RESUMO
Xylomyrocins, a unique group of nonribosomal peptide secondary metabolites, were discovered in Paramyrothecium and Colletotrichum spp. fungi by employing a combination of high-resolution tandem mass spectrometry (HRMS/MS)-based chemometrics, comparative genome mining, gene disruption, stable isotope feeding, and chemical complementation techniques. These polyol cyclodepsipeptides all feature an unprecedented d-xylonic acid moiety as part of their macrocyclic scaffold. This biosynthon is derived from d-xylose supplied by xylooligosaccharide catabolic enzymes encoded in the xylomyrocin biosynthetic gene cluster, revealing a novel link between carbohydrate catabolism and nonribosomal peptide biosynthesis. Xylomyrocins from different fungal isolates differ in the number and nature of their amino acid building blocks that are nevertheless incorporated by orthologous nonribosomal peptide synthetase (NRPS) enzymes. Another source of structural diversity is the variable choice of the nucleophile for intramolecular macrocyclic ester formation during xylomyrocin chain termination. This nucleophile is selected from the multiple available alcohol functionalities of the polyol moiety, revealing a surprising polyspecificity for the NRPS terminal condensation domain. Some xylomyrocin congeners also feature N-methylated amino acid residues in positions where the corresponding NRPS modules lack N-methyltransferase (M) domains, providing a rare example of promiscuous methylation in the context of an NRPS with an otherwise canonical, collinear biosynthetic program.
Assuntos
Depsipeptídeos , Proteínas Fúngicas , Fungos , Aminoácidos/química , Metabolismo dos Carboidratos , Quimiometria , Depsipeptídeos/química , Depsipeptídeos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fungos/genética , Fungos/metabolismo , Família Multigênica , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases/química , AçúcaresRESUMO
Biological control of pests and pathogens has attracted much attention due to its green, safe and effective characteristics. However, it faces the dilemma of insignificant effects in large-scale applications. Therefore, an in-depth exploration of the metabolic potential of biocontrol fungi based on big omics data is crucial for a comprehensive and systematic understanding of the specific modes of action operated by various biocontrol fungi. This article analyzes the preferences for extracellular carbon and nitrogen source degradation, secondary metabolites (nonribosomal peptides, polyketide synthases) and their product characteristics and the conversion relationship between extracellular primary metabolism and intracellular secondary metabolism for eight different filamentous fungi with characteristics appropriate for the biological control of bacterial pathogens and phytopathogenic nematodes. Further clarification is provided that Paecilomyces lilacinus, encoding a large number of hydrolase enzymes capable of degrading pathogen protection barrier, can be directly applied in the field as a predatory biocontrol fungus, whereas Trichoderma, as an antibiosis-active biocontrol control fungus, can form dominant strains on preferred substrates and produce a large number of secondary metabolites to achieve antibacterial effects. By clarifying the levels of biological control achievable by different biocontrol fungi, we provide a theoretical foundation for their application to cropping habitats.
Assuntos
Fungos , Fungos/metabolismo , Fungos/genética , Metabolismo Secundário , Carbono/metabolismo , Agentes de Controle Biológico/metabolismo , Controle Biológico de Vetores/métodos , Nitrogênio/metabolismo , Animais , Metabolômica/métodosRESUMO
Pseudomonas poae PMA22 produces safracins, a family of compounds with potent broad-spectrum anti-bacterial and anti-tumor activities. The safracins' biosynthetic gene cluster (BGC sac) consists of 11 ORFs organized in two divergent operons (sacABCDEFGHK and sacIJ) that are controlled by Pa and Pi promoters. Contiguous to the BGC sac, we have located a gene that encodes a putative global regulator of the LysR family annotated as MexT that was originally described as a transcriptional activator of the MexEF-OprN multidrug efflux pump in Pseudomonas. Through both in vitro and in vivo experiments, we have demonstrated the involvement of the dual regulatory system MexT-MexS on the BGC sac expression acting as an activator and a repressor, respectively. The MexEF-OprN transport system of PMA22, also controlled by MexT, was shown to play a fundamental role in the metabolism of safracin. The overexpression of mexEF-oprN in PMA22 resulted in fourfold higher production levels of safracin. These results illustrate how a pleiotropic regulatory system can be critical to optimizing the production of tailored secondary metabolites, not only through direct interaction with the BGC promoters, but also by controlling their transport.
Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Pseudomonas , Pseudomonas/metabolismo , Pseudomonas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regiões Promotoras Genéticas , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Transporte Biológico , ÓperonRESUMO
BACKGROUND: New antibiotics are urgently needed in clinical treatment of superdrug-resistant bacteria. Nonribosomal peptides (NRPs) are a major source of antibiotics because they exhibit structural diversity, and unique antibacterial mechanisms and resistance. Analysis of gene clusters of S. agglomeratus 5-1-3 showed that Clusters 3, 6, 12, 21, and 28 were used to synthesize NRPs. Here, we examined secondary metabolites of S. agglomeratus 5-1-3 isolated from soils in the Qinghai-Tibet Plateau, China, for NRPs with antibacterial activity. RESULTS: We isolated a total of 36 Streptomyces strains with distinct colony morphological characteristics from 7 soil samples. We screened 8 Streptomyces strains resistant to methicillin-resistant Staphylococcus aureus (MRSA). We then selected S. agglomeratus 5-1-3 for further study based on results of an antibacterial activity test. Here, we isolated three compounds from S. agglomeratus 5-1-3 and characterized their properties. The crude extract was extracted with ethyl acetate and purified with column chromatography and semipreparative high-performance liquid chromatography (HPLC). We characterized the three compounds using NMR analyses as echinomycin (1), 5,7,4'-trihydroxy-3.3',5'-trimethoxy flavone (2), and 2,6,2', 6'-tetramethoxy-4,4-bis(2,3-epoxy-1-hydroxypropyl)-biphenyl (3). We tested the antibacterial activity of pure compounds from strain 5-1-3 with the Oxford cup method. NRP echinomycin (1) showed excellent anti-MRSA activity with a minimum inhibitory concentration (MIC) of 2.0 µg/mL. Meanwhile, MIC of compound 2 and 3 was 128.0 µg/mL for both. In addition, 203 mg of echinomycin was isolated from 10 L of the crude extract broth of strain 5-1-3. CONCLUSION: In this study, S. agglomeratus 5-1-3 with strong resistance to MRSA was isolated from the soils in the Qinghai-Tibet Plateau. Strain 5-1-3 had a high yield of echinomycin (1) an NRP with a MIC of 2 µg/mL against MRSA. We propose that echinomycin derived from S. agglomeratus 5-1-3 may be a potent antibacterial agent for pharmaceutical use.
Assuntos
Equinomicina , Staphylococcus aureus Resistente à Meticilina , Streptomyces , Tibet , Antibacterianos/química , Streptomyces/química , Testes de Sensibilidade Microbiana , Misturas Complexas , SoloRESUMO
Nonribosomal peptides play an important role in the vital activity of bacteria and have an extremely broad field of biological activity. In particular, they act as antibiotics, toxins, surfactants, siderophores, and also perform a number of other specific functions. Biosynthesis of these molecules does not occur on ribosomes but by special enzymes that form gene clusters in bacterial genomes. We hypothesized that the presence of nonribosomal peptide synthesis pathways is a specific feature of bacterial metabolism, which may affect other vital processes of the cell, including translational ones. This work was the first to show the relationship between the translation regulation mechanism of protein-coding genes in bacteria, which is largely determined by the efficiency of translation elongation, and the presence of gene clusters in the genomes for the biosynthesis of nonribosomal peptides. Bioinformatic analysis of the translation elongation efficiency of protein-coding genes was performed in 11679 bacterial genomes, some of which contained gene clusters of nonribosomal peptide biosynthesis and some of which did not. The analysis showed that bacteria whose genomes contained clusters of nonribosomal peptide biosynthetic genes and those without such gene clusters differ significantly in the molecular mechanisms that ensure translation efficiency. Thus, among microorganisms whose genomes contain gene clusters of nonribosomal peptide synthetases, a significantly smaller part of them is characterized by optimized regulation of the number of local inverted repeats, while most of them have genomes optimized by the averaged energy of inverted repeats studs in mRNA and additionally by codon composition. Our results suggest that the presence of nonribosomal peptide biosynthetic pathways in bacteria may influence the structure of the overall bacterial metabolism, which is also expressed in the specific mechanisms of ribosomal protein biosynthesis.
Assuntos
Bactérias , Peptídeos , Bactérias/genética , Peptídeos/química , Biologia Computacional , Genoma Bacteriano , Família MultigênicaRESUMO
The improvement of genome sequencing techniques has brought to light the biosynthetic potential of actinomycetes due to the large number of gene clusters they present compared to the number of known compounds. Genome mining is a recent strategy in the search for novel bioactive compounds, which involves the analysis of sequenced genomes to identify uncharacterized natural product biosynthetic gene clusters, many of which are cryptic or silent under laboratory conditions, and to develop experimental approaches to identify their products. Owing to the importance of halogenation in terms of structural diversity, bioavailability, and bioactivity, searching for new halogenated bioactive compounds has become an interesting issue in the field of natural product discovery. Following this purpose, a screening for halogenase coding genes was performed on 12 Streptomyces strains isolated from fungus-growing ants of the Attini tribe. Using the bioinformatics tools antiSMASH and BLAST, six halogenase coding genes were identified. Some of these genes were located within biosynthetic gene clusters (BGCs), which were studied by construction of several mutants for the identification of the putative halogenated compounds produced. The comparison of the metabolite production profile of wild-type strains and their corresponding mutants by ultrahigh-performance liquid chromatography-UV and high-performance liquid chromatography-mass spectrometry allowed us the identification of a novel family of halogenated compounds in Streptomyces sp. strain CS147, designated colibrimycins. IMPORTANCE Genome mining has proven its usefulness in the search for novel bioactive compounds produced by microorganisms, and halogenases comprise an interesting starting point. In this work, we have identified a new halogenase coding gene that led to the discovery of novel lipopetide nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS)-derived natural products, the colibrimycins, produced by Streptomyces sp. strain CS147, isolated from the Attini ant niche. Some colibrimycins display an unusual α-ketoamide moiety in the peptide structure. Although its biosynthetic origin remains unknown, its presence might be related to a hypothetical inhibition of virus proteases, and, together with the presence of the halogenase, it represents a feature to be incorporated in the arsenal of structural modifications available for combinatorial biosynthesis.
Assuntos
Policetídeo Sintases , Streptomyces , Família Multigênica , Peptídeo Sintases/genética , Filogenia , Policetídeo Sintases/genética , Streptomyces/genéticaRESUMO
Genome mining and bioactivity studies suggested the sponge-derived bacterium Aquimarina sp. Aq135 as a producer of new antibiotics. Activity-guided isolation identified antibacterial peptides, named aquimarins, featuring a new scaffold with an unusual C-terminal amino group and chlorine moieties. Responsible for the halogenation is the FeII /α-ketoglutarate-dependent chlorinase AqmA that halogenates up to two isoleucine residues in a carrier protein-dependent fashion. Total syntheses of two natural aquimarins and eight non-natural variants were developed. Structure-activity relationship (SAR) studies with these compounds showed that the synthetically more laborious chlorinations are not required for antibacterial activity but enhance cytotoxicity. In contrast, variants lacking the C-terminal amine were virtually inactive, suggesting diamines similar to the terminal aquimarin residue as candidate building blocks for new peptidomimetic antibiotics.
Assuntos
Antibacterianos/química , Flavobacteriaceae/química , Peptídeos/química , Antibacterianos/metabolismo , Conformação Molecular , Peptídeos/genética , Peptídeos/metabolismo , EstereoisomerismoRESUMO
The absolute configuration of the constituent amino acids in microbial nonribosomal peptides is typically determined by Marfey's method after total hydrolysis of the peptide. A challenge to structure elucidation arises when both d and l enantiomeric configurations of an amino acid are present. Determining the actual position of each amino acid enantiomer within the peptide sequence typically requires laborious approaches based on peptide partial hydrolysis or even total synthesis of the possible diastereomers. Herein, an alternative solution is discussed based on the homogeneous backbone chirality that governs all peptides biosynthesized by a common nonribosomal peptide synthetase. The information on configuration provided by Marfey's analysis of co-occurring minor congeners can reveal unequivocally the stereochemical sequence of the whole peptide family.
Assuntos
Aminoácidos/metabolismo , Peptídeos/metabolismo , Aminoácidos/química , Estrutura Molecular , Peptídeo Sintases/metabolismo , Peptídeos/química , EstereoisomerismoRESUMO
Investigating microbial interactions from an ecological perspective is a particularly fruitful approach to unveil both new chemistry and bioactivity. Microbial predator-prey interactions in particular rely on natural products as signal or defense molecules. In this context, we identified a grazing-resistant Pseudomonas strain, isolated from the bacterivorous amoeba Dictyostelium discoideum. Genome analysis of this bacterium revealed the presence of two biosynthetic gene clusters that were found adjacent to each other on a contiguous stretch of the bacterial genome. Although one cluster codes for the polyketide synthase producing the known antibiotic mupirocin, the other cluster encodes a nonribosomal peptide synthetase leading to the unreported cyclic lipopeptide jessenipeptin. We describe its complete structure elucidation, as well as its synergistic activity against methicillin-resistant Staphylococcus aureus, when in combination with mupirocin. Both biosynthetic gene clusters are regulated by quorum-sensing systems, with 3-oxo-decanoyl homoserine lactone (3-oxo-C10-AHL) and hexanoyl homoserine lactone (C6-AHL) being the respective signal molecules. This study highlights the regulation, richness, and complex interplay of bacterial natural products that emerge in the context of microbial competition.
Assuntos
Produtos Biológicos/farmacologia , Dictyostelium/fisiologia , Sinergismo Farmacológico , Mupirocina/farmacologia , Pseudomonas/metabolismo , Percepção de Quorum/fisiologia , Infecções Estafilocócicas/tratamento farmacológico , 4-Butirolactona/análogos & derivados , 4-Butirolactona/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologiaRESUMO
Closthioamide (CTA) is a symmetric nonribosomal peptide (NRP) comprised of two diaminopropane-linked polythioamidated monomers. CTA is biosynthesized by Ruminiclostridium cellulolyticum via an atypical NRP synthetase (NRPS)-independent biosynthetic pathway. Although the logic for monomer assembly was recently elucidated, the strategy for the biosynthesis and incorporation of the diamine linker remained a mystery. By means of genome editing, synthesis, and inâ vitro biochemical assays, we demonstrate that the final steps in CTA maturation proceed through a surprising split-merge pathway involving the dual use of a thiotemplated intermediate. This pathway includes the first examples of an aldo-keto reductase catalyzing the reductive release of a thiotemplated product, and of a transthioamidating transglutaminase. In addition to clarifying the remaining steps in CTA assembly, our data shed light on largely unexplored pathways for NRPS-independent peptide biosynthesis.
Assuntos
Antibacterianos/biossíntese , Tioamidas/metabolismo , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Antibacterianos/análise , Antibacterianos/química , Biocatálise , Cromatografia Líquida de Alta Pressão , Clostridiales/genética , Clostridiales/metabolismo , Edição de Genes , Família Multigênica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tioamidas/análise , Tioamidas/química , Transaminases/genética , Transaminases/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismoRESUMO
BACKGROUND: Plant growth-promoting rhizobacteria (PGPR) are good alternatives for chemical fertilizers and pesticides, which cause severe environmental problems worldwide. Even though many studies focus on PGPR, most of them are limited in plant-microbe interaction studies and neglect the pathogens affecting ruminants that consume plants. In this study, we expand the view to the food chain of grass-ruminant-human. We aimed to find biocontrol strains that can antagonize grass pathogens and mammalian pathogens originated from grass, thus protecting this food chain. Furthermore, we deeply mined into bacterial genomes for novel biosynthetic gene clusters (BGCs) that can contribute to biocontrol. RESULTS: We screened 90 bacterial strains from the rhizosphere of healthy Dutch perennial ryegrass and characterized seven strains (B. subtilis subsp. subtilis MG27, B. velezensis MG33 and MG43, B. pumilus MG52 and MG84, B. altitudinis MG75, and B. laterosporus MG64) that showed a stimulatory effect on grass growth and pathogen antagonism on both phytopathogens and mammalian pathogens. Genome-mining of the seven strains discovered abundant BGCs, with some known, but also several potential novel ones. Further analysis revealed potential intact and novel BGCs, including two NRPSs, four NRPS-PKS hybrids, and five bacteriocins. CONCLUSION: Abundant potential novel BGCs were discovered in functional protective isolates, especially in B. pumilus, B. altitudinis and Brevibacillus strains, indicating their great potential for the production of novel secondary metabolites. Our report serves as a basis to further identify and characterize these compounds and study their antagonistic effects against plant and mammalian pathogens.
Assuntos
Burkholderiales/genética , Genoma Bacteriano , Genômica , Lolium/fisiologia , Desenvolvimento Vegetal , Mineração de Dados , Genômica/métodos , Humanos , Filogenia , Desenvolvimento Vegetal/genética , SimbioseRESUMO
Previously a fingerprint based on monomer composition (MCFP) of nonribosomal peptides (NRPs) has been introduced. MCFP is a novel method for obtaining a representative description of NRP structures from their monomer composition in a fingerprint form. An effective screening and prediction of biological activities has been obtained from Norine NRPs database. In this paper, we present an extension of the MCFP fingerprint. This extension is based on adding few columns into the fingerprint; representing monomer clusters, 2D structures, peptide categories, and peptide diversity. All these data have been extracted from the NRP structure. Experiments with Norine NRPs database showed that the extended MCFP, that can be called Monomer Structure FingerPrint (MSFP) produced high prediction accuracy (> 95%) together with a high recall rate (86%) obtained when MSFP was used for prediction and similarity searching. From this study it appeared that MSFP mainly built from monomer composition can substantially be improved by adding more columns representing useful information about monomer composition and 2D structure of NRPs.
Assuntos
Mapeamento de Peptídeos , Peptídeos/química , Sequência de Aminoácidos , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
Mining the genome of the food-spoiling bacterium Burkholderia gladioli pv. cocovenenans revealed five nonribosomal peptide synthetase (NRPS) gene clusters, including an orphan gene locus (bol). Gene inactivation and metabolic profiling linked the bol gene cluster to novel bolaamphiphilic lipopeptides with antimycobacterial activity. A combination of chemical analysis and bioinformatics elucidated the structures of bolagladinâ A and B, lipocyclopeptides featuring an unusual dehydro-ß-alanine enamide linker fused to an unprecedented tricarboxylic fatty acid tail. Through a series of targeted gene deletions, we proved the involvement of a designated citrate synthase (CS), priming ketosynthasesâ III (KSâ III), a typeâ II NRPS, including a novel desaturase for enamide formation, and a multimodular NRPS in generating the cyclopeptide. Network analyses revealed the evolutionary origin of the CS and identified cryptic CS/NRPS gene loci in various bacterial genomes.
Assuntos
Antibacterianos/biossíntese , Burkholderia gladioli/enzimologia , Citrato (si)-Sintase/metabolismo , Lipopeptídeos/biossíntese , Peptídeo Sintases/metabolismo , Antibacterianos/química , Citrato (si)-Sintase/genética , Lipopeptídeos/química , Conformação Molecular , Peptídeo Sintases/genética , FilogeniaRESUMO
Glycopeptide antibiotics (GPAs) are important antibiotics that are highly challenging to synthesise due to their unique and heavily crosslinked structure. Given this, the synthetic production and diversification of this key compound class remains impractical. Furthermore, the possibility of biosynthetic reengineering of GPAs is not yet feasible since the selectivity of the biosynthetic crosslinking enzymes for altered substrates is largely unknown. We show that combining peptide synthesis with enzymatic cyclisation enables the formation of novel examples of GPAs and provides an indication of the utility of these crucial enzymes. By accessing the biosynthetic process inâ vitro, we identified peptide modifications that are enzymatically tolerated and can also reveal the mechanistic basis for substrate intolerance where present. Using this approach, we next specifically activated modified residues within GPAs for functionalisation at previously inaccessible positions, thereby offering the possibility of late-stage chemical functionalisation after GPA cyclisation is complete.
Assuntos
Antibacterianos/síntese química , Glicopeptídeos/síntese química , Antibacterianos/química , Ciclização , Glicopeptídeos/químicaRESUMO
Secondary metabolites provide Bacillus subtilis with increased competitiveness towards other microorganisms. In particular, nonribosomal peptides (NRPs) have an enormous antimicrobial potential by causing cell lysis, perforation of fungal membranes, enzyme inhibition, or disruption of bacterial protein synthesis. This knowledge was primarily acquired in vitro when B. subtilis was competing with other microbial monocultures. However, our understanding of the true ecological role of these small molecules is limited. In this study, we have established soil-derived semisynthetic mock communities containing 13 main genera and supplemented them with B. subtilis P5_B1 WT, the NRP-deficient strain sfp, or single-NRP mutants incapable of producing surfactin, plipastatin, or bacillaene. Through 16S amplicon sequencing, it was revealed that the invasion of NRP-producing B. subtilis strains had no major impact on the bacterial communities. Still, the abundance of the two genera Lysinibacillus and Viridibacillus was reduced. Interestingly, this effect was diminished in communities supplemented with the NRP-deficient strain. Growth profiling of Lysinibacillus fusiformis M5 exposed to either spent media of the B. subtilis strains or pure surfactin indicated the sensitivity of this strain towards the biosurfactant surfactin. Our study provides a more in-depth insight into the influence of B. subtilis NRPs on semisynthetic bacterial communities and helps to understand their ecological role.
RESUMO
BACKGROUND: Biosynthetic gene clusters produce a wide range of metabolites with activities that are of interest to the pharmaceutical industry. Specific interest is shown towards those metabolites that exhibit antimicrobial activities against multidrug-resistant bacteria that have become a global health threat. Genera of the phylum Firmicutes are frequently identified as sources of such metabolites, but the biosynthetic potential of its Virgibacillus genus is not known. Here, we used comparative genomic analysis to determine whether Virgibacillus strains isolated from the Red Sea mangrove mud in Rabigh Harbor Lagoon, Saudi Arabia, may be an attractive source of such novel antimicrobial agents. RESULTS: A comparative genomics analysis based on Virgibacillus dokdonensis Bac330, Virgibacillus sp. Bac332 and Virgibacillus halodenitrificans Bac324 (isolated from the Red Sea) and six other previously reported Virgibacillus strains was performed. Orthology analysis was used to determine the core genomes as well as the accessory genome of the nine Virgibacillus strains. The analysis shows that the Red Sea strain Virgibacillus sp. Bac332 has the highest number of unique genes and genomic islands compared to other genomes included in this study. Focusing on biosynthetic gene clusters, we show how marine isolates, including those from the Red Sea, are more enriched with nonribosomal peptides compared to the other Virgibacillus species. We also found that most nonribosomal peptide synthases identified in the Virgibacillus strains are part of genomic regions that are potentially horizontally transferred. CONCLUSIONS: The Red Sea Virgibacillus strains have a large number of biosynthetic genes in clusters that are not assigned to known products, indicating significant potential for the discovery of novel bioactive compounds. Also, having more modular synthetase units suggests that these strains are good candidates for experimental characterization of previously identified bioactive compounds as well. Future efforts will be directed towards establishing the properties of the potentially novel compounds encoded by the Red Sea specific trans-AT PKS/NRPS cluster and the type III PKS/NRPS cluster.
Assuntos
Mineração de Dados , Genômica , Família Multigênica/genética , Virgibacillus/genética , Virgibacillus/metabolismo , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Ribossomos/metabolismoRESUMO
The World Health Organization has categorized the Gram-negative superbugs, which are inherently impervious to many antibiotics, as critical priority pathogens due to the lack of effective treatments. The breach in our last-resort antibiotic (i.e., colistin) by extensively drug-resistant and pan-drug-resistant Enterobacteriaceae strains demands the immediate development of new therapies. In the present study, we report the discovery of tridecaptin M, a new addition to the family, and its potential against colistin-resistant Enterobacteriaceae in vitro and in vivo Also, we performed mode-of-action studies using various fluorescent probes and studied the hemolytic activity and mammalian cytotoxicity in two cell lines. Tridecaptin M displayed strong antibacterial activity (MICs of 2 to 8 µg ml-1) against clinical strains of Klebsiella pneumoniae (which were resistant to colistin, carbapenems, third- and fourth-generation cephalosporins, fluoroquinolones, fosfomycin, and other antibiotics) and mcr-1-positive Escherichia coli strains. Unlike polymyxins, tridecaptin M did not permeabilize the outer membrane or cytoplasmic membrane. It blocked ATP synthesis in bacteria by dissipating the proton motive force. The compound exhibited negligible acquired resistance, low in vitro cytotoxicity and hemolytic activity, and no significant acute toxicity in mice. It also showed promising efficacy in a thigh infection model of colistin-resistant K. pneumoniae Altogether, these results demonstrate the future prospects of this class of antibiotics to address the unmet medical need to circumvent colistin resistance in extensively drug-resistant Enterobacteriaceae infections. The work also emphasizes the importance of natural products in our shrunken drug discovery pipeline.
Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Infecções por Enterobacteriaceae/tratamento farmacológico , Enterobacteriaceae/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade MicrobianaRESUMO
The natural product pepticinnaminâ E potently inhibits protein farnesyl transferases and has potential applications in treating cancer and malaria. Pepticinnaminâ E contains a rare N-terminal cinnamoyl moiety as well as several nonproteinogenic amino acids, including the unusual 2-chloro-3-hydroxy-4-methoxy-N-methyl-L-phenylalanine. The biosynthesis of pepticinnaminâ E has remained uncharacterized because its original producing strain is no longer available. Here we identified a gene cluster (pcm) for this natural product in a new producer, Actinobacteria bacterium OK006, by means of a targeted rediscovery strategy. We demonstrated that the pcm cluster is responsible for the biosynthesis of pepticinnaminâ E, a nonribosomal peptide/polyketide hybrid. We also characterized a key O-methyltransferase that modifies 3,4-dihydroxy-l-phenylalanine. Our work has identified the gene cluster for pepticinnamins for the first time and sets the stage for elucidating the unique chemistry required for biosynthesis.
Assuntos
Actinobacteria , Oligopeptídeos , Actinobacteria/genética , Actinobacteria/metabolismo , Produtos Biológicos/química , Metiltransferases/química , Família Multigênica , Oligopeptídeos/biossíntese , Oligopeptídeos/genéticaRESUMO
Microbial ecosystems tightly associated with a eukaryotic host are widespread in nature. The genetic and metabolic networks of the eukaryotic hosts and the associated microbes have coevolved to form a symbiotic relationship. Both the Gram-positive Bacillus subtilis and the Gram-negative Serratia plymuthica can form biofilms on plant roots and thus can serve as a model system for the study of interspecies interactions in a host-associated ecosystem. We found that B. subtilis biofilms expand collectively and asymmetrically toward S. plymuthica, while expressing a nonribosomal antibiotic bacillaene and an extracellular protease. As a result, B. subtilis biofilms outcompeted S. plymuthica for successful colonization of the host. Strikingly, the plant host was able to enhance the efficiency of this killing by inducing bacillaene synthesis. In turn, B. subtilis biofilms increased the resistance of the plant host to pathogens. These results provide an example of how plant-bacterium symbiosis promotes the immune response of the plant host and the fitness of the associated bacteria.IMPORTANCE Our study sheds mechanistic light on how multicellular biofilm units compete to successfully colonize a eukaryote host, using B. subtilis microbial communities as our lens. The microbiota and its interactions with its host play various roles in the development and prevention of diseases. Using competing beneficial biofilms that are essential microbiota members on the plant host, we found that B. subtilis biofilms activate collective migration to capture their prey, followed by nonribosomal antibiotic synthesis. Plant hosts increase the efficiency of antibiotic production by B. subtilis biofilms, as they activate the synthesis of polyketides; therefore, our study provides evidence of a mechanism by which the host can indirectly select for beneficial microbiota members.
Assuntos
Antibacterianos/biossíntese , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Brassicaceae/microbiologia , Ecossistema , Interações Hospedeiro-Patógeno , Raízes de Plantas/microbiologia , Polienos/metabolismo , Serratia/genética , Serratia/crescimento & desenvolvimento , Serratia/fisiologiaRESUMO
Cyanobacteria of the genus Nostoc are widespread in all kinds of habitats. They occur in a free-living state or in association with other organisms. Members of this genus belong to prolific producers of bioactive metabolites, some of which have been recognized as potential therapeutic agents. Of these, peptides and peptide-like structures show the most promising properties and are of a particular interest for both research laboratories and pharmaceutical companies. Nostoc is a sole source of some lead compounds such as cytotoxic cryptophycins, antiviral cyanovirin-N, or the antitoxic nostocyclopeptides. Nostoc also produces the same bioactive peptides as other cyanobacterial genera, but they frequently have some unique modifications in the structure. This includes hepatotoxic microcystins and potent proteases inhibitors such as cyanopeptolins, anabaenopeptins, and microginins. In this review, we described the most studied peptides produced by Nostoc, focusing especially on the structure, the activity, and a potential application of the compounds.