) µM. Screening showed that the above chemicals and 4-hydroxychalcone significantly inhibited rat 11ß-HSD2 with IC50 values ranging from 6.82 (isobavachalcone) to 72.26 (4-hydroxychalcone) µM. These chalcones acted as noncompetitive/mixed inhibitors for both enzymes. Comparative analysis revealed that inhibition of 11ß-HSD2 depended on the species. Most chemicals bind to the NAD+ binding site or both the NAD+ and substrate binding sites. Bivariate correlation analysis showed that lipophilicity and molecular weight determine inhibitory strength. Through our 3D-QSAR models, we identified that the hydrophobic region, hydrophobic aliphatic groups, and hydrogen bond acceptors are pivotal factors in inhibiting 11ß-HSD2. In conclusion, many chalcones inhibit human and rat 11ß-HSD2, possibly causing side effects and there is structure-dependent and species-dependent inhibition on 11ß-HSD2.


Assuntos
Chalconas , Ratos , Humanos , Animais , Chalconas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Relação Quantitativa Estrutura-Atividade , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , NAD/metabolismo
14.
J Immunol Methods ; 534: 113756, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265885

RESUMO

We present a time-course saturation ELISA for measuring the equilibrium constant of the monoclonal antibody (mAb) SIM 28 against horse radish peroxidase (HRP). The curves of HRP binding to a series of fixed mAb dilutions were plotted to completion, and the Kt (= Ks) value (time to occupy 50 % of the mAb paratopes) was determined for each mAb dilution and HRP concentration. Analysis of the kinetic mechanism of the reaction by Lineweaver-Burk and Hanes plots showed that the slope and y-intercept were affected, indicating that mAb ligand saturation follows non-competitive inhibition kinetics in this assay format. In this kinetics, the inhibition constant Ki (= Kd) is the time required to double the slope or halve the Vmax of the Lineweaver-Burk plot. The Kt values of the time courses were doubled (2 x Kt) and normalized by dividing by the total reaction time to obtain a unitless factor which, when multiplied by the concentration of HRP, gives the Ki. The affinity constant of mAb SIM 28 was determined from ELISA data (n = 16) by three methods: i) doubling of Kt, ii) Beatty equation (Kaff = (n-1)/2 (n [HRP']t - [HRP]t), and iii) SPR (Biacore) analysis. The calculated affinities (mean ± 95 % confidence limits) were i) 4.6 ± 0.67 × 10-9 M, ii) Kaff = 0.23 ± 0.03 × 109 M-1 (Kd = 4.8 ± 0.81 × 10-9 M), and iii) 4.3 ± 0.57 × 10-9 M, respectively. The similar results obtained with the three different techniques indicate that this time-course saturation ELISA, combined with the double Kt method, is a repeatable and direct approach to mAb affinity determination.

15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1553-66, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23897478

RESUMO

Sleeping sickness is a deadly disease that primarily affects sub-Saharan Africa and is caused by protozoan parasites of the Trypanosoma genus. Trypanosomes are purine auxotrophs and their uptake pathway has long been appreciated as an attractive target for drug design. Recently, one tight-binding competitive inhibitor of the trypanosomal purine-specific nucleoside hydrolase (IAGNH) showed remarkable trypanocidal activity in a murine model of infection. Here, the enzymatic characterization of T. brucei brucei IAGNH is presented, together with its high-resolution structures in the unliganded form and in complexes with different inhibitors, including the trypanocidal compound UAMC-00363. A description of the crucial contacts that account for the high-affinity inhibition of IAGNH by iminoribitol-based compounds is provided and the molecular mechanism underlying the conformational change necessary for enzymatic catalysis is identified. It is demonstrated for the first time that metalorganic complexes can compete for binding at the active site of nucleoside hydrolase enzymes, mimicking the positively charged transition state of the enzymatic reaction. Moreover, we show that divalent metal ions can act as noncompetitive IAGNH inhibitors, stabilizing a nonproductive conformation of the catalytic loop. These results open a path for rational improvement of the potency and the selectivity of existing compounds and suggest new scaffolds that may be used as blueprints for the design of novel antitrypanosomal compounds.


Assuntos
Inibidores Enzimáticos/química , N-Glicosil Hidrolases/antagonistas & inibidores , N-Glicosil Hidrolases/química , Tripanossomicidas/química , Trypanosoma brucei brucei/enzimologia , Adenosina/análogos & derivados , Adenosina/química , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Isoenzimas , Cinética , Ligantes , Metais/química , Metais/farmacologia , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Conformação Proteica , Trypanosoma brucei brucei/genética
16.
ACS Chem Neurosci ; 14(14): 2537-2547, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37386821

RESUMO

The main objective of this study was to determine the pharmacological activity and molecular mechanism of action of DM506 (3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole fumarate), a novel ibogamine derivative, at different nicotinic acetylcholine receptor (nAChR) subtypes. The functional results showed that DM506 neither activates nor potentiates but inhibits ACh-evoked currents at each rat nAChR subtype in a non-competitive manner. The receptor selectivity for DM506 inhibition follows the sequence: α9α10 (IC50 = 5.1 ± 0.3 µM) ≅ α7ß2 (5.6 ± 0.2 µM) ∼ α7 (6.4 ± 0.5 µM) > α6/α3ß2ß3 (25 ± 1 µM) > α4ß2 (62 ± 4 µM) ≅ α3ß4 (70 ± 5 µM). No significance differences in DM506 potency were observed between rat and human α7 and α9α10 nAChRs. These results also indicated that the ß2 subunit is not involved or is less relevant in the activity of DM506 at the α7ß2 nAChR. DM506 inhibits the α7 and α9α10 nAChRs in a voltage-dependent and voltage-independent manner, respectively. Molecular docking and molecular dynamics studies showed that DM506 forms stable interactions with a putative site located in the α7 cytoplasmic domain and with two intersubunit sites in the extracellular-transmembrane junction of the α9α10 nAChR, one located in the α10(+)/α10(─) interface and another in the α10(+)/α9(─) interface. This study shows for the first time that DM506 inhibits both α9α10 and α7 nAChR subtypes by novel allosteric mechanisms likely involving modulation of the extracellular-transmembrane domain junction and cytoplasmic domain, respectively, but not by direct competitive antagonism or open channel block.


