RESUMO
Postural orthostatic tachycardia syndrome (POTS) is an adrenergic signaling disorder characterized by excessive plasma norepinephrine, postural tachycardia, and syncope. The norepinephrine transporter (NET) modulates adrenergic homeostasis via the reuptake of extracellular catecholamines and is implicated in the pathogenesis of adrenergic and neurological disorders. In this study, we reveal NET is palmitoylated in male Sprague-Dawley rats and Lilly Laboratory Cell Porcine Kidney (LLC-PK1) cells. S-palmitoylation, or the addition of a 16-carbon saturated fatty acid, is a reversible post-translational modification responsible for the regulation of numerous biological mechanisms. We found that LLC-PK1 NET is dynamically palmitoylated, and that inhibition with the palmitoyl acyltransferase (DHHC) inhibitor, 2-bromopalmitate (2BP) results in decreased NET palmitoylation within 90 min of treatment. This result was followed closely by a reduction in transport capacity, cell surface, and total cellular NET expression after 120 min of treatment. Increasing 2BP concentrations and treatment time revealed a nearly complete loss of total NET protein. Co-expression with individual DHHCs revealed a single DHHC enzyme, DHHC1, promoted wild-type (WT) hNET palmitoylation and elevated NET protein levels. The POTS-associated NET mutant, A457P, exhibits dramatically decreased transport capacity and cell surface levels which we have confirmed in the current study. In an attempt to recover A457P NET expression, we co-expressed the A457P variant with DHHC1 to drive expression as seen with the WT protein but instead saw an increase in NET N-terminal immuno-detectable forms and fragments. Elimination of a potential palmitoylation site at cysteine 44 in the N-terminal tail of hNET resulted in a low expression phenotype mimicking the A457P hNET variant. Further investigation of A457P NET palmitoylation and surface expression is necessary, but our preliminary novel findings reveal palmitoylation as a mechanism of NET regulation and suggest that dysregulation of this process may contribute to the pathogenesis of adrenergic disorders like POTS.
RESUMO
Among clinically used radiopharmaceuticals, iodine-123 labeled metaiodobenzylguanidine ([123I]mIBG) serves for diagnosing neuroendocrine tumors and obtaining images of myocardial sympathetic innervation. mIBG, a structural analogue of norepinephrine (NE), a neurotransmitter acting in peripheral and central nerves, follows a pathway similar to NE, transmitting signals through the NE transporter (NET) located at synaptic terminals. It moves through the body without decomposing, enabling noninvasive image evaluation. In this study, we aimed to quantify [123I]mIBG uptake in the adrenal glands using small animal single-photon emission computed tomography/computed tomography (SPECT/CT) images post [123I]mIBG administration. We investigated the possibility of assessing the effectiveness of ß-adrenergic receptor blockers by quantifying SPECT/CT images and biodistribution results to determine the degree of [123I]mIBG uptake in the adrenal glands treated with labetalol, a known ß-adrenergic receptor blocker. Upon intravenous administration of [123I]mIBG to mice, SPECT/CT images were acquired over time to confirm the in vivo distribution pattern, revealing a clear uptake in the adrenal glands. Labetalol inhibited the uptake of [123I]mIBG in cell lines expressing NET. A decrease in [123I]mIBG uptake in the adrenal glands was observed in the labetalol-treated group compared with the normal group through SPECT/CT imaging and biodistribution studies. These results demonstrate that SPECT/CT imaging with [123I]mIBG could be applicable for evaluating the preclinical efficacy of new antihypertensive drug candidates such as labetalol, a ß-adrenergic receptor blocker.
Assuntos
3-Iodobenzilguanidina , Antagonistas Adrenérgicos beta , Radioisótopos do Iodo , Labetalol , Animais , Humanos , Masculino , Camundongos , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacocinética , Linhagem Celular Tumoral , Estudos de Viabilidade , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição TecidualRESUMO
BACKGROUND: Prior studies suggest that norepinephrine transporter (NET) and vesicular monoamine transporter 2 (VMAT2) mediate meta-iodobenzylguanidine (MIBG) uptake and retention in neuroblastoma tumors. We evaluated the relationship between NET and VMAT2 tumor expression and clinical response to 131 I-MIBG therapy in patients with neuroblastoma. METHODS: Immunohistochemistry (IHC) was used to evaluate NET and VMAT2 protein expression levels on archival tumor samples (obtained at diagnosis or relapse) from patients with relapsed or refractory neuroblastoma treated with 131 I-MIBG. A composite protein expression H-score was determined by multiplying a semi-quantitative intensity value (0-3+) by the percentage of tumor cells expressing the protein. RESULTS: Tumor samples and clinical data were available for 106 patients, of whom 28.3% had partial response (PR) or higher. NET H-score was not significantly associated with response (≥PR), though the percentage of tumor cells expressing NET was lower among responders (median 80% for ≥PR vs. 90% for Assuntos
3-Iodobenzilguanidina
, Neuroblastoma
, Humanos
, 3-Iodobenzilguanidina/uso terapêutico
, Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo
, Proteínas Vesiculares de Transporte de Monoamina/metabolismo
, Compostos Radiofarmacêuticos
, Proteína Proto-Oncogênica N-Myc
, Recidiva Local de Neoplasia/tratamento farmacológico
, Neuroblastoma/tratamento farmacológico
, Doença Crônica
RESUMO
PURPOSE: We previously reported that single doses of the norepinephrine transporter inhibitor, atomoxetine, increased standing blood pressure (BP) and ameliorated symptoms in patients with neurogenic orthostatic hypotension (nOH). We aimed to evaluate the effect of atomoxetine over four weeks in patients with nOH. METHODS: A randomized, double-blind, placebo-controlled crossover clinical trial between July 2016 and May 2021 was carried out with an initial open-label, single-dose phase (10 or 18 mg atomoxetine), followed by a 1-week wash-out, and a subsequent double-blind 4-week treatment sequence (period 1: atomoxetine followed by placebo) or vice versa (period 2). The trial included a 2-week wash-out period. The primary endpoint was symptoms of nOH as measured by the orthostatic hypotension questionnaire (OHQ) assessed at 2 weeks. RESULTS: A total of 68 patients were screened, 40 were randomized, and 37 completed the study. We found no differences in the OHQ composite score between atomoxetine and placebo at 2 weeks (-0.3 ± 1.7 versus -0.4 ± 1.5; P = 0.806) and 4 weeks (-0.6 ± 2.4 versus -0.5 ± 1.6; P = 0.251). There were no differences either in the OHSA scores at 2 weeks (3 ± 1.9 versus 4 ± 2.1; P = 0.062) and at 4 weeks (3 ± 2.2 versus 3 ± 2.0; P = 1.000) or in the OH daily activity scores (OHDAS) at 2 weeks (4 ± 3.0 versus 5 ± 3.1, P = 0.102) and 4 weeks (4 ± 3.0 versus 4 ± 2.7, P = 0.095). Atomoxetine was well-tolerated. CONCLUSIONS: While previous evidence suggested that acute doses of atomoxetine might be efficacious in treating nOH; results of this clinical trial indicated that it was not superior to placebo to ameliorate symptoms of nOH. TRIAL REGISTRATION: ClinicalTrials.gov; NCT02316821.
RESUMO
Prolonged exposure to HIV-1 transactivator of transcription (Tat) protein dysregulates monoamine transmission, a physiological change implicated as a key factor in promoting neurocognitive disorders among people living with HIV. We have demonstrated that in vivo expression of Tat in Tat transgenic mice decreases dopamine uptake through both dopamine transporter (DAT) and norepinephrine transporter (NET) in the prefrontal cortex. Further, our novel allosteric inhibitor of monoamine transporters, SRI-32743, has been shown to attenuate Tat-inhibited dopamine transport through DAT and alleviates Tat-potentiated cognitive impairments. The current study reports the pharmacological profiles of SRI-32743 in basal and Tat-induced inhibition of human NET (hNET) function. SRI-32743 exhibited less affinity for hNET binding than desipramine, a classical NET inhibitor, but displayed similar potency for inhibiting hDAT and hNET activity. SRI-32743 concentration-dependently increased hNET affinity for [3H]DA uptake but preserved the Vmax of dopamine transport. SRI-32743 slowed the cocaine-mediated dissociation of [3H]Nisoxetine binding and reduced both [3H]DA and [3H]MPP+ efflux but did not affect d-amphetamine-mediated [3H]DA release through hNET. Finally, we determined that SRI-32743 attenuated a recombinant Tat1-86-induced decrease in [3H]DA uptake via hNET. Our findings demonstrated that SRI-32743 allosterically disrupts the recombinant Tat1-86-hNET interaction, suggesting a potential treatment for HIV-infected individuals with concurrent cocaine abuse.
Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Cocaína/farmacologia , Cocaína/metabolismo , Humanos , HIV-1/metabolismo , HIV-1/efeitos dos fármacos , Quinazolinas/farmacologia , Quinazolinas/química , Animais , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ligação Proteica , CamundongosRESUMO
BACKGROUND: Freezing of gait (FOG) is a major cause of falling in Parkinson's disease (PD) and can be responsive or unresponsive to levodopa. Pathophysiology is poorly understood. OBJECTIVE: To examine the link between noradrenergic systems, the development of FOG in PD and its responsiveness to levodopa. METHODS: We examined norepinephrine transporter (NET) binding via brain positron emission tomography (PET) to evaluate changes in NET density associated with FOG using the high affinity selective NET antagonist radioligand [11C]MeNER (2S,3S)(2-[α-(2-methoxyphenoxy)benzyl]morpholine) in 52 parkinsonian patients. We used a rigorous levodopa challenge paradigm to characterize PD patients as non-freezing (NO-FOG, N = 16), levodopa responsive freezing (OFF-FOG, N = 10), and levodopa-unresponsive freezing (ONOFF-FOG, N = 21), and also included a non-PD FOG group, primary progressive freezing of gait (PP-FOG, N = 5). RESULTS: Linear mixed models identified significant reductions in whole brain NET binding in the OFF-FOG group compared to the NO-FOG group (-16.8%, P = 0.021) and regionally in the frontal lobe, left and right thalamus, temporal lobe, and locus coeruleus, with the strongest effect in right thalamus (P = 0.038). Additional regions examined in a post hoc secondary analysis including the left and right amygdalae confirmed the contrast between OFF-FOG and NO-FOG (P = 0.003). A linear regression analysis identified an association between reduced NET binding in the right thalamus and more severe New FOG Questionnaire (N-FOG-Q) score only in the OFF-FOG group (P = 0.022). CONCLUSION: This is the first study to examine brain noradrenergic innervation using NET-PET in PD patients with and without FOG. Based on the normal regional distribution of noradrenergic innervation and pathological studies in the thalamus of PD patients, the implications of our findings suggest that noradrenergic limbic pathways may play a key role in OFF-FOG in PD. This finding could have implications for clinical subtyping of FOG as well as development of therapies.
Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Levodopa/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , MarchaRESUMO
PURPOSE: Despite its limitations, [123I]MIBG scintigraphy has been the standard for human norepinephrine transporter (hNET) imaging for several decades. Recently, [18F]MFBG has emerged as a promising PET alternative. This prospective trial aimed to evaluate safety, biodistribution, tumour lesion pharmacokinetics, and lesion targeting of [18F]MFBG and perform a head-to-head comparison with [123I]MIBG in neural crest tumour patients. METHODS: Six neural crest tumour patients (4 phaeochromocytoma, 1 paraganglioma, 1 neuroblastoma) with a recent routine clinical [123I]MIBG scintigraphy (interval: - 37-75 days) were included. Adult patients (n = 5) underwent a 30-min dynamic PET, followed by 3 whole-body PET/CT scans at 60, 120, and 180 min after injection of 4 MBq/kg [18F]MFBG. One minor participant underwent a single whole-body PET/CT at 60 min after administration of 2 MBq/kg [18F]MFBG. Normal organ uptake (SUVmean) and lesion uptake (SUVmax; tumour-to-background ratio (TBR)) were measured. Regional distribution volumes (VT) were estimated using a Logan graphical analysis in up to 6 lesions per patient. A lesion-by-lesion analysis was performed to compare detection ratios (DR), i.e. fraction of detected lesions, between [18F]MFBG and [123I]MIBG. RESULTS: [18F]MFBG was safe and well tolerated. Its biodistribution was overall similar to that of [123I]MIBG, with prominent uptake in the salivary glands, liver, left ventricle wall and adrenals, and mainly urinary excretion. In the phaeochromocytoma subgroup, the median VT was 37.4 mL/cm3 (range: 18.0-144.8) with an excellent correlation between VT and SUVmean at all 3 time points (R2: 0.92-0.94). Mean lesion SUVmax and TBR at 1 h after injection were 19.3 ± 10.7 and 23.6 ± 8.4, respectively. All lesions detected with [123I]MIBG were also observed with [18F]MFBG. The mean DR with [123I]MIBG was significantly lower than with [18F]MFBG (61.0% ± 26.7% vs. 99.8% ± 0.5% at 1 h; p = 0.043). CONCLUSION: [18F]MFBG is a promising hNET imaging agent with favourable imaging characteristics and improved lesion targeting compared with [123I]MIBG scintigraphy. TRIAL REGISTRATION: Clinicaltrials.gov : NCT04258592 (Registered: 06 February 2020), EudraCT: 2019-003872-37A.
Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Adulto , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , 3-Iodobenzilguanidina/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Feocromocitoma/diagnóstico por imagem , Estudos Prospectivos , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagemRESUMO
PURPOSE: Iodine 123 labeled meta-iodobenzylguanidine ([123I]MIBG) scan with SPECT/CT imaging is one of the most commonly used imaging modalities in the evaluation of neuroblastoma. [18F]-meta-fluorobenzylguanidine ([18F]MFBG) is a novel positron emission tomography (PET) tracer which was reported to have a similar biodistribution to [123I]MIBG. However, the experience of using [18F]MFBG PET/CT in the evaluation of patients with neuroblastoma is limited. This preliminary investigation aims to assess the efficacy of [18F]MFBG PET/CT in the evaluation of neuroblastomas in comparison to [123I]MIBG scans with SPECT/CT. MATERIALS AND METHODS: In this prospective, single-center study, 40 participants (mean age 6.0 ± 3.7 years) with history of neuroblastoma were enrolled. All children underwent both [123I]MIBG SPECT/CT and [18F]MFBG PET/CT studies. The number of lesions and the Curie scores revealed by each imaging method were recorded. RESULTS: Six patients had negative findings on both [123I]MIBG and [18F]MFBG studies. Four of the 34 patients (11.8%) were negative on [123I]MIBG but positive on [18F]MFBG, while 30 patients were positive on both [123I]MIBG and [18F]MFBG studies. In these 34 patients, [18F]MFBG PET/CT identified 784 lesions while [123I]MIBG SPECT/CT detected 532 lesions (p < 0.001). The Curie scores obtained from [18F]MFBG PET/CT (11.32 ± 8.18, range 1-27) were statistically higher (p < 0.001) than those from [123I]MIBG SPECT/CT (7.74 ± 7.52, range 0-26). 30 of 34 patients (88.2%) with active disease on imaging had higher Curie scores based on the [18F]MFBG study than on the [123I]MIBG imaging. CONCLUSION: [18F]MFBG PET/CT shows higher lesion detection rate than [123I]MIBG SPECT/CT in the evaluation of pediatric patients with neuroblastoma. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov : NCT05069220 (Registered: 25 September 2021, retrospectively registered); Institute Review Board of Peking Union Medical College Hospital: ZS-2514.
Assuntos
3-Iodobenzilguanidina , Neuroblastoma , Criança , Pré-Escolar , Humanos , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos Prospectivos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Distribuição TecidualRESUMO
Previous research reported an age-related decline in brain norepinephrine transporter (NET) using (S, S)-[11C]O-methylreboxetine ([11C]MRB) as a radiotracer. Studies with the same tracer have been mixed in regard to differences related to body mass index (BMI). Here, we investigated potential age-, BMI-, and gender-related differences in brain NET availability using [11C]MRB, the most selective available radiotracer. Forty-three healthy participants (20 females, 23 males; age range 18-49 years), including 12 individuals with normal/lean weight, 15 with overweight, and 16 with obesity were scanned with [11C]MRB using a positron emission tomography (PET) high-resolution research tomograph (HRRT). We evaluated binding potential (BPND ) in brain regions with high NET availability using multilinear reference tissue model 2 (MRTM2) with the occipital cortex as a reference region. Brain regions were delineated with a defined anatomic template applied to subjects' structural MR scans. We found a negative association between age and NET availability in the locus coeruleus, raphe nucleus, and hypothalamus, with a 17%, 19%, and 14% decrease per decade, respectively, in each region. No gender or BMI relationships with NET availability were observed. Our findings suggest an age-related decline, but no BMI- or gender-related differences, in NET availability in healthy adults.
Assuntos
Morfolinas , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Masculino , Adulto , Feminino , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Reboxetina/metabolismo , Morfolinas/metabolismo , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodosRESUMO
Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.
Assuntos
Norepinefrina/fisiologia , Receptores Adrenérgicos/fisiologia , Sistema Nervoso Simpático/fisiologia , Tálamo/fisiologia , Animais , Autorradiografia , Axônios/fisiologia , Dopamina beta-Hidroxilase/metabolismo , Fenômenos Eletrofisiológicos , Feminino , Macaca mulatta , Macaca nemestrina , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Receptores Adrenérgicos/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Sistema Nervoso Simpático/diagnóstico por imagem , Sistema Nervoso Simpático/efeitos dos fármacosRESUMO
Mammary epithelial cells synthesize and secrete norepinephrine (NE) into breast milk to regulate ß-casein expression through the adrenergic ß2 receptor. We investigated the expression, localization, and roles of NE transporter (NET) in the mammary epithelium during lactation. mRNA and protein levels of NET were determined in primary normal human mammary epithelial cells (pHMECs) and non-malignant human mammary epithelial MCF-12A cells. In nursing CD1 mice, NET localized to the apical membranes of the mammary epithelium. The intracellular NE content of pHMECs incubated with NE increased. Although the ß-casein concentration in milk was slightly higher at day 10 than at day 2 of lactation, the NE concentration and lactation-related proteins were only slightly changed on days 2-10. Restraint stress increased the NE concentration in milk from nursing mice and NET protein levels were significantly higher than in non-stressed nursing mice. NET is expressed on the apical membrane of mammary epithelial cells and incorporates NE in milk into cells, potentially regulating the NE concentration in milk.
Assuntos
Glândulas Mamárias Humanas/metabolismo , Leite Humano/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Norepinefrina/metabolismo , Animais , Transporte Biológico Ativo , Caseínas/metabolismo , Linhagem Celular , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Humanos , Lactação/genética , Lactação/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/citologia , Camundongos , Leite/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Restrição Física/efeitos adversos , Estresse Fisiológico/fisiologiaRESUMO
BACKGROUND: The role of microglia in Alzheimer's disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. METHODS: In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. RESULTS: Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. CONCLUSION: These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.
Assuntos
Envelhecimento/metabolismo , Precursor de Proteína beta-Amiloide , Locus Cerúleo/metabolismo , Microglia/metabolismo , Degeneração Neural/metabolismo , Norepinefrina/metabolismo , Presenilina-1 , Envelhecimento/genética , Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Locus Cerúleo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Norepinefrina/genética , Presenilina-1/genética , Medula Espinal/metabolismo , Medula Espinal/patologiaRESUMO
To develop novel norepinephrine transporter (NET)-targeting positron emission tomography (PET) probes with optimal pharmacokinetic properties, a series of meta-bromobenzylguanidine derivatives was synthesized. 4-Fluorodiethoxyethane-3-bromobenzylguanidine (compound 12) showed relatively good affinity for the NET (IC50 = 1.00 ± 0.04 µM). The corresponding radiotracer 18F-12 was prepared in high radiochemical purity (>98%) via a three-step method. The in vitro cellular uptake results demonstrated that 18F-12 was specifically taken up by NET-expressing SK-N-SH cells by the uptake-1 mechanism. Biodistribution studies in mice showed that 18F-12 exhibited high cardiac uptake (10.45 ± 0.66 %ID/g at 5 min p.i. and 6.44 ± 0.40 %ID/g at 120 min p.i.), faster liver clearance, and a lower dose of absorbed radiation than [123I]-labeled meta-iodobenzylguanidine ([123I]MIBG). Small animal PET imaging confirmed the high heart-to-background ratio of 18F-12 and the uptake-1 mechanism specific for the NET in rats, indicating its potential as a promising PET radiotracer for cardiac sympathetic nerve imaging.
Assuntos
Bromobenzenos/metabolismo , Guanidinas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Bromobenzenos/farmacocinética , Linhagem Celular Tumoral , Radioisótopos de Flúor/farmacocinética , Guanidinas/farmacocinética , Humanos , Camundongos Endogâmicos ICR , Tomografia por Emissão de Pósitrons/métodosRESUMO
Receptor-mediated cancer therapy has received much attention in the last few decades. Neuroblastoma and other cancers of the sympathetic nervous system highly express norepinephrine transporter (NET) and cell plasma membrane integrin αvß3. Dual targeting of the NET and integrin αvß3 receptors using a Drug-Drug Conjugate (DDC) might provide effective treatment strategy in the fight against neuroblastoma and other neuroendocrine tumors. In this work, we synthesized three dual-targeting BG-P400-TAT derivatives, dI-BG-P400-TAT, dM-BG-P400-TAT, and BG-P400-PAT containing di-iodobenzene, di-methoxybenzene, and piperazine groups, respectively. These derivatives utilize to norepinephrine transporter (NET) and the integrin αvß3 receptor to simultaneously modulate both targets based on evaluation in a neuroblastoma animal model using the neuroblastoma SK-N-F1 cell line. Among the three synthesized agents, the piperazine substituted BG-P400-PAT exhibited potent integrin αvß3 antagonism and reduced neuroblastoma tumor growth and cancer cell viability by >90%. In conclusion, BG-P400-PAT and derivatives represent a potential therapeutic approach in the management of neuroblastoma.
Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Neuroblastoma/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Tiroxina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Relação Estrutura-Atividade , Tiroxina/análogos & derivados , Tiroxina/química , Células Tumorais CultivadasRESUMO
Polymer-drug conjugates are growing in interest as novel anticancer agents for targeted cancer therapy. The aim of this study was to synthesize a poly(ethylene glycol) (PEG) conjugated anticancer drug for neuroblastoma, which is the most common extracranial solid tumor of childhood and the deadliest tumor of infancy. In our previous studies, we designed and synthesized a dual targeting agent using benzylguanidine (BG) conjugated with the high affinity thyrointegrin αvß3 antagonist TriAzole Tetraiodothyroacetic acid (TAT) via non-cleavable bonding to PEG400 to make BG-P400-TAT and its derivatives as agents against neuroblastoma. Here, we improved the pharmacodynamic properties and increased the solubility by changing the polymer length to 1600 molecular weight. The TAT group, which acts as an integrin αvß3 antagonist, and the BG group, which can be taken up by neuroblastoma cells through the norepinephrine transporter (NET) system, are conjugated to PEG1600 to make BG-PEG1600-TAT. The binding affinity of BG-PEG1600-TAT was 40-fold higher to integrin αvß3 versus BG-P400-TAT and was associated with greater anticancer activities against neuroblastoma cells (SK-N-F1 and SKNAS) implanted in SCID mice along with broad spectrum anti-angiogenesis activities versus the FDA approved anti-Vascular Endothelial Growth Factor (VEGF) monoclonal antibody Avastin (bevacizumab). In conclusion, our novel dual targeting of NET and αvß3 receptor antagonist, BG-P1600-TAT demonstrated broad spectrum anti-angiogenesis and anti-cancer activities in suppressing neuroblastoma tumor progression and metastasis. Thus, BG-PEG1600-TAT represents a potential clinical candidate for targeted therapy in neuroblastoma management.
Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Integrina alfaVbeta3/metabolismo , Neuroblastoma/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Polietilenoglicóis/farmacologia , Antineoplásicos/química , Relação Dose-Resposta a Droga , Humanos , Integrina alfaVbeta3/química , Estrutura Molecular , Neuroblastoma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/química , Polietilenoglicóis/química , Relação Estrutura-AtividadeRESUMO
Pheochromocytomas and paragangliomas (PPG) are rare cancers arising from the adrenal medulla (pheochromocytoma) or autonomic ganglia (paraganglioma). They have highly variable biological behavior. Most PPG express high-affinity norepinephrine transporters, allowing active uptake of the norepinephrine analog, 131iodine-metaiodobenzylguanidine (131I-MIBG). Low-specific-activity forms of 131I-MIBG have been used since 1983 for therapy of PPG. High-specific-activity 131I-MIBG therapy improves hypertension management, induces partial radiological response or stable disease, decreases biochemical markers of disease activity and is well tolerated by patients. This drug, approved in the USA in July 2018, is the first approved agent for patients with unresectable, locally advanced or metastatic PPG and imaging evidence of metaiodobenzylguanidine uptake, who require systemic anticancer therapy.
Assuntos
3-Iodobenzilguanidina/uso terapêutico , Radioisótopos do Iodo/uso terapêutico , Paraganglioma/patologia , Paraganglioma/radioterapia , Feocromocitoma/patologia , Feocromocitoma/radioterapia , Gerenciamento Clínico , Humanos , Estadiamento de Neoplasias , Resultado do TratamentoRESUMO
OBJECTIVE: The aim of this fixed-dose study was to evaluate the efficacy and safety of dasotraline in the treatment of patients with binge-eating disorder (BED). METHODS: Patients meeting Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria for BED were randomized to 12 weeks of double-blind treatment with fixed doses of dasotraline (4 and 6 mg/d), or placebo. The primary efficacy endpoint was change in number of binge-eating (BE) days per week at week 12. Secondary efficacy endpoints included week 12 change on the BE CGI-Severity Scale (BE-CGI-S) and the Yale-Brown Obsessive-Compulsive Scale Modified for BE (YBOCS-BE). RESULTS: At week 12, treatment with dasotraline was associated with significant improvement in number of BE days per week on the dose of 6 mg/d (N = 162) vs placebo (N = 162; -3.47 vs -2.92; P = .0045), but not 4 mg/d (N = 161; -3.21). Improvement vs placebo was observed for dasotraline 6 and 4 mg/d, respectively, on the BE-CGI-S (effect size [ES]: 0.37 and 0.27) and on the YBOCS-BE total score (ES: 0.43 and 0.29). The most common adverse events on dasotraline were insomnia, dry mouth, headache, decreased appetite, nausea, and anxiety. Changes in blood pressure and pulse were minimal. CONCLUSION: Treatment with dasotraline 6 mg/d (but not 4 mg/d) was associated with significantly greater reduction in BE days per week. Both doses of dasotraline were generally safe and well-tolerated and resulted in global improvement on the BE-CGI-S, as well as improvement in BE related obsessional thoughts and compulsive behaviors on the YBOCS-BE. These results confirm the findings of a previous flexible dose study.
Assuntos
1-Naftilamina/análogos & derivados , Bulimia/tratamento farmacológico , 1-Naftilamina/administração & dosagem , 1-Naftilamina/efeitos adversos , 1-Naftilamina/uso terapêutico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medications for psychiatric disorders, yet they leave the majority of patients without full symptom relief. Therefore, a major research challenge is to identify novel targets for the improved treatment of these disorders. SSRIs act by blocking the serotonin transporter (SERT), the high-affinity, low-capacity, uptake-1 transporter for serotonin. Other classes of antidepressant work by blocking the norepinephrine or dopamine transporters (NET and DAT), the high-affinity, low-capacity uptake-1 transporters for norepinephrine and dopamine, or by blocking combinations of SERT, NET, and DAT. It has been proposed that uptake-2 transporters, which include organic cation transporters (OCTs) and the plasma membrane monoamine transporter (PMAT), undermine the therapeutic utility of uptake-1 acting antidepressants. Uptake-2 transporters for monoamines have low affinity for these neurotransmitters, but a high capacity to transport them. Thus, activity of these transporters may limit the increase of extracellular monoamines thought to be essential for ultimate therapeutic benefit. Here preclinical evidence supporting a role for OCT2, OCT3, and PMAT in behaviors relevant to psychiatric disorders is presented. Importantly, preclinical evidence revealing these transporters as targets for the development of novel therapeutics for psychiatric disorders is discussed.
Assuntos
Transtornos Mentais , Proteínas de Transporte de Cátions Orgânicos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Cátions , Proteínas da Membrana Plasmática de Transporte de Dopamina , Humanos , Transtornos Mentais/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Serotonina , Inibidores Seletivos de Recaptação de Serotonina/uso terapêuticoRESUMO
BACKGROUND: Amphetamine (AMPH) and other psychostimulants act on the norepinephrine (NE) transporter (NET) and the dopamine (DA) transporter (DAT) and enhance NE and DA signaling. Both NET and DAT share anatomical and functional characteristics and are regulated similarly by psychostimulants and receptor-linked signaling pathways. We and others have demonstrated that NET and DAT are downregulated by AMPH and substance P/neurokinin-1 receptor (NK1R)-mediated protein kinase C pathway. OBJECTIVES: Since both NET and DAT are downregulated by AMPH and NK1R activation and share high sequence homology, the objective of the study was to determine the catecholamine transporter specificity in NK1R modulation of AMPH-induced behaviors. METHODS: The effect of NK1R antagonism on AMPH-induced conditioned place preference (CPP) as well as AMPH-induced NET and DAT downregulation was examined using NET and DAT knockout mice (NET-KO and DAT-KO) along with their wild-type littermates. RESULTS: Aprepitant (5 mg/kg i.p.) significantly attenuated AMPH (2 mg/kg i.p.)-induced CPP in the wild-type and DAT-KO but not in the NET-KO. Locomotor activity measured during the post-conditioning test (in the absence of AMPH) showed higher locomotor activity in DAT-KO compared to wild-type or NET-KO. However, the locomotor activity of all 3 genotypes remained unchanged following aprepitant. Additionally, in the ventral striatum of wild-type, the AMPH-induced downregulation of NET function and surface expression but not that of DAT was attenuated by aprepitant. CONCLUSIONS: The results from the current study demonstrate that aprepitant attenuates the expression of AMPH-induced CPP in DAT-KO mice but not in NET-KO mice suggesting a role for NK1R-mediated NET regulation in AMPH-induced behaviors.
Assuntos
Anfetamina/farmacologia , Aprepitanto/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
We evaluated the practicability of using the rarely utilized C57BL/6N mouse as a Parkinson's disease model established via the acute MPTP/probenecid (MPTP/p) protocol. We confirmed dopaminergic degeneration in terms of decreased expression levels of tyrosine hydroxylase in the substantia nigra and striatum of MPTP/p-lesioned mice. In addition, acute MPTP/p-lesioned mice demonstrated initial motor dysfunctions followed by spontaneous recovery. Interestingly, these MPTP/p-lesioned mice exhibited anxiolytic and antidepressive behaviors upon recovery from these motor deficits. Additionally, increased expression of norepinephrine transporters in several brain regions, including the hippocampus, medial prefrontal cortex, and striatum, and an elevated rate of adult neurogenesis (in terms of increased numbers of doublecortin-positive neuroblasts) in the hippocampus were observed after recovery from motor dysfunctions. We suggest that the emotional alterations observed under these experimental conditions may be associated with enhanced adult neurogenesis, increased levels of norepinephrine transporters, and/or a possible interplay between these two factors. Consequently, this acute MPTP/p model adequately satisfies the criteria for the validity of a Parkinson's disease model regarding dopaminergic loss and motor impairment. However, the non-motor findings may offer novel evidence against the practicability of utilizing the acute MPTP/p-lesioned mice for modeling the emotional aberrations found in Parkinson's disease patients.