Assuntos
Receptores Nicotínicos , Ratos , Animais , Humanos , Simulação de Acoplamento Molecular , Receptor Nicotínico de Acetilcolina alfa7 , Hidrocarbonetos Aromáticos com Pontes
17.
Viruses ; 15(5)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37243142

RESUMO

In this study, we describe the input data and processing steps to find antiviral lead compounds by a virtual screen. Two-dimensional and three-dimensional filters were designed based on the X-ray crystallographic structures of viral neuraminidase co-crystallized with substrate sialic acid, substrate-like DANA, and four inhibitors (oseltamivir, zanamivir, laninamivir, and peramivir). As a result, ligand-receptor interactions were modeled, and those necessary for binding were utilized as screen filters. Prospective virtual screening (VS) was carried out in a virtual chemical library of over half a million small organic substances. Orderly filtered moieties were investigated based on 2D- and 3D-predicted binding fingerprints disregarding the "rule-of-five" for drug likeness, and followed by docking and ADMET profiling. Two-dimensional and three-dimensional screening were supervised after enriching the dataset with known reference drugs and decoys. All 2D, 3D, and 4D procedures were calibrated before execution, and were then validated. Presently, two top-ranked substances underwent successful patent filing. In addition, the study demonstrates how to work around reported VS pitfalls in detail.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Inibidores Enzimáticos/farmacologia , Estudos Prospectivos , Zanamivir/farmacologia , Antivirais/uso terapêutico , Vírus da Influenza A/metabolismo , Neuraminidase/metabolismo , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle
18.
Drug Des Devel Ther ; 16: 2031-2042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795848

RESUMO

Objective: To evaluate the effect of axitinib on buspirone metabolism in vitro and in vivo. Methods: A microsome incubation assay was performed to study the effect and mechanism of axitinib on buspirone metabolizing. In vivo, buspirone was administered with or without axitinib to Sprague-Dawley rats. Plasma samples were collected and subjected to ultra-performance liquid chromatography-tandem mass spectrometry. Results: In both human liver microsomes (HLMs) and rat liver microsomes (RLMs), axitinib (100 µM) decreased buspirone hydroxylation and N-dealkylation by >85%. Axitinib inhibited buspirone hydroxylation and N-dealkylation, with an IC50 of 15.76 and 9.74 for RLMs, and 10.63 and 9.902 for HLMs. Axitinib showed noncompetitive inhibition of both 6'-hydroxylation and N-dealkylation. Moreover, coadministration of axitinib and buspirone led to an increase in the maximum plasma concentration (C max ) and area under the plasma concentration-time curve (AUC) of buspirone by 4.3- and 5.3-fold, respectively, compared with the control group. Conclusion: Axitinib inhibited buspirone metabolism in vivo and in vitro, which increases the risk of the side effects of buspirone in the clinic. When coadministered with axitinib, a lower dosage of buspirone should be defined to avoid a toxic response. Axitinib is suspected to function as an inhibitor of CYP3A4.


Assuntos
Buspirona , Microssomos Hepáticos , Animais , Axitinibe/farmacologia , Buspirona/metabolismo , Buspirona/farmacologia , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Antibiotics (Basel) ; 11(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35625337

RESUMO

The emergence of multi-drug-resistant Gram-negative pathogens highlights an urgent clinical need to explore and develop new antibiotics with novel antibacterial targets. MreB is a promising antibacterial target that functions as an essential elongasome protein in most Gram-negative bacterial rods. Here, we describe a third-generation MreB inhibitor (TXH11106) with enhanced bactericidal activity versus the Gram-negative pathogens Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa compared to the first- and second-generation compounds A22 and CBR-4830, respectively. Large inocula of these four pathogens are associated with a low frequency of resistance (FOR) to TXH11106. The enhanced bactericidal activity of TXH11106 relative to A22 and CBR-4830 correlates with a correspondingly enhanced capacity to inhibit E. coli MreB ATPase activity via a noncompetitive mechanism. Morphological changes induced by TXH11106 in E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa provide further evidence supporting MreB as the bactericidal target of the compound. Taken together, our results highlight the potential of TXH11106 as an MreB inhibitor with activity against a broad spectrum of Gram-negative bacterial pathogens of acute clinical importance.

20.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35337141

RESUMO

Albizia julibrissin Durazz. is one of the most common herbs used for depression and anxiety treatment, but its molecular basis and mechanism of action as an antidepressant or anxiolytic drug are not understood. In this study, we separated and identified two lignan glycosides that inhibit serotonin transporter (SERT) noncompetitively by decreasing Vmax with little change in Km for its fluorescence substrate. In addition, treatment with lignan glycosides did not alter total and cell surface expression levels of the transporter protein. The two compounds decreased the accessibility of a cysteine residue placed in the extracellular substrate permeation pathway by inducing a conformational shift toward an outward-closed state of SERT. These results are consistent with molecular docking for the association of the lignan glycosides to the allosteric site in SERT. The present work supports the proposal that these compounds act on SERT by a novel underlying mechanism of action different from that of conventional antidepressant drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA